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Abstract We assess the ability of 11 models to reproduce three-phase oil relative permeability (kro)
laboratory data obtained in a water-wet sandstone sample. We do so by considering model performance
when (i) solely two-phase data are employed to render predictions of kro and (ii) two and three-phase data
are jointly used for model calibration. In the latter case, a Maximum Likelihood (ML) approach is used to
estimate model parameters. The tested models are selected among (i) classical models routinely employed
in practical applications and implemented in commercial reservoir software and (ii) relatively recent models
which are considered to allow overcoming some drawbacks of the classical formulations. Among others,
the latter set of models includes the formulation recently proposed by Ranaee et al. (2015), which has been
shown to embed the critical effects of hysteresis, including the reproduction of oil remobilization induced
by gas injection in water-wet media. We employ formal model discrimination criteria to rank models
according to their skill to reproduce the observed data and use ML Bayesian model averaging to provide
model-averaged estimates (and associated uncertainty bounds) of kro by taking advantage of the diverse
interpretive abilities of all models analyzed. The occurrence of elliptic regions is also analyzed for selected
models in the framework of the classical fractional flow theory of displacement. Our study confirms that
model outcomes based on channel flow theory and classical saturation-weighted interpolation models do
not generally yield accurate reproduction of kro data, especially in the regime associated with low oil
saturations, where water alternating gas injection (WAG) techniques are usually employed for enhanced oil
recovery. This negative feature is not observed in the model of Ranaee et al. (2015) due to its ability to
embed key effects of pore-scale phase distributions, such as hysteresis effects and cycle dependency, for
modeling kro observed during WAG.

1. Introduction

Multiphase flow in porous media is inherently affected by uncertainty due to the lack of detailed knowledge
of the complex physical processes involved in fluid/fluid and fluid/rock interactions. Several studies high-
light the complexity of the mechanisms driving pore-scale fluid displacement in three-phase environments
[e.g., Vizika and Lombard, 1996; Kalaydjian et al., 1997; Fenwick and Blunt, 1998; Blunt, 2000; Van Dijke and
Sorbie, 2003; Piri and Blunt, 2005; Van Dijke et al., 2006; Suicmez et al., 2007; Sohrabi et al., 2008]. At the con-
tinuum (or macro) scale, the traditional depiction of multiphase flow in porous media is grounded on the
Darcy-Buckingham equation where the relative phase permeability, kra , linking the flow rate of the a fluid
phase to pressure gradient, is a key parameter to estimate. Reliable experimental studies aimed at providing
relative permeability data in three-phase flows are extremely complex to design and perform. An extensive
and recent review on this topic is offered by Alizadeh and Piri [2014a]. These authors review the effect of
fluid saturation, saturation history, wettability, spreading, layer drainage, and interfacial tension on kra. While
kra experimental data in three-phase environments are seldom available, especially in practical applications,
three-phase relative permeability estimates are often obtained through empirical/semi-empirical models
whose parameters are typically derived from data collected in two-phase settings. In this context, several
empirical models have been proposed in the literature to characterize and predict three-phase oil relative
permeability, kro. Here we consider the suite of eleven models listed in Table 1 and described in details in
the Supporting Information. These models were selected among (i) classical models routinely used in practi-
cal applications and implemented in commercial reservoir software [Stone, 1970, 1973; Baker, 1988] and (ii)
relatively recent and innovative models [e.g., Jerauld, 1997; Delshad and Pope, 1989; Hustad and Hansen,
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1995; Blunt, 2000; DiCarlo et al., 2000; Du et al., 2004; Shahverdi and Sohrabi, 2013; Lomeland and Ebeltoft,
2013; Ranaee et al., 2015] which are considered to allow overcoming, albeit with diverse emphasis, some
drawbacks of the classical formulations, as described in the following and in Supporting Information.

A first set of models (M1 2 M4 in Table 1) stems from the work of Stone [1970] (i.e., the so-called Stone I
model, M1) and are based on channel flow theory. Model M4 [Shahverdi and Sohrabi, 2013] can include hys-
teresis effects to characterize kro values observed during water alternating gas injection (WAG). The channel
flow theory assumes that each pore is occupied by a single mobile fluid and kro at connate (or residual)
water saturation �Swc is set equal to 1. Otherwise, numerical analyses based on pore-network modeling [e.g.,
Van Dijke and Sorbie, 2003; Piri and Blunt, 2005; Van Dijke et al., 2006; Suicmez et al., 2007, 2008] and experi-
mental micromodel visualization of pore-scale fluid distribution [e.g., Sohrabi et al., 2008] show that more
than one mobile fluid is typically found within a single pore. Spiteri and Juanes [2006] show that channel
flow theory does not yield accurate estimates of kro for low oil saturations So. In particular, Stone II formula-
tion (M2 in this study) is prone to provide sometimes severe underestimation of kro .

A second set of models relies on a saturation-weighted interpolation between two-phase relative perme-
abilities (models M5 2 M11 in Table 1). These models stem from the Baker [1988] formulation

kro5
Sw2�Swcð Þ�k I

row1 Sg2�Sgt
� �

�k
D
rog

Sw2�Swcð Þ1 Sg2�Sgt
� � ; (1)

where Sw and Sg, respectively, are water and gas saturation in the three-phase environment, �Sgt is the satu-
ration of trapped gas, �k

D
rog is oil relative permeability observed during drainage in an oil-gas systems, and

�k
I
row is oil relative permeability observed during imbibition (i.e., water injection) in an oil-water system. Sev-

eral studies [e.g., Blunt, 2000; Spiteri and Juanes, 2006; Ranaee et al., 2015] show that (1) fails in reproducing
observed kro values, especially for conditions associated with low oil saturation. In this context, Blunt [2000]
developed a relatively complex model (model M8 in Table1) which allows (i) embedding the effect of trap-
ping/remobilization of oil, water and gas on three-phase relative permeabilities and (ii) describing kro at
very low oil saturation, corresponding to the so-called layer drainage regime. Ranaee et al. [2015] recently
proposed to model kro through a sigmoidal function (model M11 in Table 1). This formulation allows repro-
ducing (i) oil remobilization induced by gas injection in water-wet media and (ii) a smooth transition toward
the layer drainage regime for low oil saturations, including (iii) the ensuing reduction of residual oil satura-
tion in a three-phase system. Ranaee et al. [2015] developed two simple procedures to estimate kro during
gas and water injections and assessed the strength of their approach by comparisons against two sets of
laboratory-scale data (see also the Supporting Information). Ranaee et al. [2015] tested their model against
two published data sets, which comprise a water-wet sandstone sample [Oak, 1990] and unconsolidated
porous materials associated with diverse wettability conditions [DiCarlo et al., 2000].

All models listed in Table 1, with the exception of M10 [Lomeland and Ebeltoft, 2013], allow predicting kro val-
ues upon relying solely on observations performed in two-phase settings (i.e., water-oil, oil-gas, and/or
water-gas) during drainage and/or imbibition, without the strict requirement of three-phase data. However,
three-phase data can be used (when available) to estimate the model parameters in a number of cases,
including, for example, to provide an estimate of residual oil saturation. As detailed in the Supporting Infor-
mation, almost all models listed in Table 1 describe kro as a function of oil So, water Sw , and gas Sg satura-
tion, i.e., saturation explicitly appears in the functional relationship employed to compute kro. The only
exceptions are (i) M2 [Stone, 1973], where kro depends on fluids saturation only through the corresponding
value of two-phase oil relative permeability and (ii) M9 [Fenwick and Blunt, 1998; DiCarlo et al., 2000], where
kro depends only on So.

The diversity of models included in our analysis suggests the worth of exploring the possibility of exploiting
the relative strength of each of them by employing all of them jointly within the context of a multimodel
approach. The latter framework enables us to use jointly multiple models for the interpretation of observed
quantities of interest. It also yields predictions, including the quantification of predictive uncertainty, by tak-
ing advantage of a suite of diverse interpretive models which can be used to characterize the system under
study. The multimodel approach we consider is grounded on the Maximum Likelihood Bayesian Model
Averaging (MLBMA) framework illustrated by Neuman [2002, 2003], Ye et al. [2004], and Neuman et al.
[2012]. While applications of multimodel approaches in subsurface environments have mostly studied flow
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behavior in porous and/or fractured media, with limited analysis of conservative and reactive transport [see,
e.g., Ciriello et al., 2013, 2015, and references therein], the analysis of the potential of the approach to com-
plex settings of the kind encountered in the characterization of three-phase relative permeabilities has not
yet been explored.

In this work, we present a detailed analysis of the capability of models M1 2 M11 to characterize and predict
observed three-phase oil relative permeabilities. We do so by considering as a test bed the recent high-
quality three-phase oil relative permeability data set described by Alizadeh and Piri [2014b] and acquired on
water-wet consolidated Bentheimer sandstone under steady state conditions. In section 3.1, we estimate kro

by only using the two-phase data provided by Alizadeh and Piri [2014b]. As indicated in Table 1, six models
(M1, M3, M5, M6, M10, and M11) include parameters that can also be estimated upon relying directly on three-
phase oil relative permeability data. We do so by applying the Maximum Likelihood (ML) approach briefly
described in section 2.1. Then we treat the models considered as a set of competing alternatives, rank them
through model selection (or model discrimination) criteria, and evaluate the posterior probability (or
weight) associated with each model. Finally, we assess the posterior mean and variance of kro by consider-
ing all models jointly within the framework of a multimodel analysis approach. Key results are summarized
in section 3 which also includes a comparative analysis of the elliptic regions, i.e., regions where the flow
problem becomes ill posed [e.g., Trangenstein, 1989; Shearer and Trangenstein, 1989; Jackson and Blunt,
2002; Juanes and Patzek, 2004; Bianchi Janetti et al., 2015], that can occur for selected models.

2. Methodology

2.1. Maximum Likelihood Calibration and Model Discrimination Criteria
As mentioned in section 1, six of the models listed in Table 1 can be calibrated by making use of available
three-phase relative permeability data. Table 1 lists the number of parameters (m) to be estimated for each
of these models (see also Supporting Information for additional details). In the following we briefly summa-
rize the Maximum Likelihood (ML) procedure used in section 3 to estimate model parameters and associ-
ated bounds of uncertainty. Then we describe the model selection criteria we apply to (i) rank diverse
models and (ii) obtain multimodel predictions through ML Bayesian Model Averaging (MLBMA).

We introduce the vector Y whose entries are n true values of Yi5log kro So;i
� �

5log kro;i , with i 5 1,. . .n, and
the vector Y� containing n available noisy measurements of Yi , Y�i 5log k�ro;i . We treat the prior measurement
error vector e 5 Y2Y� as being multivariate Gaussian. A maximum likelihood estimate ĥ of the parameter
vector h of size m can be obtained by minimizing the negative log likelihood criterion (NLL) [Carrera and
Neuman, 1986]

NLL5
J
r2

Y
1n ln ð2pr2

YÞ; (2)

with respect to h, where r2
Y represents the measurement error variance. Here we assume error measure-

ments to be uncorrelated and their statistics to be uniform. Therefore, the covariance matrix of measure-
ment errors CY can be written as CY 5r2

Y I, I being the identity matrix. The quantity J in (2) is equivalent to
the least square criterion

J5
Xn

i51

e2
i with ei5 Yi2Y�i ; (3)

where Yi are evaluated according to models M1 (with m 5 1), M3 (with m 5 6), M5 (with m 5 1), M6 (with
m 5 2), M10 (with m 5 7), and M11 (with m 5 2). Note that r2

Y is generally unknown and the ML estimate of
r2

Y can be obtained as

r̂2
Y 5

Jmin

n
: (4)

Jmin being the minimum value of J, i.e., Jmin 5J ĥ
� �

. The covariance matrix of the estimation error is approxi-
mated by its Cramer-Rao lower bound as
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Q5r̂2
Y JT J
� �21

; (5)

where the superscript T denotes transpose and J is the n 3 m Jacobian matrix whose entries are the deriva-
tives of the target variable, Yi , with respect to the model parameters evaluated at ĥ. Approximation (5) obvi-
ates calculation of second-order derivatives of NLL (2). The diagonal entries of Q provide lower bound
estimates of parameter estimation variance. In this work, minimization of (3) is achieved through the gradi-
ent method [e.g., Nocedal and Wright, 2006], as implemented in the Matlab environment.

Various model information (known also as model selection or discrimination) criteria IC have been proposed
in the literature to discriminate among models which are formulated with the aim of interpreting a target
quantity of interest. These include the information criterion AICc [Hurvich and Tsai, 1989] and the Bayesian
criteria BIC [Schwarz, 1978] and KIC [Kashyap, 1982], respectively defined as

AICc5NLL12m1
2m m11ð Þ

n2m21
; (6)

BIC5NLL1m ln n; (7)

KIC5NLL2m ln 2pð Þ2ln jQj: (8)

All these criteria consider the goodness of fit between available measurements and ML estimates (through
NLL) and tend to penalize models with a large number of parameters (parsimony principle). KIC also
includes a quantitative metric of the quality of the parameter estimates, as rendered by |Q|, as an additional
term assisting in discriminating among model performance. AICc tends to select more complex models as n
increases while KIC reduces to BIC when n� m (see, e.g., Ye et al. [2008] for a detailed discussion on these
points). In the context of nonlinear geostatistical inverse problems of single-phase flow in porous media, Ye
et al. [2008] and Riva et al. [2011] demonstrated the unique ability of KIC to estimate the parameters of the
variogram of randomly heterogeneous log conductivity fields.

Maximum Likelihood Bayesian Model averaging (MLBMA) [Neuman, 2003; Ye et al., 2004] stands out as a
robust and computationally efficient way to combine the predictive capabilities of a suite of distinct models.
Following Neuman [2003], the posterior model weight (for AICc) or the posterior model probability (for BIC
and KIC) of model Mk comprised in the collection of NM candidate models analyzed is given by

pðMk jY�Þ5
exp ð21=2DICkÞpðMkÞXNM

i51
exp ð21

�
2DICiÞpðMiÞ

: (9)

Here ICk is any criterion from (6)–(8), DICk5ICk2ICmin with ICmin 5min ICkf g evaluated over all NM compet-
ing models and p Mkð Þ is the prior probability of model Mk . The multimodel posterior mean and variance of
Y are, respectively, evaluated as

E YjY�ð Þ5
XNM

k51

E YjY�;Mkð Þp Mk jY�ð Þ; (10)

Var YjY�ð Þ5
XNM

k51

Var YjY�;Mkð Þp Mk jY�ð Þ1
XNM

k51

E YjY�;Mkð Þ2E YjY�ð Þ½ �2p Mk jY�ð Þ: (11)

E YjY�;Mkð Þ and Var YjY�;Mkð Þ, respectively, being the posterior mean and variance of Y computed for
model Mk . We provide the application of MLBMA to our suite of multiple models in section 3.2.

2.2. Analysis of Elliptic Regions
In section 3, we investigate the possibility of occurrence of elliptic regions, as embedded in the classical
fractional-flow theory of displacements [Jackson and Blunt, 2002], in (i) two classical models typically used in
black-oil reservoir simulators (i.e., the Stone I and Baker models, respectively, identified as M1 and M5 in
Table 1) and (ii) the very recent sigmoid-based model presented by Ranaee et al. [2015] (model M11 in
Table 1). The analysis of elliptic regions is critical to modeling of three-phase flows at the macro- (Darcy-)
scale because the flow problem becomes ill posed for saturations at which the governing system of equa-
tions is elliptic.
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Darcy-scale three-phase flow of immiscible and incompressible fluids in a porous medium in one dimension
is governed by

@tu1@xf50 with u : 5
Sg

Sw

( )
; f : 5

fg

fw

( )
; (12)

where fw and fg, respectively, are the fractional flows of water and gas phases and x and t are rescaled
space and time variables. If gravity and capillary forces are neglected, fractional flow of each phase is
defined as the phase mobility ratio (ka5kra=la with a 5 w, g; la being the dynamic viscosity of the
a-phase) divided by the total mobility ratio, kT 5kw1ko1kg. In the following, we focus our study on the
occurrence of elliptic regions associated with kro models. Thus, we neglect hysteresis effects in the predic-
tion of water (krw ) and gas (krg) relative permeabilities. The latter are, respectively, approximated by water
(�k

I
rwo) and gas (�k

I
rgo) relative permeabilities in two-phase (oil-water and oil-gas) systems under imbibition

[Corey and Rathjens, 1956], i.e.,

krw � �k
I
rwo5�k

M
rwo

�Swo2�Swc

12�Swc

� �ewo

; (13)

krg � �k
I
rgo5�k

M
rgo

�Sgo2�Sgt

12�Swc2�Srog2�Sgt

� �ego

: (14)

�k
M
rwo and �k

M
rgo, respectively, being the maximum water and gas relative permeabilities in two-phase environ-

ments. Here �Swo is water saturation in oil-water systems, �Sgo and �Srog, respectively, are gas and residual oil
saturation in oil-gas systems, and ewo and ego are model parameters. The latter are here obtained through
ML estimation on the basis of the two-phase relative permeability data of Alizadeh and Piri [2014b] (see also
section 3.1). All remaining quantities have been defined above.

When gravity and capillarity effects are considered, the fractional flows can be evaluated as [Juanes and
Patzek, 2004; Bianchi Janetti et al., 2015]

fw5
kw

kT
12Ndlo qd21ð Þko1qdkg
	 


; (15)

fg5
kg

kT
11Ndlo qdkw1koð Þ½ �; (16)

where qd5 qw2qg

� �
= qo2qg

� �
is the density ratio and Nd5 q02qg

� �
Kgx= loq/ð Þ is the gravity number, qa

being density of fluid phase a; K, /, gx, and q are intrinsic permeability and porosity of the medium, the
component of gravity along the flow direction and the total volumetric flow rate. The nature of (12) can be
determined by analyzing the behavior of the eigenvalue problem

Ar5vr with A5
a b

c d

" #
5

@fg=@Sg @fg=@Sw

@fw=@Sg @fw=@Sw

" #
; (17)

where A is the Jacobian matrix of (12), v is an eigenvalue, and r5 ri;Sg; ri;Sw
	 
T

(i 5 1, 2) is a right eigenvector.
The eigenvalues v1;2 and r are evaluated as

v1;25
1
2

a1d6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2dð Þ214bc

q� 

; (18)

r1;Sg

r1;Sw
5

v12a
b

5
c

v12d
;

r2;Sg

r2;Sw
5

b
v22a

5
v22d

c
: (19)

For any combination of Sg and Sw , the system (12) is elliptic when v1;2 are complex conjugates. Regions
identified in the saturation space to correspond to this state are termed elliptic regions. When v1;2 are real
and distinct, the system (12) is hyperbolic and v1;2 represent the characteristic speed at which waves
describing changes in saturation propagate throughout the domain. In this case, there are two real and line-
arly independent eigenvectors that, when viewed in the saturations space, correspond to the directions of
admissible changes in fluid saturations and identify so called fast and slow rarefaction curves.
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3. Results

In this section, we assess the capability of the collection of models listed in Table 1 to characterize and pre-
dict three-phase oil relative permeability data. We do so by grounding our study on the data presented by
Alizadeh and Piri [2014b]. These authors provide oil relative permeability data under steady state conditions
during two- (gas/oil, oil/brine, and gas/brine) and three-phase (gas/oil/brine) coreflooding experiments in
(water-wet) Bentheimer sandstone core samples. The data set presented by the authors include experi-
ments of primary gas injection (G1 in Table 1) performed with two initial oil saturations (Soið1Þ565% and
Soið2Þ545%) followed by the waterflooding experiments (W2 in Table 1), representing the behavior of oil
relative permeability kro under a WAG cycle. The data set of Alizadeh and Piri [2014b] is here classified as
follows (see Table 1 for nomenclature, which we employ hereinafter):

1. Data set G1 with Soið1Þ565% comprises 8 data points from experiment A and 12 data points from experi-
ment B.

2. Data set G1 with Soið2Þ545% comprises three sets of nine data points, respectively, associated with
experiments C, E, and G.

3. Data set W2 includes all data points for which decreasing gas saturation is reported, i.e., nine points from
experiment A and eight points from experiment F.

Note that from each experiment we select only data corresponding to three-phase flow (i.e., all three fluid
saturations are larger than zero) and for which kro > 0. Alizadeh and Piri [2014b, Experiment D-1] is associ-
ated with measurements performed in a gas-oil environment at connate water saturation. Following a com-
mon practice [e.g., Spiteri and Juanes, 2006], we employ experiment D-1 to characterize the two-phase oil
relative permeability �k

D
rog.

3.1. Predictions of kro Relying Only on Two-Phase Data
We estimate kro in all three settings (e.g., G1 with Soið1Þ, G1 with Soið2Þ, and W2) considered by Alizadeh and
Piri [2014b] by relying only on their two-phase data and applying all models listed in Table 1. We do not
consider in this analysis model M10, whose parameters need to be estimated on the basis of three-phase
data (see Supporting Information for details). When needed (i.e., for M1, M3, M4, and M5), we evaluate resid-
ual oil saturation Sor by making use of (S3). The need for a proper estimate of Sor to accurately predict kro

has been recently discussed by Kianinejad et al. [2015] and Kianinejad and DiCarlo [2016]. Note that M11

requires estimating two distinct parameters for each of the three settings (see also Supporting Information).

Table 1 lists the values of LMSE5J=n, where J is calculated according to (3) and n is the number of experi-
mental data available, resulting by considering each of the three experimental sets individually and merg-
ing all data into a unique data set. We note that M11 [Ranaee et al., 2015] renders the smallest LMSE values
for all three sets of experiments, followed by M6, M8, or M9 (in an order which depends on the setting ana-
lyzed). This high-quality performance of M11, as quantified in terms of LMSE values, with respect to the other
investigated models can be due to its inherent capability of embedding (i) impact of hysteresis, due to the
two diverse strategies developed for the prediction of kro under gas injection or waterflooding, and (ii) cycle
dependency effects, because the model directly considers the influence of initial oil saturation and/or the
initialization of the experiment (see Supporting Information for details).

As an example, Figure 1 depicts the graphical comparison among three-phase oil relative permeabilities
predicted by two of the models which are commonly implemented in commercial software (M1 and M5)
and those obtained by M4 and M11, together with experimental data. The Baker model (M5) yields quite
good predictions of kro data collected during gas injection when initial oil saturation is high (see Figure 1a).
These results are explained upon observing that values of �k

I
row , �k

D
rog, and kro are very similar for high Soi val-

ues, so that all saturation-weighted interpolation models lead to acceptable results under these conditions.
Moreover, differences between displacement of oil under gas and water injection are very limited when Soi

is large (this condition corresponding to piston-type configuration [Piri and Blunt, 2005]), and saturation-
weighted interpolation-based models that do not account for hysteresis effects can be successfully
employed in this regime. The Baker model fails in reproducing experimental data associated with gas injec-
tion and small initial oil saturation values (see Figure 1b), a condition for which WAG techniques are usually
employed. The general underestimation of kro obtained with M5 in these conditions is likely linked to the
observation that the coexistence of a considerable amount of all three phases in the system tends to
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increase the occurrence of oil remobilization from small pores through spreading layers [Suicmez et al.,
2007, 2008]. Additionally, one should note that �k

I
row vanishes for So < �Srow and by using (1) leads to kro val-

ues which are slightly smaller than �k
D
rog. This result is in contrast with experimental coreflooding observa-

tions [e.g., Oak, 1990; DiCarlo et al., 2000; Alizadeh and Piri, 2014b] showing that oil recovery increases
shifting from two to three-phase environments. Similar to what observed above for M11, also the saturation-
weighted interpolation-based models M6 2 M9 are associated with values of kro under gas injection experi-
ments initiated in low oil saturations (G1 data set with Soi 5 0.45) of relatively improved quality with respect
to the Baker model (see Table 1). This results is consistent with the observations that (i) M6 and M7 are char-
acterized by an increased weight of �k

D
rog since they disregard the effect of trapped gas, (ii) M8 considers

remobilization of oil under layer drainage configurations, and (iii) M9 somehow takes into account nonlinear
variations of kro with So at low oil saturations.

The models based on the channel flow theory (M1 2 M4) generally do not accurately reproduce the kro data
considered. In particular, model M1 tends to overestimate kro for high oil saturations and to underestimate
kro when So decreases (see Figures 1a and 1b). This result can be explained upon noting that M1 requires
the use of �k

I
row and �k

D
rog values evaluated for oil saturation levels different from those observed under three-

phase environments (see section S1 of the Supporting Information), a similar consideration holding also for
M2 and M4. Figure 1 shows that M4, which includes hysteresis effects, tends to overestimate kro . This is con-
sistent with the observation that M4 was developed on the basis of data collected in the presence of low
interfacial tension, where oil relative permeability tends to be relatively large [Harbert, 1983; Fatemi et al.,
2011; Chukwudeme et al., 2014].

3.2. ML Estimate of kro Based on Three and Two-Phase Data
For six (M1, M3, M5, M6, M10, and M11) of the 11 models analyzed, it is possible to constrain model parame-
ters through the use of available three-phase oil relative permeability data. We do so by applying the
approach described in section 2 to compute ML estimates of model parameters. Results of this analysis are
listed in Table 1 in terms of LMSEmin 5Jmin =n5r̂2

Y , as given by (4). Similar to what has been presented in sec-
tion 3.1, LMSEmin has been evaluated by considering each of the three experimental sets individually and
merging all data into a unique data set. As expected, values of LMSEmin for M1, M3, M5, M6, and M11 are gen-
erally smaller than those of the corresponding LMSE since three-phase data are considered in the model cal-
ibration procedure. We note that 0.01< LMSEmin/LMSE< 0.6 (depending on the model and experimental
setting considered) for models M1 and M5, where only residual oil saturation is calibrated. This type of result
is in agreement with the main findings of Kianinejad et al. [2015].

Figure 2 provides a graphical depiction of three-phase experimental data and the corresponding ML esti-
mates of kro (i.e., kro computed with the ML estimate ĥ of the parameter vector h) based on M1, M3, M10, and
M11 for the three experimental scenarios considered. Comparison of Figures 1 and 2 evidences the general
improvement in the quality of model results emerging from constraining model parameters through ML cal-
ibration on three-phase data.

Figure 1. Three-phase oil relative permeability versus oil saturation. Curves represent values calculated through models M1, M4, M5, and M11 based solely on information from two-phase
data. Figures 1a and 1b include analysis of experiments performed following primary gas injection; Figure 1c considers secondary waterflooding experiments.
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When all available data are jointly considered in the ML analysis, models M10 and M11 provide the smallest
values of LMSEmin , equal to 0.06 and 0.03, respectively (see Table 1). Remarkably, calibrated models M1, M3,
M5, and M6 are seen to be associated with values of LMSEmin > 0.08, the latter being the value of LMSE asso-
ciated with M11 when solely two-phase data are employed (see section 3.1), i.e., without model calibration.
In other words, model M11 is conducive to estimates of kro of higher quality (when assessed in terms of
LMSE) than those rendered by all other tested models, even in cases where three-phase data are included
in these and are not considered in M11. This result provides evidence of the superior predictive capability of
M11 in the settings analyzed. Figure 3 shows estimates of kro obtained with a set of models upon (a) relying
only on two-phase data (Figure 3a) or (b) making also use of three-phase data (Figure 3b) versus all (G1 and
W2) experimental data considered jointly. These results allow appreciating the generally superior perform-
ance of M11 in reproducing kro, as compared to all other models considered.

Figure 4 depicts the values of the model selection criteria (ICs) (6)–(8) for each model. Models M3, M10, and
M11 are identified as best depending on the experimental setting (Figures 4a–4c) and the model discrimina-
tion criterion, IC, adopted. Model M11 is unambiguously selected as the best model by all ICs when all data
are jointly considered (see Figure 4d). The latter finding can be explained upon considering the structure of
models M3 and M10. In particular, these models do not consider (i) the impact of initialization of phase satu-
rations at the onset of each experiment (cycle dependency) and (ii) hysteresis effects yielding differences in
the system and model behavior under gas injection and water flooding scenarios, while M11 is designed to
embed these physical features.

Figure 2. ML estimates of three-phase oil relative permeability versus oil saturation for models M1, M3, M10, and M11 and are based on information from two and three-phase data. Fig-
ures 2a and 2b include analysis of experiments performed following primary gas injection; Figure 2c considers secondary waterflooding experiments.

Figure 3. Estimates of kro obtained (a) relying only on two-phase and (b) making also use of three-phase data, versus experimental values
(data from primary gas injection and secondary waterflooding are jointly considered).
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We then evaluate the posterior model weight (for AICc) or the posterior model probability (for BIC and KIC),
p Mk jY�ð Þ, according to (9) for each candidate model and for each model IC, including NLL as a term of com-
parison. We assign an equal prior probability p Mkð Þ5 1/6 5 16.7% to each model (k 5 1, 3, 5, 6, 10, 11).
Table 2 lists these results for M3, M10, and M11 (M1, M5, and M6 are associated with virtually zero posterior
probabilities). In all cases, p Mk jY�ð Þ is markedly different from the prior probability, reflecting the relevant
impact of conditioning on the available three-phase data. The value of p Mk jY�ð Þ associated with M11 is
equal to 1 when all data are jointly considered, independent of the discrimination criterion adopted. Model
M10 is assigned (a) a unit weight when only G1 experiments initiated with low oil saturation (Soi 2ð Þ) are con-
sidered and (b) the largest weight for experiments W2 according to all model discrimination criteria.

Interpretation of the results of experiments G1 initiated with large oil saturation (Soi 1ð Þ) is not straightfor-
ward. While M10 provides the best match against the data (as quantify by NLL), AICc and BIC favor M11 (with
p Mk jY�ð Þ, respectively, equal to 97.8 and 98.8%), and KIC selects M3 (p Mk jY�ð Þ equal to 97.2%) as best
model. This difference between model rankings stems from the characteristics of the diverse model infor-
mation criteria analyzed. We start by noting that M3, M10, and M11 lead to very similar results in this case
(see Figure 2a). Therefore, while NLL (that considers only the quality of the fit) tends to prefer the model
with the largest number of parameters (i.e., M10, with m 5 7), AICc and BIC favor the model with the smallest
m value (i.e., M11, with m 5 2). As discussed in section 2.1, KIC also includes a metric quantifying the quality
of the parameter estimate as discriminant among models. Figure 5 depicts uncertainty bounds, as quanti-
fied by ðĥ1r̂hÞ=ĥ, r̂h being the square root of the parameter estimation error variance, associated with
each estimated parameter of models M3, M10, and M11. We note that the ML estimate of h5 of M3 obtained
for G1 with initial large oil saturation (Soi 1ð Þ) is associated with a large estimation uncertainty (see Figure 5a),
consistent with KIC favoring M3 in this case. We further note that according to Tsai and Li [2008] BIC should
be preferred to KIC when comparing models embedding considerably different types of characteristic
uncertain parameters, as is the case here.

Finally, we apply MLBMA to provide a multimodel analysis of the oil relative permeability data. We do so by
(i) selecting a model Mk (with k 5 3, 10, or 11); (ii) generating NMC 5 107 Monte Carlo (MC) realizations of
each model parameter hi (with i 5 1,. . .,m), assuming the estimation error associated with hi to be Gaussian
with mean and variance respectively given by ĥ i and r̂hi ; (iii) use model Mk to obtain NMC 5 107 MC realiza-
tions of Y; (iv) computing mean, E YjY�;Mkð Þ, and variance, Var YjY�;Mkð Þ, of Y across realizations evaluated

Figure 4. Model selection criteria evaluated on the basis of ML calibration of models M1, M3, M5, M6, M10, and M11 on the three-phase oil relative permeability data obtained under
primary gas injection (G1) with initiation at (a) high Soið1Þ and (b) low Soið2Þ oil saturations; (c) secondary waterflooding (W2); and (d) complete data set (G1 1 W2 experiments).

Table 2. Posterior Weights/Probability Calculated From (9) Using NLL (2), AICc (6), BIC (7), and KIC (8) for Candidate Models M3, M10, and M11

Model

Posterior Model Weight Based on NLL Posterior Model Weight Based on AICc Posterior Model Probability Based on BIC Posterior Model Weight Based on KIC

G1

W2
(n 5 17)

All
(n 5 64)

G1

W2
(n 5 17)

All
(n 5 64)

G1

W2
(n 5 17)

All
(n 5 64)

G1

W2
(n 5 17)

All
(n 5 64)

Soið1Þ50:65
(n 5 27)

Soið2Þ50:45
(n 5 20)

Soið1Þ50:65
(n 5 27)

Soið2Þ50:45
(n 5 20)

Soið1Þ50:65
(n 5 27)

Soið2Þ50:45
(n 5 20)

Soið1Þ50:65
(n 5 27)

Soið2Þ50:45
(n 5 20)

M3 5.6% 0% 0% 0% 0.6% 0% 0% 0% 0.3% 0% 0% 0% 97.2% 0% 0% 0%
M10 91.8% 100% 100% 0% 1.6% 100% 94.4% 0% 0.9% 100% 100% 0% 0% 100% 59.4% 0%
M11 2.6% 0% 0% 100% 97.8% 0% 5.6% 100% 98.8% 0% 0% 100% 2.8% 0% 40.6% 100%
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at step (iii); and (v) use (10) and (11) to compute MLBMA estimates E YjY�ð Þ and variance Var YjY�ð Þ. Figure 6
depicts a scatterplot of MLBMA estimates, E YjY�ð Þ, versus observed three-phase oil relative permeabilities,
log k�ro, for experiments G1 with Soi 1ð Þ and replacing IC in (9)–(11) with NLL (Figure 6a), AICc (Figure 6b), BIC

Figure 5. Normalized uncertainty bounds, as quantified by ðĥ1r̂hÞ=ĥ , for all parameter estimates ĥ resulting from ML calibration of models M3, M10, and M11; experiments G1 initiated
with (a) Soi 1ð Þ and (b) Soi 2ð Þ ; (c) experiment W2.

Figure 6. Estimates of kro versus experimental values observed during G1 with Soi 1ð Þ and IC 5 (a) NLL; (b) AICc ; (c) BIC; and (d) KIC.
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(Figure 6c), and KIC (Figure 6d). As an additional term of comparison, Figure 6 also depicts intervals of width
E YjY�ð Þ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var YjY�ð Þ

p
, characterizing the uncertainty associated with MLBMA estimates. To highlight the

relevance of the uncertainty associated with a given model, Figure 6 includes values of E YjY�; ~Mk
� �

and
E YjY�; ~Mk
� �

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var YjY�; ~Mk
� �q

, ~Mk being the model associated with the largest p Mk jY�ð Þ for each selected
IC. The ML estimates of log kro (i.e., log kro computed with ĥ) associated with ~Mk are also shown. Note that
the ML estimates of log kro are very close to log k�ro in all subplots of Figure 6. This result, when considered
by itself, could imbue one with an unjustified sense of confidence about the predictive capabilities of model
~Mk because it does not consider the uncertainty linked to (i) the ML model parameter estimates and (ii) the
model choice (when viewed in the context of a pool of alternative model possibilities). These aspects are
fully included in the MLBMA. It is noted that here the model-averaging procedure has a limited effect on
the average value of estimated relative permeability, i.e., E YjY�ð Þ � E YjY�; ~Mk

� �
, consistent with the obser-

vation that p ~Mk jY�
� �

> 95% for all considered cases. Otherwise, we find that the uncertainty associated
with the model choice is in general not negligible, as Var YjY�ð Þ > Var YjY�; ~Mk

� �
, a finding which is particu-

larly evident when NLL, BIC, and AICC are considered as model-averaging criteria (see Figures 6a–6c).

The results of the corresponding analysis for experiments W2 are illustrated in Figure 7 for IC 5 AICc (Figure
7a) and KIC (Figure 7b). Note that in this case NLL and BIC favor M10 with posterior probability equal to 1.
Consistent with the results in Figure 6, we observe that E YjY�ð Þ � E YjY�; ~Mk

� �
while the effect of model

Figure 7. Estimates of kro versus experimental values observed during W2 and IC 5 (a) AICc and (b) KIC.

Figure 8. (a) Original and (b) reduced (normalized) saturation space. Circles represent the 351 sampling points at which eigenvectors of
(18)–(19) are calculated.
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averaging on the quantification of uncertainty is particularly important when KIC is considered as informa-
tion criterion.

3.3. Occurrence of Elliptic Regions
Here we compare the results of our study on the occurrence of elliptic regions for (i) two classical models
typically used in black-oil reservoir simulators, Stone I (M1) and Baker (M5), and (ii) model M11 which was
selected as best to jointly interpret the complete data set of Alizadeh and Piri [2014b] in section 3.2 (see
Table 2).

Figure 8a illustrates the 351 sampling points used to calculate the rarefaction paths in the saturation space.
The saturation domain where elliptic regions are studied is bounded by the maximum (�SM

a ) and residual
(�Sra) saturation of fluid phase a. Figure 8b depicts the distribution of the sampling points mapped within

Figure 9. Distributions of eigenvectors associated with fast rarefaction waves in the reduced saturation space. Results are illustrated (a–d) in the absence and (e–p) in the presence of
gravity effects with selected values of Nd. Elliptic regions are depicted as black areas. The percentage of the saturation space covered by elliptic regions is indicated where relevant.
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the ternary diagram of reduced saturations SNorm
a 5 Sa2�Srað Þ= �SM

a 2�Sra

� �
, where �Sra 5 �Swc for a 5 w, �Sra 5 �Srog

for a 5 o, and �Sra 5 �Sgt for a 5 g (w, o, and g, respectively, denoting water, oil, and gas). At each sampling
point, we evaluate the eigenvalues (18) of the Jacobian matrix A (17) associated with the flow equations
(12). Values of fluids viscosities and densities are taken from Alizadeh and Piri [2014b]. In order to have a
detailed definition of the elliptic regions, when the radicand in (18) is negative (at least) at one of the 351
sampling points depicted in Figure 8a we increase the number of sampling points up to 30,000. In a water-
wet system, fast rarefactions correspond to situations in which gas or/and water saturation increases (corre-
sponding, e.g., to oil production during primary gas injection and/or secondary waterflooding), slow rarefac-
tions being related to increasing oil saturation (corresponding, e.g., to oil generation) [Shearer and
Trangenstein, 1989; Jackson and Blunt, 2002]. Here we are mainly concerned with the fast rarefactions corre-
sponding, for example, to oil productions under WAG injection scenarios.

Figure 9 depicts the distribution of eigenvectors evaluated with the selected models and associated with
fast rarefaction waves in the saturation space in the absence of gravity (Figures 9a–9d) and for three
selected values of the gravity number Nd (Figures 9e–9p). Results related to M11 for primary gas injection
(Figures 9a, 9e, 9i, and 9m) have been obtained by setting �Srow538:5%. Qualitatively similar results have
been obtained by using diverse �Srow values in the range 38.5%��Srow � 65% (not shown).

Figures 9a–9d clearly show that the system (12) is hyperbolic within the entire saturation space when grav-
ity forces are neglected, regardless the model selected. Use of M11 for primary gas injection (Figure 9a)
yields eigenvectors which are mostly parallel to the gas-water edge, i.e., most of the eigenvectors are ori-
ented along directions of constant oil saturations. The use of M1 (Figure 9d) results in eigenvectors that
rotate near the vertex SNorm

g � 1 (i.e., So � �Srog and Sw � �Swc), the latter constituting an umbilic point
[Shearer and Trangenstein, 1989]. This umbilic point is seen to shift toward smaller SNorm

g values along the oil-
gas edge when M11 (for waterflooding) and M5 are considered. Comparison of Figures 9b and 9c shows that
implementation of M11 (for waterflooding) or M5 yields very similar changes in the saturation states across
the ternary diagram. This is likely related to the observation that both models are based on saturation-
weighted interpolation techniques. Eigenvectors are oriented along directions of constant oil saturations
for the regions of high gas content (SNorm

g � 0:8) where estimates of kro are proportional to �k
D
rog (see equa-

tion (1)).

When gravity effects are included (Figures 9e–9p), all models are characterized by the occurrence of elliptic
regions, where the directions associated with the eigenvectors coincide, the only notable exception being
model M11 for gas injection (Figures 9e, 9i, and 9m), because in this case kro evaluated through (S30) is a
function of oil saturation [Shearer and Trangenstein, 1989]. The fraction of the saturation space covered by
elliptic regions is also listed (when present) in Figures 9e–9p. We observe that the elliptic regions tend to
extend to zones characterized by low gas saturations as Nd is increased from 0.1 to 1.0. A further increase of
Nd does not change dramatically the shape of the elliptic regions. While the Stone I model (M1) leads to
elliptic regions which cover about 3% of the entire saturation space regardless of the value of Nd , the extent
of the elliptic regions observed for M11 (for water injection) and M5 tends to decrease with increasing Nd .

4. Conclusions

We analyze a suite of eleven three-phase oil relative permeability models and compare the ability of
describing three-phase oil relative permeability (kro) data when (i) only two-phase data are employed and
(ii) two and three-phase data are jointly used for model calibration. The study is based on a recently pub-
lished data set [Alizadeh and Piri, 2014b] which reports data acquired in a water-wet Bentheimer sandstone
sample. Our study leads to the following major conclusions.

1. The model proposed by Ranaee et al. [2015] (identified as M11 in Table 1) provides reasonably accurate
estimates of kro data, supporting its ability to embed the role of hysteresis effects for the characterization
of oil displacement in three-phase systems. All model selection criteria analyzed select M11 as the best
model to interpret the considered data set, when all data (gas injection and waterflooding) are jointly
considered for model parameter estimation.

2. Model M11 renders high-quality estimates of kro even when three-phase data are not included and the
model is employed to provide predictions of three-phase relative permeabilities by relying solely on two-
phase data, thus supporting its predictive capability. Remarkably, estimates of kro obtained by M11 solely
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on the basis of two-phase data are of same or higher quality (in terms of mean square error) than their
counterparts obtained with all other tested models calibrated on the basis of three-phase oil relative per-
meability data. On the bases of these results, additional testing of model M11 against experimental data
is foreseen. In this context, a possible candidate database is, for example, the one recently presented by
Moghadasi et al. [2016], or others, as they become available.

3. Multimodel analyses based on Maximum Likelihood Bayesian Model Averaging provide an efficient way of
combining the predictive power of a collection of competitive kro models to render high quality results.

4. The use of the classical Stone I and Baker models induces elliptic regions when the gravity effects are
included in the analysis. Employing the sigmoid-based model (M11) of Ranaee et al. [2015] does not lead
to elliptic regions under gas injection conditions, while no elliptic regions arise under waterflooding only
in the absence of gravity effects. The location of elliptic regions in the saturation space tends to vary
only minimally when the gravity number 1�Nd � 10 for these models.
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