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Were the Fibonacci Series and the Golden Section
Known in Ancient Egypt?

Corinna Rossi and Christopher A. Tout
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The Fibonacci series and the Golden Section have often been used to explain the proportions of
ancient Egyptian art and architecture. All such theories, however, are based on our modern mathematical
system. They have never been examined in the realm of ancient Egyptian mathematics as we understand
it from studying the surviving mathematical sources. This article analyses the compatibility of the
Fibonacci series with ancient Egyptian mathematics and suggests how an ancient scribe could have
handled it. The conclusion is that concepts such asφ and the convergence toφ have little in common
with the surviving ancient Egyptian mathematical documents and that they are quite far from the ancient
Egyptian mentality. C© 2002 Elsevier Science (USA)

La serie di Fibonacci e la Sezione Aurea sono state spesso utilizzate per spiegare le proporzioni
dell’arte e dell’architettura dell’antico Egitto. Tali teorie, tuttavia, sono basate sul nostro sistema
matematico moderno, e non sono mai state esaminate nel contesto di ci`o cheè sopravvissuto della
matematica Egizia. Questo articolo analizza la compatibilit`a della serie di Fibonacci con la matematica
Egizia e suggerisce un modo in cui un antico scriba potrebbe averla gestita. La conclusione `e che
concetti comeφ e la convergenza aφ hanno poco in comune con gli antichi documenti matematici, e
sono assolutamente distanti dalla mentalit`a Egizia. C© 2002 Elsevier Science (USA)
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INTRODUCTION

From the second half of the 19th century onwards, the ratio known as the Golden Section
has often been used by scholars to explain the design and proportions of ancient monuments.
Ancient Egyptian architecture has not escaped this trend. From it have emerged a wide range
of more or less interesting results, from the first confused hints suggested by Choisy, (1889,
51–58) to the complex geometrical analyses published by Lawlor (1982, 54–55, 61–62)
inspired by Schwaller de Lubicz, (1957), from Ghyka’s ideal schemes (1931, plates 26,
27) to Fournier des Corats’ imaginary geometrical convolutions (Fournier des Corats 1957)
based on the pyramid of Cheops (the Great Pyramid, a favourite target of numerological
and esoteric theories) down to the more sober and acceptable theory suggested by Badawy
(1965).

Many of these interpretations just play with the complexity that can be derived from any
geometrical figure, however simple it may be. In this way, it seems possible to uncover
hidden and meaningful mathematical connections that may produce an endless chain of
symbolic links. Even if many of these studies go off at a tangent and end up very far
from any historical and archaeological evidence, this does not mean that the study of the
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proportions of ancient monuments should be entirely dismissed. Instead, this emphasises
the importance of pursuing such research with a greater respect for the ancient sources, in
particular for their contemporary mathematical systems. Too often modern scholars tend to
forget that ancient architects did not necessarily use our own mathematical system and that
sometimes what works with our numbers would not have worked with theirs.

While some of the other theories are so far-fetched (or even absurd) that spending time
to analyse them and prove them wrong may seem pointless, Badawy’s study is definitely
worth accurate criticism. A complete discussion of the subject, from some side aspects of
his study to its repercussions on the history of ancient Egyptian architecture, is out of the
scope of this short article. Here we shall analyse only a basic but extremely important point
of his theory, its compatibility with the ancient Egyptian mathematical sources.

This paper has greatly benefited from discussions with Barry J. Kemp and Serafina
Cuomo and from the comments of the two anonymous referees. We express our gratitude
to Churchill College, Cambridge, for giving us the opportunity to work together and to
Andrew Webber for suggesting it in the first instance.

THE THEORY OF ALEXANDER BADAWY

The relationship between the Fibonacci series and the Golden Section forms the basis of
Badawy’s theory on the proportions of ancient Egyptian architecture from the Old Kingdom
to the Graeco-Roman Period (thus including monuments from ca. 2600 B.C. to the 1st
century A.D.). In comparison with some extremely complicated Golden Section-based
theories by other scholars, Badawy was certainly more successful. First of all he was able
to analyse, by means of his system, over 50 buildings whilst other authors often contented
themselves with a couple of examples and considered them enough to claim a universal
pattern. Second, he suggested a relatively simple method that the ancient architects could
have used to achieve in practice what in theory could be a rather complicated proportion.

Badawy believed that the ancient Egyptians designed plans and elevations of their build-
ings using a geometrical process based on the square, the rectangle, and especially a number
of triangles, among which the most important was the so-called 8 : 5 triangle, that is, an
isosceles triangles in which the base is equal to 8 units and the height to 5. The preference
for this ratio was due to the fact that 8 : 5 gives 1.6 as a result, a good approximation to
the Golden Sectionφ, the irrational number1+

√
5

2 = 1.618033989. . .. Badawy suggested
that, in order to achieve a Golden Section-based pattern in the design of their buildings, the
Egyptians often gave their architectural elements dimensions corresponding to numbers of
the Fibonacci series 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . (each term is the sum of the two previous
terms), because the sequence of ratios of consecutive numbers of this sequence converges
to φ:

2

1
= 2

3

2
= 1.5

5

3
= 1.666666. . .
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8

5
= 1.6

13

8
= 1.625

21

13
= 1.615384. . .

34

21
= 1.619047. . .

55

34
= 1.617647. . .

89

55
= 1.618181. . .

144

89
= 1.617977. . .

233

144
= 1.618055. . .

377

233
= 1.618025. . .

and so on. Alternatively (or contemporarily), the Egyptians would use a network of 8 : 5
triangles that would approximate the proportion even if the Fibonacci numbers were not
present in the building.

Even if Badawy approached the subject in a more consistent way than many of his col-
leagues, the main problem with his theory is that he did not go as far as to check whether the
use of Fibonacci numbers and their eventual link to the Golden Section was compatible with
the surviving ancient Egyptian mathematics. This point is crucial, because it may allow us
to draw a line dividing conscious calculation from coincidence. It may be noted that proving
the incompatibility between the calculation ofφ and ancient Egyptian mathematics leaves
open the question of a psychological tendency towards Golden Section-based geometrical
figures. Since Fechner’s first studies, a series of psychological experiments have been car-
ried out to establish whether modern Western cultures really display a preference for this
proportion.1 The results are uncertain, and anyway there is always doubt as to whether these
results may be extended to an ancient culture that disappeared long ago.

CHARACTERISTICS OF EGYPTIAN MATHEMATICS AND FIBONACCI SERIES

In order to proceed, it is useful to summarise a few basic concepts of ancient Egyptian
mathematics. Our sources are a number of mathematical texts written on papyri, ostraca,

1 On psychological experiments, see for example Berlyne (1970), Eysenck and Castle (1970), Benjafield and
Adams-Webber (1976), McManus (1980), Shalit (1980), Benjafield (1985). On a psychological trend towards
the Golden Section in ancient Egyptian art and architecture see for example Davis (1989, 48) and Kemp & Rose
(1991). For the presence of Fibonacci numbers in ancient architecture see also Preziosi (1968) and Fletcher (1976).
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and leather dating to the second half of the Middle Kingdom and the Second Intermediate
Period, that is, more or less between 1800 and 1600 B.C., the most important of which
are the Rhind Mathematical Papyrus (Peet 1923; Chaceet al.1929; Robins & Shute 1987)
(usually abbreviated as RMP), the Moscow Mathematical Papyrus (Struve 1930) (MMP),
the Kahun Papyri (Griffith 1897), and the Egyptian Mathematical Leather Roll (Glanville
1927) (EMLR). The computational procedure adopted by the Middle Kingdom scribes
survived well into the Graeco-Roman period, as is attested by a set of Demotic papyri
dating from the third century B.C. to the second century A.D. (Parker 1972) and beyond.2

These documents do not correspond to our idea of a mathematical textbook or treatise.
Apart from rare cases, they do not contain formulae or general rules that may be applied
to solve problems. They contain, instead, table texts, such as the doubling of unit fractions,
and problem texts, the majority of which (but not all of them) have a practical character,
such as the division of loaves among men, the calculation of the area of a field or the volume
of a granary, and so on. Although in theory we might not exclude the possibility that other
more theoretical texts did not survive and that by chance we have only a partial glimpse of
what ancient Egyptian mathematics produced, in practice there is no evidence to support
this suggestion.

Concerning the numerical notation, the Egyptians used integers and fractions, but only the
so-called unit fractions, with a numerator of 1, such as1

2, 1
15, 1

42, or 1
140, with the exception

of the fraction 2
3. Ratios such as35, for example, were expressed by means of a sum of

unit fractions. However, at least from the Middle Kingdom onwards,3 the result was never
1
5 + 1

5 + 1
5 but could be, for example,12 + 1

10. In many cases, it happens that more than one
representation exists; that is, more than one combination of unit fractions can be used to
express the same quantity. As we shall see below, the Egyptians were fully aware of this
and were, in fact, able to use this characteristic profitably.

It is important to note that there is no evidence of the use of the Fibonacci series 1, 2, 3,
5, 8, 13,. . . (or of any similar series, such as 1, 3, 4, 7, 11, 18,. . . or 1, 4, 5, 9, 14, 23,. . .
and so on) in any Egyptian mathematical source. Architectural remains unfortunately do
not help because Badawy’s drawings showing the use of the Fibonacci series in architecture
are neither numerous nor convincing. Nonetheless, numerical series quite close in concept
to the Fibonacci series were known and used by the Egyptians.

Multiplications and divisions, for example, were performed by doubling or halving the
initial number, that is, by using the geometric progression 1, 2, 4, 8, 16, 32, 64, . . . , in which
each term is twice the previous one, and its reciprocal 1,1

2, 1
4, 1

8, 1
16, . . . . In some cases,

the short succession23, 1
3, 1

6, in which each term is half the previous one, was also used.4

A property of the progression 1, 2, 4, 8, 16, 32, 64,. . . is that any integer can be expressed
by means of the sum of some of its terms, and this is how ancient Egyptian multiplication
worked. For instance, in order to calculate 15× 13, the scribe would have doubled 15 until
the next multiplier (1, 2, 4, etc.) exceeded the multiplicand (13). Then he would find that
1+ 4+ 8= 13, tick these numbers, add the corresponding results (15+ 60+ 120= 195),

2 For the use of unit fractions in Greek, Coptic and Byzantine texts, see Knorr (1982), Hasitzka (1990, 265–284,
302–312), and Thompson (1914).

3 For the Old Kingdom see Silverman (1975).
4 Robins & Shute (1987, 22–24). See also Knorr (1982, 136) for the use of these two series in the doubling of

unit fractions.
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and write the result below:

/ 1× 15= 15
2× 15= 30
/ 4× 15= 60
/ 8× 15= 120

Total 13× 15= 195

Further knowledge of geometric progressions seems to be attested by RMP 79:

An inventory of a household(?)

/ 1 2,801 7 houses
/ 2 5,602 49 cats
/ 4 11,204 343 mice

Total 19,607 2,301 (sic) spelt
16,807 hekat
19,607 total

This calculation has been interpreted as a nursery problem that might have run as follows:
“seven houses; in each house seven cats; each cat kills seven mice; each mouse would have
eaten seven grains of spelt; each grain of spelt would produce 7hekat[unit of measurement
of capacity]. What is the total?”5 On the left the scribe performed a quick multiplication of
7× 2801,6 interpreted by Gillings as a proof that the scribe was aware that the geometrical
progression 7, 49, 343, 2401, 16807. . . has the property that

the sum of the first 2 terms is 56= 7× (1+ first term) = 7× 8
3 399= 7× (1+ first two terms) = 7× 57
4 2800= 7× (1+ first three terms)= 7× 400
5 19607= 7× (1+ first four terms)= 7× 2801

and so on. Gillings suggested that the scribe might have discovered this property in the well-
known progression 1, 2, 4, 8, 16, 32,. . . and extended it to any geometrical progression
where the common ratio is the same as the first term (2 for this series, 7 for the series of
RMP 79) (Gillings 1972, 167).

The knowledge and use of arithmetic progressions is attested by RMP problems 40 and
64, which deal with distribution of goods. The first asks to divide 100 loaves among five men,
so that the shares of the three highest are together seven times the shares of the two lowest.
In the second, 10hekatof barley must be divided among 10 men so that the difference of
each man over his neighbour is1

8 of ahekat.
In conclusion, considering how familiar the ancient Egyptian scribes were with numerical

series, the knowledge of what we call today the Fibonacci series does not seem incompatible
with ancient Egyptian mathematics. However, even if this is the case, it does not necessarily
imply any further step in the direction of more theoretical concepts such as the tendency

5 Cf. Peet (1923, 121), Gillings (1972, 168–170), and Robins & Shute (1987, 56). Note the scribal error in the
left column (2301 instead of 2401).

6 In the original text there are no ticks beside the multipliers.
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towards a limit. Anyway, let us assume that the Fibonacci series was known and let us try
to find out if and how a scribe could have realised that one of the properties of this series
was to converge to what we callφ. This could have happened in at least two ways, which
we shall analyse in the following paragraphs.

WHAT AN ORTHODOX SCRIBE COULD (NOT) SEE

One possibility is that a Middle Kingdom scribe, while calculating for some unknown
reason the consecutive ratios of Fibonacci numbers, realised that there was a pattern in
his results. As we shall see, however, this is extremely unlikely. If he was adopting the
computational procedure that he usually followed to perform his calculations, he would
have seen nothing.

Even if, from a mathematical point of view, unit fractions allow the expression of any
rational number, the calculations performed by the ancient Egyptians were limited by a
certain number of factors. Therectoof the Rhind Mathematical Papyrus provides an inter-
esting case study. It contains the division of the number 2 by the odd numbers 3 to 101, that
is, the doubling of the unit fractions from13 to 1

101, which would have proved useful in any
process of multiplication involving fractions.

Even if a ratio can be expressed by means of several combinations of unit fractions, the
ancient scribes appear to have chosen one single solution among the various possibilities
that they had. In order to reconstruct the way the solutions were chosen in preference to
others, Gillings and Hamblin prepared a computer program that would list all the possible
solutions for each ratio and then compared the results with the scribe’s choice. Gillings was
thus able to suggest five criteria which seem to explain the choice of the ancient scribe:

1. Of the possible equalities, those with the smaller numbers are preferred, but none (in
the doubling of unit fractions) as large as 1000.

2. An equality of only two terms is preferred to one of three terms, and one of three terms
is preferred to one of four terms, but an equality of more than four terms is never used.

3. The unit fractions are always set down in decreasing order of magnitude; that is,
the larger fraction (corresponding to the smaller number) comes first, but never the same
fraction twice.

4. The smallness of the first number is the main consideration, but the scribe would
accept a slightly larger first number if it would greatly reduce the last number.

5. Even numbers are preferred to odd numbers, even though they might be larger, and
even though the number of terms might thereby increase.

Whether these were rules consciously adopted by the scribes (as Gillings (1972, 45–70)
seems to believe7) or whether they are simply able to describe an already established
situation generated by some other method (as Bruckheimer and Salomon (1977, 445–446)
suggest), remains to be established.8 At any rate, we decided to take Gillings’ approach and
results as a model to apply to our problem with the ratios of Fibonacci numbers. Whatever
the solution to the dispute between Gillings and Bruckheimer and Salomon may be, by
adopting Gillings’ method we are likely to obtain a result which is, if not absolutely correct,
at least in line with what seemed acceptable to the scribe of the Rhind Mathematical Papyrus.

7 All the criteria are taken from p. 49.
8 See Vogel’s more neutral approach (Vogel 1959, 42).
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The convergence toφ is apparent when using our numerical system, where we use only
one way to express our results. What happens in a system where there can be more than one
solution? And is there anything which could have prevented the Egyptians from noticing
the convergence? In an attempt to answer these questions, we prepared a computer program
which lists all the possible combinations of up to four unit fractions which express each
ratio.

In order to isolate the solutions which would have appeared natural to the Egyptians,
we followed the first three precepts, that is, calculated all the possible 2-, 3-, and 4-term
combinations of unit fractions expressing the ratios of consecutive numbers of the Fibonacci
Series for denominators smaller than 1000.9 We stopped after 43 ratios, but a scribe would
have probably stopped earlier. In RMP Problem 66, the scribe calculated that, if 3200ro10

of fat are issued for a year, the daily amount would have been 8+ 2
3 + 1

10 + 1
2190 ro, which

implies that scribes did not hesitate to use extremely small fractions whenever it seemed
useful. In the case of the Fibonacci series, however, proceeding with very complicated
calculations does not seem justified, especially because, as we shall see, the results do not
appear particularly encouraging.

The complete results of the computer program are summarised in Table I. It may be seen
immediately that there are no allowed representations of the ratios144

233 and 610
987, and that

after that, apart from two exceptions, there are no 2-, 3-, or 4-term combinations of unit
fractions that can express the following ratios. This allows us to conclude immediately that,
in this way, all that a scribe could have done was to find, if possible, an interesting sequence
for the first 8 or 10 ratios,11 which is not at all close to the concept of limit. If we perform
a further selection on the results by applying the last two criteria, we obtain the sequence
contained in Table II. In this case, there is no evident trend in the series of results. If the
scribe was simply calculating these ratios without any special purpose, he could have seen
nothing.

If he was looking, for some reason, for a tendency in his results, if he decided therefore
to ignore some of his usual methods, and if he had at his disposal a list of results such as we
now have, he could have isolated a number of series of sequences beginning with1

2 + 1
9,

or 1
2 + 1

10, or 1
2 + 1

11, and so on. Even so, no initial sequences of unit fractions generate
complete sets of results within the 4-term combinations. The most complete sequence of
results is that beginning with12 + 1

10, shown in Table III, but as long as the scribe avoided
5-term combinations or larger denominators, this series too would have been incomplete.
Evidently, this approach does not achieve any result.

WHAT AN INGENIOUS SCRIBE MIGHT HAVE DONE

There is another way in which a scribe might have constructed a sequence of unit fractions
representing the ratios of the Fibonacci numbers, that might have either been inspired by the
discontinuous sequence1

2 + 1
10 shown above (see underlined combinations in Table III), or

9 We calculated the ratio of successive terms, that is,3
5 , 5

8 , 8
13, and so on. It is a special property of the

Fibonacci numbers that the reciprocals of these ratios are equal to 1+ the ratio between the two previous numbers,
for example:85 = 1+ 3

5 . This means that, once we have calculated the ratios3
5 , 5

8 , 8
13, . . . , we can at any time

obtain their reciprocals53 , 8
5 , 13

8 , . . . by simply adding 1 to the already calculated values.
10 Thero was the smallest unit of measure for grain, and corresponded to1

320 of thehekat.
11 There was no need to express the first two ratios,1

2 and 2
3, in a different form.
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TABLE I
Number of 2-, 3-, and 4-Term Combinations of Unit Fractions

Expressing the Ratios of Consecutive Fibonacci Numbers

Number of Number of Number of
2-term 3-term 4-term

Ratio combinations combinations combinations

3/5 1 7 105
5/8 1 5 76
8/13 — 3 35
13/21 — 4 61
21/34 — 1 15
34/55 — 1 31
55/89 — — 1
89/144 — 2 41
144/233 — — —
233/377 — — 3
377/610 — — 8
610/987 — — —
987/1597 — — —
1597/2584 — — 2
2584/4181 — — —
4181/6765 — — —
6765/10,946 — — —
10,946/17,711 — — —
17,711/28,657 — — —
28,657/46,386 — — 1
Next 21 ratios — — —

TABLE II
“Simplest” Combination of Unit Fractions Expressing Ratios of Consecutive Fibonacci Numbers

According to the RMP

“Simplest” combination of unit
Ratio fractions Comments

3/5 1/2+ 1/10
5/8 1/2+ 1/8
8/13 1/2+ 1/10+ 1/65 Unless the scribe preferred the 4-term combination of even

fractions 1/2+ 1/12+ 1/52+ 1/78.
13/21 1/2+ 1/12+ 1/28 There are no 2-term combinations.
21/34 1/2+ 1/12+ 1/34+ 1/204 The scribe would have probably discarded the only 3-term

combination 1/2+ 1/9+ 1/153.
34/55 1/2+ 1/10+ 1/55 Unless the scribe preferred the 4-term combination of even

fractions 1/2+ 1/10+ 1/80+ 1/176.
55/89 1/2+ 1/9+ 1/178+ 1/801 There are no 2- or 3-term combinations.
89/144 1/2+ 1/16+ 1/18 There are no 2-term combinations.
144/233 — There are no 2-, 3-, or 4-term combinations.
233/377 1/12+ 1/10+ 1/65+ 1/377 Only 4-term combinations which contain odd numbers.
377/610 1/2+ 1/10+ 1/60+ 1/732 There are no 2- or 3-term combinations.
610/987 — There are no 2-, 3-, or 4-term combinations.
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TABLE III
Most Complete Sequence of Combinations of Unit Fractions Expressing

the Ratios of Consecutive Fibonacci Numbers

Ratio Sequence1/2+ 1/10

3/5 1/2+ 1/10

5/8 1/2+ 1/10+ 1/40

8/13 1/2+ 1/10+ 1/65

13/21 1/2+ 1/10+ 1/56+ 1/840 or
1/2+ 1/10+ 1/57+ 1/665 or
1/2+ 1/10+ 1/60+ 1/420 or
1/2+ 1/10+ 1/63+ 1/315 or
1/2+ 1/10+ 1/65+ 1/273or
1/2+ 1/10+ 1/70+ 1/210 or
1/2+ 1/10+ 1/75+ 1/175 or
1/2+ 1/10+ 1/77+ 1/165 or
1/2+ 1/10+ 1/84+ 1/140 or
1/2+ 1/10+ 1/90+ 1/126

21/34 1/2+ 1/10+ 1/65+ 1/442or

1/2+ 1/10+ 1/68+ 1/340 or
1/2+ 1/10+ 1/85+ 1/170 or
1/2+ 1/10+ 1/90+ 1/153

34/55 1/2+ 1/10+ 1/55 or
1/2+ 1/10+ 1/60+ 1/660 or
1/2+ 1/10+ 1/66+ 1/330 or
1/2+ 1/10+ 1/80+ 1/176

55/89 —

89/144 1/2+ 1/10+ 1/60+ 1/720 or
1/2+ 1/10+ 1/72+ 1/240 or
1/2+ 1/10+ 1/80+ 1/180 or
1/2+ 1/10+ 1/90+ 1/144

144/233 —

233/377 1/2+ 1/10+ 1/65+ 1/377

377/610 1/2+ 1/10+ 1/60+ 1/732 or
1/2+ 1/10+ 1/61+ 1/610

610/987 —

Next 29 ratios —

found independently by simply playing with numbers. If we consider the Fibonacci series

1 2 3 5 8 13 21 34 55 89 144 233. . .

we can construct a series of fractions in the following way.

—The ratio between the first two terms is1
2.

—The ratio between the third and fourth terms is3
5 = 1

2 + 1
10, that is, the previous ratio

plus a unit fraction whose denominator is given by the multiplication of 2 and 5, respectively
the second and fourth terms of the series.
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—The ratio between the fifth and the sixth terms is8
13 = 1

2 + 1
10 + 1

65, that is, the previous
ratio plus a unit fraction whose denominator is given by the multiplication of 5 and 13,
respectively the fourth and sixth terms of the series, and so on. In this way, it is possible
to construct a sequence by adding a unit fraction whose denominator is the product of
discontinuous pairs of terms:

1

2
= 1

2
3

5
= 1

2
+ 1

10
8

13
= 1

2
+ 1

10
+ 1

65
21

34
= 1

2
+ 1

10
+ 1

65
+ 1

442
55

89
= 1

2
+ 1

10
+ 1

65
+ 1

442
+ 1

3026

144

233
= 1

2
+ 1

10
+ 1

65
+ 1

442
+ 1

3026
+ 1

20,737

and so on.
The intermediate values (such as2

3, 5
8, and so on) can be calculated by adding to the

previous ratio a unit fraction whose denominator is given by the multiplication of the two
terms of the ratio (for instance,2

3 is given by1
2 + 1

6, where 6= 2× 3, and so on). Thus the
complete sequence is

1

2
= 1

2
2

3
= 1

2
+ 1

6
3

5
= 1

2
+ 1

10
5

8
= 1

2
+ 1

10
+ 1

40
8

13
= 1

2
+ 1

10
+ 1

65
13

21
= 1

2
+ 1

10
+ 1

65
+ 1

273
21

34
= 1

2
+ 1

10
+ 1

65
+ 1

442
34

55
= 1

2
+ 1

10
+ 1

65
+ 1

442
+ 1

1870
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55

89
= 1

2
+ 1

10
+ 1

65
+ 1

442
+ 1

3026

89

144
= 1

2
+ 1

10
+ 1

65
+ 1

442
+ 1

3026
+ 1

12,816

144

233
= 1

2
+ 1

10
+ 1

65
+ 1

442
+ 1

3026
+ 1

20,737

and so on. Very quickly the denominators involved become very large, but the trend is
clearly visible from the first ratios, just as in our modern numerical system.

If the Egyptians knew the Fibonacci series, the creation of the sequence of unit fractions
shown above falls within the range of their capabilities. However, all we have done so far is
to show that it is not impossible that an ancient scribe, playing around with numbers without
the constraints of the usual practical rules or for a purpose that must for the moment remain
obscure, found out that he could express the ratios of consecutive terms of the Fibonacci
series as shown above and therefore could have noticed their convergence. This does not
imply that he actually did it, nor that, even if he did it, he took any interest in it.

We must also ask whether he would have actually noted the convergence. What he might
have found is the way to construct an infinite sequence of fractions, where it is always
possible to add a tiny quantity. We say that the sequence converges to a limit, because we
have the concept of the limit and we know the irrational numberφ. In order to claim that
the ancient Egyptians calculated the convergence of Fibonacci numbers toφ, we ought to
prove not only that they knew this particular irrational number, but also that they accepted
the idea of convergence to something quite far from unity.

As for the first point, it might be suggested that the Egyptians had a geometrical concept
of φ, just as the Greeks had a geometrical concept ofπ , and that they tried to approximate it
using an infinite sequence of fractions. However, the first evidence of a geometrical concept
of the Golden Section is to be found in Euclid’sElements, dating to the third century
BC (Fowler 1982), about 15 centuries after our Middle Kingdom scribes compiled their
documents. No ancient Egyptian mathematical source contains any element which may be
interpreted as pointing to an earlier knowledge ofφ. As for the concept of limit, it may
be worth observing that, on the contrary, the ancient Egyptians seem to have displayed a
marked tendency towards the completion of a unity. In the mathematical papyri, for instance,
a common problem is the completion to 1 of a certain quantity. (Peet 1923, 53–60; Gillings
1972, Chap. 8; Robins & Shute 1987, 19–21).

Finally, it may be observed that the surviving ancient Egyptian architectural working
drawings seem to have been produced by the same practical mentality that generated the
surviving mathematical sources.12 Even if theoretical reasoning, such as the calculation of
the convergence of the consecutive ratios of the Fibonacci numbers, were ever carried out by
an ancient Egyptian scribe, it does not seem that it could have had a great practical impact.
As a consequence, the chances that something like that could be used in building practice
are very small indeed. The discussion eventually revolves around the difference between

12 Compare, for example, the sketch plans on ostraca of a peripteral chapel (Glanville 1930; Van Siclen 1986)
and of a four-pillared chamber (Engelbach 1927; Reeves 1986) with RMP problems 56–60.
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theory and practice, provided that in ancient Egypt such a difference existed. Those who
still believe that other mathematical sources of a different nature existed but did not survive
might suggest that, because of its abstract nature, a theoretical problem would not find
space in a practical document such as the Rhind Mathematical Papyrus. Seemingly, some
scholars who firmly believe that the ancient Egyptians hid in their buildings complicated
mathematical relationships that were supposed to remain secret will not, unfortunately,
be discouraged by the lack of evidence. These assumptions, however, can be discussed at
length but cannot be tested by facts.

In conclusion, on the basis of the available mathematical sources, we believe that there
is no evidence to assume that, even if the Egyptians knew the Fibonacci numbers, the
convergence of the succession of ratios would have been noticed and, even if it were, that it
would have had any major impact on their mathematics and therefore on their architecture.
In general, future studies on the proportions in ancient Egyptian architecture are likely to
be more effective if they are founded on the extant ancient Egyptian mathematical sources.
Adopting the correct language is a necessary, even if not sufficient, condition for attempting
a reconstruction of the ancient architectural theory and practice.
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