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ABSTRACT

A common model for distributed detection systems is that of
several separated sensors each of which measures some ob-
servable, quantizes it, and communicates to a fusion center the
quantized observation. The fusion center collects the quantized
observations and takes the decision. This paper deals with the
design of the quantizers when the channels between the sensors
and the fusion center are subject to capacity constraints. The
system of interest allows soft nonbreakpoint quantizers and
nonindependent observations. We investigate two optimiza-
tion techniques. The first technique finds a local minimum
of the average misclassification risk by alternate optimization.
The computational cost of the technique is exponential in the
sum of the rates of the quantizers. To overcome this difficulty,
a second technique based on a neural approach is presented,
where a local minimum of the average misclassification risk is
found by a stochastic approximation method.

1 INTRODUCTION

Distributed detection systems have received large attention
in the past two decades, as documented in the special issue of
the Proceedings of the IEEE [1]. A common model for these
systems is that of several separated sensors each of which mea-
sures some observable, quantizes it, and communicates to a
fusion center the quantized observation. The fusion center col-
lects the quantized observations and takes the decision. Since
the rate of transmission between the sensors and the fusion
center is a cost, fine quantization of data may be not allowed.
A crucial problem is therefore the design of coarse quantizers
that satisfy a rate constraint and that introduce low degrada-
tion in the detection capability of the system. Tsitsiklis and
Athans have shown in [2] that, when conditional independence
of the observations given the hypothesis cannot be assumed,
the design problem is N-P complete. Hence one is lead to re-
nounce to global optimality and to study suboptimal strategies.
Joint design of soft (multi-bit) quantizers has been studied by
Longo et al in [3], where an alternate optimization technique is
proposed. Specifically, the approach in [3] is to maximize the
Bhattacharyya distance between the multivariate conditional
probabilities of quantized data given the hypotheses. The po-
tential weakness of this approach is that the Bhattacharyya
distance is not the natural measure of performance of detection
systems. Alternate optimization of the average misclassifica-
tion risk was studied in [4]. Unfortunately, the computational
complexity of the alternate optimization is exponential in the
sum of the rates of the quantizers. To overcome this difficulty,
here we propose a neural approach, where the boundary of

each quantization region is optimized by a stochastic approxi-
mation method. The results show that the performance of the
neural method is slightly worse than the performance of the
alternate optimization, and that the performance loss depends
on the shape of the conditional probability density of the two
hypotheses.

2 SYSTEM MODEL AND PROBLEM STATEMENT

For the sake of simplicity consider two scalar observations
and binary detection. Extensions are straightforward. Let
x1, x2 denote the observations, and assume that they are drawn
from the continuous spacesX1,X2. In the classical formulation
of the detection problem, a hidden discrete random variable (the
class, or the hypothesis) is drawn together with the observation
vector according to some known joint probability distribution.
We call such a discrete random variable c 2 C = fc1; c2g. The
goal of the detection system is to guess the hidden class given
the observation vector. The decentralized detection system is
modeled as a decision rule made by two scalar quantizers and
a fusion center. Each scalar quantizer is allowed here to be a
nonbreakpoint one. Quantizer Q
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) = ig. The decision function performed by the
fusion center, denoted F(i1; i2), is a mapping from I1 � I2
to C. The decision rule of the decentralized detection system,
denoted F (x1; x2), is a mapping from X1 � X2 to C. As
in [3], we assume that the processing to be performed at the
fusion center is unlimited in complexity. In practice, this means
that the fusion center is a look-up table with 2R1+R2 entries.
A pictorial example of the decision rule for a specific two-
dimensional decentralized detection system is illustrated in Fig.
1. The Bayesian risk (or cost) in deciding in favor of class ĉ 2 C

when x1; x2 is observed is

R(ĉjx1; x2) =
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where b(c
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7! ĉ) � 0 is the risk of deciding in favor of class
ĉ when c = c

i

, and the familiar notation is adopted for the
conditional probability of the class given the observation. Let
F(x1; x2) be a decision rule. The classification performance
of F is measured by the expectation of the local risk (1) over
the observation space:

R(F) =

Z
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R(F(x1; x2)jx1; x2)p(x1; x2)dx1dx2:
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Figure 1: Example 2. Two-bit quantization (f0; 1; 2; 3g),
SNR = 10dB, r = 0. Decision function (white=noise;
gray=signal+noise). Dotted line: Bayes border.

where p(x1; x2) is the (bivariate) probability density function
of the observation. If we set b(c

i

7! c

j

) = 1 for i 6= j and
b(c

i

7! c

j

) = 0 for i = j, then the average misclassification
risk (or, in short, risk) is equal to the average error probability.
Therefore, from the Bayesian approach one comes to the fol-
lowing statement of the problem:
Fix P (c

i

)b(c

i

7! c

j

) 8i; j, and find F(i1; i2), Q1(x1), and
Q2(x2) that minimize R(F(Q1(x1); Q2(x2))).
The optimal decision rule, that will serve in the rest of the paper
as a lower bound for the risk, is the Bayes test:

F
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(x1; x2) = argmin
ĉ2C

R(ĉjx1; x2):

3 THE ALTERNATE OPTIMIZATION

The optimization algorithm is based on alternate optimiza-
tion of the three functions (two quantizers and the decision
rule). The optimality condition for Q1 given Q2 and F is ob-
tained from (1). Specifically, for all the points in X1 one finds
the best index by taking the expectation of the local risk over
X2:
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A similar condition holds for Q2 given Q1 and F .
The optimality condition for F(i1; i2) given Q1 and Q2 is
obtained by taking the expectation of the local risk over the
region indexed i1; i2:
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In the alternate optimization, we look for a new F only when
both quantizers are optimal for the oldF . Hence, after a proper
initialization, the alternate optimization proceeds as follows:
1) determine Q1 by (2),

2) determine Q2 by (2), if the new Q2 is different from the old
Q2 then go to 1,
3) determine F by (3), if the new F is different from the oldF
then go to 1, else STOP.
Since each of the optimization steps does not increase the av-
erage risk, the procedure will terminate in a local optimum.
It should be noted that the practice of the procedure is limited
by the complexity of calculation of the optimality conditions
and by the size of the look-up table: both are proportional to
2R1+R2 . Therefore the method can be actually applied only to
coarse quantization of low-dimensional spaces. In the com-
puter implementation, as well as in many actual detection sys-
tems, where continuous signals are digitally processed after
analog-to-digital conversion, the continuous spaces X1 and X2
are discretized. In our experiments X1 and X2 are discretized
in 256 slices of equal size. We have verified that such a slicing
has negligible impact on system performance. Dealing with
discrete signals, the integrals appearing in (2), (3) are replaced
by sums in an obvious way.

4 THE STOCHASTIC APPROXIMATION
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the possibly nonbreakpoint quantizer Q
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the object optimized by stochastic approximation, while the
mapping G
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and the decision rule F(i1; i2) are
kept fixed after a proper initialization. The stochastic approx-
imation is based on a long (ideally infinite) random sequence
f(x

(1)
; c

(1)
); (x
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; c
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); . . .g, x = x1;x2, generated according

to P (cjx1; x2)p(x1; x2). Each sample of the sequence induces
a stochastic estimate of the gradient of the risk with respect to
the set of points, and the set of points is optimized according
to the stochastic gradient algorithm. Since the conventional
sample estimate of the risk is nondifferentiable, the classical
Robbins-Monro method cannot be adopted. This problem can
be circumvented by a technique similar to that proposed in [5],
leading to the iterative algorithm
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A similar algorithm holds for the points belonging to P2. It is
guaranteed that the algorithm terminates in a local minimum of
the risk if the sequences of positive scalars h(k) and d(k) decay
to zero according to the Kiefer-Wolfowitz conditions [6, x9]:
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5 SIMULATION RESULTS

The major trouble that we encountered in the experimen-
tal part of this work is that of local minima. When a cost
function with multiple minima is considered, the results of
both the alternate optimization and the stochastic approxima-
tion are strongly influenced by the initial guess. Due to space
limitation, we cannot describe in detail the method used for
determining the initial guess. The interested reader finds a
detailed description of the method used for the alternate opti-
mization in [4], and a similar approach has also been adopted
for the stochastic approximation. The examples of interest are
the same considered in [3]. We assume P (c1) = P (c2) = 0:5,
b(c1 7! c1) = b(c2 7! c2) = 0, b(c2 7! c1) = minf1=t; 1g,
b(c1 7! c2) = minft; 1g. The results are presented as average
risk against t.

Example 1: Known Signal in Spatially Correlated Noise
The observation model is:

c1 : x = n

c2 : x = a + n

where a is the known signal vector and n is a zero mean
Gaussian noise vector with covariance matrix (let r be the
spatial correlation coefficient):
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As in [3], the experiment concerns signals having equal energy,
say ja1j

2
= ja2j

2
= E , and per-channel signal to noise ratio

SNR = E=s

2. Fig. 2, reports the performance of the alternate
optimization (AO), of the stochastic approximation (SA), and
of the Bayes test (BT). It should be noted that, among the
results that we worked out for this example, we have chosen to
present the one where the difference between the two methods
is higher.

Example 2: Spatially Correlated Unknown Signal in Uncor-
related Noise
The observation model is:

c1 : x = w

c2 : x = s +w;

where w is a zero mean Gaussian noise vector with indepen-
dent, unitary variance components and s is a Gaussian signal
vector with covariance matrix (4) where, now, r represents the
spatial correlation coefficient of the signal and s

2 is the per-
channel SNR. Fig. 3 reports the performance of the alternate
optimization (AO), of the stochastic approximation (SA), and
of the Bayes test (BT). In this case, as well as in many other
instances of this example, the performance of the two methods
is virtually the same.
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Figure 2: Example 1. SNR = �5 dB, correlation coefficient
r = 0:9; R = 3 bits=sample for each quantizer.
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Figure 3: Example 2. SNR = 10 dB, correlation coefficient
r = 0:5, R = 2 bits=sample for each quantizer.
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