Simple quasi-analytical holonomic homogenization model for
the non-linear analysis of in-plane loaded masonry panels:
Part 1, meso-scale
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Abstract. A simple quasi analytical holonomic homogenizatapproach for the non-linear analysis of masonrjiswia-plane
loaded is presented. The elementary cell (REV) dsrdiized with 24 triangular elastic constant strelements (bricks) and non-
linear interfaces (mortar). A holonomic behaviothwsoftening is assumed for mortar. It is shown hbes mechanical problem in
the unit cell is characterized by very few dispfaeat variables and how homogenized stress-strdiavi@ can be evaluated semi-
analytically.
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INTRODUCTION

Masonry is a traditional material constituted bycks and mortar. The variability of the patterne hape of the
blocks, and the fragile behavior of the constituewatterials make the simulation of masonry a vellehging task.
Macro- or micro-modeling strategies are adoptedie@ with masonry over elasticity, which is usuatyy limited.

Macro-modeling substitutes bricks and mortar withoaogeneous, sometimes orthotropic material vaftesing.
Abundant is the literature in this regard, see §l§. Macro-modelling allows studying even largealec structures
without the need of meshing separately bricks andan Nevertheless, the calibration of model patans is typically
done through expensive experimental campaigns.

The alternative is micro-modeling, which is chaesizted by a separate discretization of mortar arck®& The
reduction of joints to interfaces [BElps in limiting variables, but the approach s#linains demanding.

In such a context, homogenization [3]-[6] is a fe@mpromise between micro- and macro-modellingabse it
allows in principle to perform structural non-limesnalyses without a distinct representation ofksriand mortar, still
considering their mechanical properties and textarea cell level. Homogenization is essentially areraging
procedure performed at a meso-scale on a repréisenglement of volume (REV), which generates magdiy
repetition. On the REV, a Boundary Value ProblemPBi¥ formulated, allowing an estimation of the ectpd average
masonry behavior to be used at structural level.

In this paper, a simplified homogenization two-stapdel is proposed for the non-linear structuradlgsis of
masonry walls in-plane loaded. The first step igliad at the meso-scale, where the assemblageakland mortar in
the REV is substituted with a macroscopic equiviateaterial through a so called compatible iderdtiien. The unit
cell is meshed by means of 24 triangular elastnlstress elements (bricks) and interfaces (mMoRar interfaces, a
piecewise linear and an exponential law formallgnitical to an improved version of the Xu-Needlentanw are
implemented. Such relationships are characterizedolst-peak softening, eventually with a couplirgvieen normal
and shear stresses in the case of Xu-Needlemansdd¢wnd step, reported in detail in Part 2, isqueréd at a
structural level, and relies into the implementatad the homogenized stress-strain relationshitus éither a FE code
dealing with softening materials (nested multi-eda&ichnique) or a rigid element approach (RBSM)retwntiguous
rigid elements are connected by shear and nornmalinear homogenized springs.

THE NUMERICAL MODEL

The basic features of the REV model are depicteBHItBURE 1. The REV middle plane is discretized with 24
plane stress elastic triangular elements (brickd) llonomic softening interfaces (mortar with zérickness). Under
the application of a single stretching along hamtabdirection €, #0 in the homogenized strain tensor), only % of the

unit cell can be considered, with the behaviorlefrents 4, 5 and 6 equal to those of elementsaBd2l respectively.
Under such assumptions, it has been shown in [i&t after writing properly both equilibrium and cpatibility
equations and after proper manipulation of suchtigiships, the following equations are obtainedstdve the
mechanical problem on the REV:
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In Eq. (1 ),Uf indicate an imposed boundary horizontal displacemé = U S -U 3, n :U;’ +U§’, U)i( (V) ;) is
the i-th node unknown horizontal (vertical) disgaent, fn"” ( ft"” ) is the joint (I: head, II: bed) normal (shear)

stress,E, (V,) is the brick Young modulus (Poisson’s ratio)
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FIGURE 1. The compatible homogenization presented. REV me#h24i CST brick elastic elements and holonomic morta
interfaces. Anti-periodicity of the micro-stresslé.

Eqg. (1) is a system of non-linear equations thatbe solved graphically as follows, $&URE 2:
1) Assign a value foi in equation ( 1 )(a) and find immediately the esponding value of]. Curve ( 1 )(a) can thus

be plotted in thef -/] plane selecting a suitable range #rSince is the tangential jump of displacements of the

horizontal joint, typically the range to inspect & I_O A‘:'J, where A‘:' is the ultimate tangential jump of

displacement of the interface.
2) Assign a value fof] in equation ( 1 )(b) and find immediately the esponding value of . Similarly to Curve I,

Curve ( 1 )(b) can thus be plotted in tde/] plane selecting a suitable range f@r Again, since/] is the normal

jump of displacements of the horizontal joint, flage to inspect is]DI_O A“r']J, where A”r: is the ultimate
normal jump of displacement of the interface.

3) The intersection between Curve | and Curve |l afidlae graphical determination &f-/] values.
When shear and normal behaviors of the interfaces@upled, analogous relations are derived:
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In this latter case, however, the graphical procedo determine the solution point is slightly matenbersome and
requires a recursive approach as follows:

4) Assign a value fo€ in equation ( 2 )(a) with7=0 in f " ({,/7) and find an updated value fé}, say/7i . Putl7i
into ft” ({,/7) and, through ( 2 )(a), estimate agé?n/]i+l. Repeat unti|/7i = /7i+1. Curve (1)(a) is thus plotted
in the &-/] plane within the rangé [] [0 A J



5) Assign a value fof] in equation ( 2 )(b) with¥=0 and find an updated value ffr=¢'. Put &' into f " (&'7)

and estimate a ne = fiﬂ by means of ( 2 )(b);] range to inspect is aga[@ A“r'] J
6) &-/]values are estimated at the intersection betwesveQ and Curve Il.
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FIGURE 2: Graphical solution in the biaxial strain stawft{l and biaxial strain state problem (right).

When a biaxial strain state is applied to the aalt, i.e. with both ExX #Z0 and Eyy # 0, it can be shown that
equations ( 1) slightly modifies into:
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where US is an applied vertical boundary displacement, es@nting Eyy # 0, according to the compatible
identification procedure adopted. The solutiontetyg for the non-linear system of equations ( 8 identical to that
adopted for problem ( 2 ). For shear, with the gmss US +US= &', U= n', Exy(ZH +eh)=U_)f,

(1)
EyX(L + 26\,)=U yt , Ge\’ =k , the following equations hold (it is interestirgrtotice that ( 4 ) is a system of non-
b

linear equations into the three variablé%, /7t and K , again solved with a simple iterative strategyyfelxplained in

[7]:
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RESULTS

Some concise results are representeBIBURE 3 for a running bond masonry with mechanical prapsras in
TABLE I. A comprehensive discussion is again provided’]rahd is not reported here for the sake of coneiss. In
FIGURE 3 the homogenized stress-strain relationships oftlaimith the model are represented in case of hatdto
(top-left sub-figure) and vertical (top-right suigdre) stretching. Both the response obtained adg@ multi-linear
and a Xu-Needleman interface behavior is repredemds can be noted, both interface models provideila
homogenized results, with an expected extra-registaf the REV for horizontal stretching (contribat of the bed
joint in shear). Multi-linear and Xu-Needleman rebgrovide almost superimposable homogenized cuavekin



uniaxial stretching it is also interesting to netithe presence of a biaxial stress behavior, aecesnce of the elastic
Poisson’s effect on bricks, which intuitively tendsvanish when damage on joints proceeds. The §gome (bottom

sub-figures) shows the iterative solution foundttpdg Eqs. ( 3 ), assuming for joints a Xu-Needlaen@v. As can be
observed, after only 3 iterations, the solutioalisady found with negligible error.

TABLE |I: Mechanical properties assumed for the constituenénals( for mortar joints eh=10 mm) in the benahikdiscussed.

Multi-linear model Xu-Needleman model
Em Gm ﬂ‘ c Anu Atu ¢n 5n Q 5t
[MPa] [MPa] [MPa] [MPa] [mm] [mm] [N/mm] [mm] [N/mrh [mm]
800 0.4 Em 0.25 1.35ft 6eh ft/Em 3eh ch 0.0028 0.0042 0.0060 0.0160

Bricks linear elastic Eb =16700 MPaV  =0.15), ft: mortar tensile cutoff, c: mortar coharsiAnu ultimate displacement of joints fo

normal stressesAtu ultimate displacement of joints for shear stresses
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FIGURE 2: Graphical solution in the biaxial strain stawft{l and biaxial strain state problem (right).
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