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ABSTRACT 

The mechanical properties of calcarenites are known to be significantly affected by water 

saturation: both stiffness and strength decrease for wetting in the short term and for chemical 

dissolution in the long term. Both processes mainly affect bonds among grains: immediately 

after inundation depositional bonds fall in suspension whereas diagenetic bonds dissolve more 

slowly. In this paper, the authors started from the micro-structural analysis of the weathering 

processes to conceive a strain hardening hydro – chemo - mechanical coupled elasto-plastic 

constitutive model. The concept of extended hardening rules is here enriched: weathering 

functions have been determined by employing a micro to macro simple upscaling procedure. 

Chemical damage is incorporated in the formulation by means of a scalar damage function. Its 

evolution is also described by using a multiscale approach. A new term is added to the strain 

rate tensor in order to incorporate the dissolution induced chemical deformations developing 

once the soft rock is turned into a granular material. A calibration procedure for the 

constitutive parameters is suggested and the model is validated by using both coupled and 

uncoupled chemo mechanical experimental test results. 
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1 Introduction: 

This paper focuses on the process of degradation induced in calcareous rocks by water 

saturation. In particular, an elastoplastic constitutive model, capable of accounting for the 

non-mechanical processes occurring at the micro-scale when pores are inundated by water 

will be hereafter presented: this is based on the strain hardening elasto-plastic approach 

proposed by Nova (1997, 2000) and is derived from a microstructural interpretation of the 

hydro-chemo-mechanical processes described in Ciantia et al, 2015.  

From a macroscopic viewpoint, calcarenites are homogenous highly porous materials, 

and, at the micro scale, their fabric is characterized by three main components (Folk, 1959): 

calcareous grains, micrite (microcrystalline calcite mud matrix) and sparite (sparry calcite 

cement). As was observed by Ciantia et al, 2015, the loose calcite mud, suspended in the pore 

space of the wet material, forms, in case the material is dried, menisci shaped loose bonds. 

These, hereafter referred to as depositional bonds, re-suspend once the material is re-

inundated with water. On the other hand, the calcite cement, composing the bonds hereafter 

named diagenetic, seems not to be affected by water in the short term but in the long term is 

involved in dissolution processes (Ciantia et al, 2015). Therefore, as is schematically 

suggested by Fig. 1, in general, the weathering debonding taking place in case rocks interact 

with water can be described as the result of three microscopic elementary mechanisms  

i) the short term debonding (STD). During saturation water penetrating through the 

porous structure damages the depositional bonds and the powder composing them falls almost 

instantaneously into suspension. This induces the marked loss in both strength and stiffness 

testified by Ciantia et al, 2012, 2013, Castellanza et al 2009a. It was also observed that the 

STD mechanism evolves for a saturation degree ranging between 0 (dry) and 0.4 (partially 
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saturated state). The driving variables for the STD process are thus both the degree of 

saturation, Sr, and the amount of powder entrapped inside the porous matrix, PM  (Ciantia, 

2013; Ciantia et al, 2015). Analogously to Sr, PM  is a state variable for the material and its 

variation,  PM  normalized with respect to the initial powder mass PM
0
 is here defined as 

0sus P PM M      (1) 

sus  is constrained by inequality 0≤ sus ≤1. When sus =1, the STD process is completed 

that is, the powder is entirely suspended.  

ii) the long term debonding (LTD). This is due to the chemical dissolution of diagenetic 

bonds taking place when calcarenite is flooded by water for a long period of time. With time, 

these bonds are progressively weathered until the material is transformed into a calcareous 

soil. The process evolution is governed by both the rate of the dissolution reaction and the 

ionic composition of the bulk fluid. The driving variable for LTD is the reaction progress 

variable (De Groot, 1966) defined as the accumulated relative mass removal of calcite from 

diagenetic bonds and grains over the initial mass: 

0dis M M     (2) 

where M  and 0M  are the dissolved and the initial mass, respectively.  

Analogously to sus , also dis is constrained by the inequality 0≤ dis ≤1. When dis =1, the 

reaction is completed: that is, calcite is totally dissolved. 

iii) the grain dissolution process (GDP). This consists in the chemical dissolution of the 

calcareous grains evolving with LTD and ruled by the same state variable dis . 

As is suggested by the experimental evidence (Ciantia, 2013, Ciantia et al, 2015, 2014), 

the time scales characterizing, on one hand, the STD process and, on the other, the LTD and 
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the GDP processes are totally different. While the STD process evolves in few seconds, the 

LTD and GDP, depending on the ionic concentration of the fluid require longer periods of 

time. For instance, as detailed in Ciantia and Hueckel 2013, to dissolve 5% of calcite in water 

with a neutral pH for an open system scenario about 1.8 years are needed. Therefore these 

processes will be assumed to be uncoupled. For this reason, during saturation, the powder 

mass is assumed to remain constant and hence, sus  to exclusively depend on the degree of 

saturation ( sus = ( )sus rS ).  Before entering into the details of the constitutive model, in Fig. 

2a, a phase diagram in the  dis rS   plane for calcarenite is proposed and the weathering path 

is sketched. In Fig. 2b, according to the assumptions above, the corresponding evolution with 

time of the previously mentioned variables is shown. In particular, during saturation, since the 

inundation phase is assumed to be rapid enough to prevent any dissolution, only the STD 

process is assumed to take place, consequently, dis  is considered to be constant, while sus  

evolves from 0 to 1 with the saturation index Sr. As was mentioned above, STD evolves for a 

limited range of degree of saturation. In particular Sr
* is the minimum degree of saturation 

necessary for all the depositional bonds to suspend. Once the material is saturated, dissolution 

is assumed to start and hence both LTD an GDP evolve until a critical value of mass (

dis dis cr  , ) is dissolved and corresponds to the dissolution of all diagenetic bonds. dis cr ,  

represents the ideal threshold between the bonded and the unbonded granular material state. 

Ciantia et al, 2015 show that the unbonded granular material develops into a depositional 

bonded structure when dried (state II in Fig. 2a). 

 

 



6 

2 The constitutive relationship. 

The conceptual bases for the extension of the classical theory of plasticity to incorporate 

the effects of bonding and quantitatively describe the mechanical effects of bond degradation 

are already in the innovative works of Nova and coworkers (Nova, 1992; Gens and Nova, 

1993; Lagioia and Nova, 1995). These authors introduced an additional set of “bonding-

related" internal variables and described the mechanical bond degradation by means of 

suitable hardening rules. Subsequently they employed the same conceptual framework to 

phenomenologically handle chemical degradation of weak rocks due to weathering. (Nova, 

1997, 2000; Tamagnini et al., 2002; Nova et al., 2003). 

 

The constitutive model presented in this work, capable of describing i) the instantaneous 

drop of strength and stiffness upon saturation, ii) the mechanical consequences of the 

subsequent long term debonding process, and iii) the dissolution induced chemical 

deformations (Ciantia et al, 2014), differently from what done so far, accounts for the 

mechanical consequences of hydro-chemical bond degradation by means of simplified 

multiscale approaches. To ease the reading of the paper, the constitutive model conceived by 

Nova et al, 2003, is summarized in section 2.1. In section 2.2 a modified hardening rule (to 

capture the mechanical consequences of STD and LTD) is introduced. In section 2.3 the 

hydro – chemical damage effects are incorporated by means of a damage variable related to 

the evolution of the bond geometry. Finally, in section 2.4 the chemical deformations, 

developing as a consequence of dissolution, once the material is turned into its granular state (

,dis dis cr  ), are integrated by adding an irreversible chemical contribution to the strain rate 

tensor.   
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2.1 The Nova Model 

Isotropic strain hardening elasto-plastic constitutive models, conceived in order to reproduce 

the mechanical consequences of hydro-chemo-mechanical processes usually assume the total 

strain rate tensor ( ε ) to be additively decomposed into an elastic, reversible component ( eε ) 

and a plastic irreversible one ( pε ); the (hyper)elastic stiffness tensor ( eD ) to be derived from 

a suitably defined stored energy function ( )e ε ; the stresses  belonging to a convex set , 

defined as     : , , 0f  σ q σ q  where σ  stands for the stress tensor, 

int: Sym nf ´    is a convex function known as yield function, while q  intn  is the 

vector of internal variables; the plastic strain rate tensor to be obtained by imposing the so 

called flow rule through the definition of a plastic potential int: Sym ng ´    and  a 

plastic multiplier  ; the evolution of the internal variables q, to be governed by both 

mechanical and chemical processes (Nova et al 2003). In particular the mechanical 

consequences of the chemical processes are taken into account by means of an externally 

controlled degradation function :Y    phenomenologically calibrated.  

The analytical expression for both the yield function and plastic potential of the Nova Model 

are the ones proposed by Lagioia et al. (1995). The intersection of f = 0 with the positive and 

negative p axis are called pc = ps + pm and pt, respectively. ps plays the role of a sort of 

preconsolidation pressure, as it is for soils. In the Nova Model ps is assumed to depend on 

both the plastic volumetric p
v  and deviatoric p

s  strain rates as it follows:  

  p p
s s s v s sp p       (3) 
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where s  and s  are constitutive parameters. In contrast, pt and pm account for the effects of 

interparticle bonding. The existence of bonds therefore implies: (i) a non-zero tensile strength 

(pt>0) (di Prisco et al, 1992, Gens & Nova, 1993, Arroyo et al 2012) and (ii) an increase in the 

yield stress along radial loading paths. pm corresponds to such an increase in case of an 

isotropic compression path. Although the quantities pm and pt can be in general considered as 

two independent hardening variables, they are usually assumed to be related to each other by 

the simple proportional rule (pt=k pm). Finally to incorporate weathering Nova and co-workers 

(Nova et al, 2003) redefined pm and pt as it follows: 

       ,: p p
ij d t ij d tt t Xp Yp P Y X P    (4) 

where   p
t ijP  is a scalar function decreasing monotonically with plastic strains whereas 

 dY X  is a phenomenologically calibrated scalar function decreasing from 1 to 0 with Xd: a 

convenient scalar measure of the degree of weathering (Lumb, 1962). In the rate form, the 

vector of internal variables  :  ,s tp pq , reads:  

    , , , ,Y Y Y  q h σ q η σ q   (5) 

where 

2
dev

3 0

2
dev

3

s s s

t

t t t

g g
p tr

p Yg g
p tr

 

 

                        
                     

σ σ
h η

σ σ

     (6) 

and t , s , s   and t  are constitutive parameters  
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2.2 Redefinition of the weathering function Y. 

In this section, the Nova empirically based weathering function Y(Xd), is redefined by 

accounting for the above introduced STD and LTD mechanisms. This is done by using a 

multiscale approach allowing the authors to write the weathering function, Y, as a function of 

both sus  and dis . This objective is obtained by assuming the variations in the macroscopic 

strength and deformability experienced by the material to be the consequence, from a 

microstructural viewpoint, of a reduction in the bond sectional area. To schematically 

implement this approach, the simplified geometry of Fig. 3 can be thus taken into 

consideration. The tensile force transmitted by the bonds can be assumed to be proportional 

(i) to the mean cross-sectional area of both diagenetic and depositional bonds (Ab,dia and 

Ab,dep) and (ii) to the tensile strength (evaluated at the micro-scale) ( ) of the material 

assumed to be independent of the type of bond, but affected by irreversible strains. Therefore:  

 , ,, , ,b dia b dept t A Ap p       (7) 

where X  is an up-scaling function depending on the geometrical configuration of the 

microstructure. By assuming the representative elementary volume (REV) to be a periodic 

repetition of both diagenetic and depositional bonds (Fig. 3d), the following simplified 

upscaling relation can be written: 

   

, ,, ,X X =

=X

dep b dep dep b depdia b dia dia b dia
t MACRO MACRO

rev rev gr gr gr gr

dis dis sus sus

n A n An A n A
p σ σ

A A n A n A

σ Y ξ Y ξ

  
          

  

  (8) 

where ndia and ndep stand for the number of diagenetic and depositional bonds in the 

macro-REV along the direction of the macro-tensile stress, respectively; whereas MACRO
revA  is 

the cross-section area of the macro-REV along which the stress is acting. The upscaling 
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function X  is modified to X in order to account for the material porosity and, owing to the 

hypothesis of periodic repetition of the REV, to write MACRO
revA  (Fig. 3) as the cross-sectional 

area of a grain grA  (of radius R0) taken ngr times, where ngr represents the number of grains 

forming the macro REV. As was previously mentioned sus  and dis  are strictly related to the 

depositional and diagenetic bond area evolution, respectively. Therefore in (8) disY   depends 

exclusively on the amount of dissolved mass ( dis ) since the diagenetic bond area is assumed 

to solely change for chemical dissolution effects (LTD), whereas susY  depends on both the 

amount of powder forming depositional bonds ( sus ) controlling the depositional bond area 

evolution (STD). By indicating with 

 dis susY Y Y     (9) 

and by substituting eq (4)a and (9) into eq.(8) we obtain:  

XtPY Y     (10) 

where Y  and Y are the micro and macro scale weathering functions, respectively. 

 

2.2.1 Hydro-chemo induced bond area evolution: the microscale weathering function 

By assuming a circular cross sectional area for the bonds, the two ratios appearing in eq. 

(8) become: 

 

 

2

0,

2
0

2

0,

2
0







 
 


 




dia diadia
dis

gr

dep depdep
sus

gr

r dn
Y

n R

r dn
Y

n R

    (11) 
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where the first and the second lines of eq. (11) represent the counterpart of strength provided 

by the diagenetic and depositional bonds, respectively. By interpreting, for the sake of 

simplicity, the dissolution as an isotropic thinning of the calcarenite, the variation in the 

volume of the solid can be expressed as it follows:  

  : sV M
d t

A A
 

      (12) 

where d(t) represents the thickness of the dissolved layer of volume  sV  at a given instant of 

time (Fig. 3), A corresponds to the reacting surface area,  is the calcite density and by 

substituting eq (2) into (12) we obtain:  

  0 0
*

dis dis s s dis

s

M V
d t

A A A

   
 

       (13) 

where A* is the specific surface area in cm2/cm3 of the material. By indicating with ,dis cr  the 

value of dis  corresponding to the dissolution of all the bonds, ( ,dis dis cr   occurs when 

d=r0,dia) A* can be expressed as , 0,/dis cr diar  and by substituting eq. (13) into eq.(11): 

2 2
0,

,22
, ,0

,

1 2

0

 
 

 

 

  
    

   
 

dia dia dis dis
dis dis cr

dis cr dis crgrdis

dis dis cr

r n

R nY  (14) 

Analogously in case of STD: 

 
2

0, 2
2
0

1 2   dep dep
sus sus sus

gr

r n
Y

R n
    (15) 

where the critical value of suspended mass is equal to unity ( ,sus cr =1) since all the powder 

needs to suspend for STD to be complete. Eq. (9) thus becomes: 
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 

 

22
0,0,

2 2
0 0

2
0,

2
0

2
2

,2
, ,

2
,

2
1+ - + 1+ -2

1+ -2

 
  

 

  

  
       

 

sus depdia dia

gr gr

sus dep

gr

r nr n dis dis
dis dis crsus susR n R n

dis cr dis cr
dis sus

r n

dis dis crsus susR n

Y Y Y  (16) 

Initially, when the material is intact and it hasn’t experienced any dissolution induced damage 

( dis = 0), under both dry ( 0sus  ) and wet ( 1sus  ) conditions, the micro-scale weathering 

function (eq. (16)) simplifies to: 

 

 

2
0,

2
0

22
0,0,

2 2
0 0

0 ; 1

0 ; 0

dia dia

sus depdia dia

r nw
dis susR n

r nr nd
dis susR n R n

Y

Y

 

 

   

    

    (17) 

where dY  and wY  stand for the micro-weathering functions under dry and wet conditions, 

respectively. The macroscale expression for the weathering function is thus obtained by 

correlating the two multiplying terms (
2

0,

2
0

dia diar n

R n
 and 

2
0,

2
0

sus depr n

R n
) in eq. (16) describing the initial ideal 

geometry of the microstructure to macroscale properties of the material. To do so, as is 

detailed in section 2.2.2 a downscaling procedure is employed. Finally, in section 2.2.3, the 

evolution of dis  and sus  are described in terms of degree of saturation, Sr, and bulk fluid 

concentrations, [.], respectively.  

 

2.2.2 Downscaling procedure: the macroscale weathering function 

By substituting eq. (17) into eq.(10), the following relation can be obtained: 

2
0,

2
0

22
0,0,

2 2
0 0

X

X

dia dia

sus depdia dia

r n wt

R n

r nr n dt

R n R n

P
Y

P
Y





 

  


    (18) 
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where dY  and wY  represent the macro-weathering functions under dry and wet conditions, 

respectively. By using eq. (4) and considering a weathering induced (non-mechanical) 

evolution of the yield locus, by assuming an omothetical shrinkage for the yield function, it is 

thus possible to correlate pt to the uniaxial compressive strength of the material at different 

levels of weathering (Fig. 4b). In particular under a dry intact state and under saturated 

conditions:    

0 0

0 0

0

0

1





 



  

w w
w t c

d d
t c

d
d t

d
t

p
Y

p

p
Y

p

    (19) 

where 0
d
c , 0

w
c , 0

d
tp  and 0

w
tp  are the initial uniaxial compression strength and the initial 

isotropic tensile strength of the material under dry and wet conditions, respectively. By 

substituting eq. (19) in (18) we finally derive: 

2
0,

2
0

2
0,

2
0

0

0

0

0

X

1
X

dia dia

sus dep

w
r n t c

dR n
c

w
r n t c

dR n
c

P

P


 


 

  
  

  


      

    (20) 

and by substituting eq. (20) into eq. (16) and by using eq.(10), the macro weathering function 

reads: 

= +dis susY Y Y     (21) 

where 

2
0

,2
, ,0

,

2
1- +

=

0

   
 

 

  
  

  
 

w
dis disc

dis dis crd
dis cr dis crcdis

dis dis cr

Y     (22) 
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 20 0

0

-
= 1-2 +

 
 






d w
c c

sus sus susd
c

Y     (23) 

 

2.2.3 Evolution ofdis  and sus   

Ciantia & Hueckel 2013 proposed a simplified approach to account for the theoretical chemo-

mechanical coupling mechanism induced by the micro-crack formation in saturated and 

stressed calcarenites. This enables to express dis  as a function of ionic concentrations in the 

bulk fluid, [.], and volumetric plastic strain, pl
v :  

  
 

 

1 1
2 22 2

3

,

C Ca CO 1 6.5
,[.],

H 1 6.5

pl
b vpldis

a b v

pl
a v

K pHd
f K

dt
K pH

 


 



  
             

     

 (24) 

 where the square brackets [.] indicate the ionic concentration, C is an equilibrium constant 

(2.47e-7 mol/cm3),  is a chemo-mechanical coupling material parameter, while Kb and Ka are 

dissolution parameters. For a Gravina calcarenite these were also calibrated (Kb = 4e-3 and Ka 

= 63.8 cm3/s mol respectively) (Ciantia & Hueckel 2013). 

While dis  is a directly measurable quantity, strictly depending on the kinetics of 

dissolution (Ciantia & Hueckel, 2013), as is detailed in Ciantia et al 2014, the experimental 

measure of sus  and its evolution during STD is not possible. Thus, for the sake of simplicity, 

the authors decided to assume a bi-linear relation between sus  and Sr: 

P r
sus r r

P r

sus r r

M S
S S

M S

S S





  
      

  
  

0

*
*

*

1 1 0

1

         (25) 
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where Sr* is the minimum degree of saturation necessary to suspend all the depositional 

bonds, PM
0
 is the initial powder mass inside the structure and PM  is the current amount of 

powder mass. Therefore, by substituting (25) into (23) we get 

 
0

2
2

*0 0
*

0

*

1-

0

 


  
     
 

p

p

d w
Mc c r

r rMd
sus c r

r r

S
S S

Y S

S S

    (26) 

In the above equation  
0

p

p

M

M  is a function depending on the amount of powder mass present in 

the porous rock at a given instant of time. For a closed system the total powder mass remains 

constant, (
0

p pM M ), while, if the system is open, the problem is dominated by the 

associated transport processes. Andriani and Walsh (2007) showed that with wetting and 

drying cycles in open systems (systems where the suspended mass can be expelled from the 

sample) the increase in strength upon redrying is not fully recovered. In what follows only 

closed systems are instead considered. Finally by differentiating eq. (21) we obtain 
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2.3 Hydro-Chemical damage: the stiffness weathering function YE 

Differently from classical damage mechanics (Krajcinovic, 1989), where damage is assumed 

to be associated with the development of micro-discontinuities inducing an irreversible decay 

of mechanical properties, in this work a particular type of damage variable, only function on 

non-mechanical (hydro-chemo) processes, is introduced. In this model the damage variable is 

“reversible” since both drying (short-term) of the rock and diagenesis (long-term) induce the 

recovery of mechanical properties. The hydro-chemical effects on the elastic response of 

calcarenites are experimentaly described in Ciantia et al, (2014). In this model, these 

variations are assumed to affect only the material in its bonded state, while no stiffness 

variation due to chemical dissolution is considered for the carbonate rock in its unbonded 

conditions (pt=0). The original (hyper)elastic relationship (Tamagnini et al, 2002) is here 

recast as,  

  0( , ) ( ) 1 1    e e
bD Dε ε          (29) 

where 0 ( )e ε  is the elastic energy that the material would store under the case it was 

transformed into a granular assembly, b  is a constitutive parameter related to the extra 

stiffness caused by the presence of bonds and D is a damage scalar variable only dependent 

on non-mechanical effects. When bonds are completely dissolved and hence D=1, the original 

elastic response corresponding to the granular state is recovered. The damage variable D is 

formulated by using the isotropic damage introduced by Kachanov (1958) and applying the 

same multiscale approach adopted for the bond strength. In fact, analogously to what already 

illustrated for the description of the hardening variable pt (eq. (8)), also the elastic behaviour 

of the material can be related to the bond cross-sectional area. This is done by introducing a 



17 

damage variable at the microscale, D , and adopting the same upscaling-downscaling 

procedure used to define the evolution of pt.  The evolution of D is obtained in terms of YE, 

the stiffness weathering function, YE,  depending exclusively on the amount of dissolved mass 

( dis ) and the amount of powder forming depositional bonds ( sus ). YE is thus defined as: 

 
, ,

1 
  

E

E E dis E sus

Y D

Y Y Y
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           (32) 

where 0
dE  and 0

wE  represent the Young modulus for the intact material under dry end wet 

conditions, respectively. The mathematical developments of the multiscale procedure used to 

obtain eq. (31) and (32) are reported in Appendix A. In conclusion, the introduction of a 

damage variable for the definition of the stored energy function implies that:   

e e
M EY σ D ε D              (33) 

where 
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ε
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ε ε
          (34) 
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=E E dis E rY S               (36) 
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and 0 ( )e ε  is taken from Tamagnini et al, (2002). In this work the hyperelastic parameters pr 

and k̂  will be chosen to obtain an equivalent linear elastic relationship and, as is detailed in 

(Tamagnini et al, 2002), this goal is achieved by fixing a very high value to pr and calculating 

the k̂  best fitting the experimental data. By looking at eq. (33), it is worth noting that as the 

bond cross sectional area decreases in size owing to suspension of depositional bonds and/or 

dissolution of diagenetic bonds, the hydro chemical damage process evolves  ( 0EY  ) and 

chemical induced elastic deformations are developed ( 0e ε ) even for constant stress 

conditions. 

2.4 Chemical deformations 

When grains are dissolved, at a macroscopic level, irreversible strains develop and this is 

mainly true once the material is turned into its granular state ( ,dis dis cr  ). To take this 

process into account in the framework of strain hardening elasto-plasticity an irreversible 

chemical strain rate contribution cε  is added:  
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 e p c  ε ε ε ε     (38) 

In this section simple micro-scale conceptual considerations are employed to relate cε  to the 

amount of the dissolved mass. For the sake of clarity, we have to distinguish the case of 

granular assemblies from the case of bonded materials. In the first case, dissolution can 

induce a rearrangement of grains resulting essentially in the accumulation of irreversible 

deformations, 0cε   (Fig. 5). In contrast, the same process does not occur in case of bonded 

materials. In a bonded material, the grain rearrangement is in fact prevented by the bonds 

themselves, 0cε  (Fig. 6). In this work, chemical deformations are assumed to be solely 

volumetric,  c
v , and are calculated as the ratio between the change in REV volume,  REVV , 

and the initial REV volume, REVV0, . By employing the microstructural ideal scheme of four 

tangent spheres (2D view in Fig. 5), by means of eq. (13) and neglecting second order effects: 
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 
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 (39) 

where L0 is the size of the meso-REV (see Fig. 5). Here too, assuming the macroscale-

REV as a periodic repetition of the meso-REV the chemical strain tensor can be thus defined 

as: 

c c
v

1

3
ε 1   (40) 

where 1  is the identity tensor and 
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and thus: 
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0
  (42) 

As dissolution proceeds (line A-B in Fig. 7) no chemical strains are initially experienced by 

the material due to the presence of diagenetic bonds. However, once all the bonds are 

dissolved ( ,diss diss cr  ) further dissolution causes irreversible chemical strains. It is clear that 

the rate of chemical volumetric strains, eq.(42), has a direct relationship with the dissolution 

rate equation, and hence the time derivative is done with respect to the physical time (Ciantia 

and Hueckel, 2013). As was suggested by equations (40) and (42), the rate of chemical strains 

is a discontinuous function of diss . In order to avoid such a discontinuity, in the numerical 

code eq (41) has been defined as: 

  c
disC1            (43) 
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is a smoothing function ranging gradually from 0 to 1/3 and   is a material parameter 

defining the magnitude of the transition zone.  

 

2.5 General formulation  

It is known that capillarity effects have a negligible effect on the mechanical behaviour of 

calcarenites, chalks and other carbonate porous rocks (Papamichos et al, 1997, Risnes and 

Flaageng 1999 and Risnes et al. 2005, Ciantia et al, 2014) as the apparent cohesion induced 

by capillary bridges can be neglected with respect to the natural cementation of the material. 

Therefore, following Hickman et al, 2008, the model here illustrated is developed in terms of 

conventional effective stresses neglecting the role of matric suction when the material 

behaves in partially saturated conditions. In other words in the following, according to the 

previous assumption: 

*
ij ij iju            (45) 

where  

r

w r

S
u

u S

 
  

* 0 0 1

1
            (46) 

and uw is the water pressure. By omitting the standard apex notation identifying the effective 

stress the constitutive relationship can be written as follows: 

  

    ep LTD DAMAGE dia GDP STD DAMAGE dep
ij ijhk hk ij ij ij dis ij ij rD D D D D D S           (47) 

Or, by substituting eq. (24) into (47) to highlight the time dependence of the constitutive 

relationship: 
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

    

 
 (48) 

where the analytical expressions of ep
ijhkD , LTD

ijD , DAMAGE dia
ijD  , GDP

ijD , STD
ijD , and 

DAMAGE dep
ijD   are in Appendix B. The constitutive relation (eq. (48)) was integrated by means 

of an explicit integration scheme by employing an adaptive Runge-Kutta-Felhberg method of 

the third order (RKF-23), see (Stoer & Bulirsch, 1992). 
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3 Calibration procedure 

The Macro and Micro experimental data presented in Ciantia et al (2014a,b) were used to 

calibrate the 24 constitutive parameters introduced above:  

af, mf, Mfc, Mfe concerning the yield surface shape, ps0, pt0, pm0 the yield surface initial size, ag, 

mg, Mgc, Mge the plastic potential,  s , s , t , t  the mechanical hardening rule, ,dis cr , *
rS , 

0 d
c , 0 w

c , 0
dE , 0

wE  the weathering function and grK , , b the elastic potential. We note that 

once the initial size of the yield locus is determined for both dry and wet conditions, once the 

elastic potential is calibrated, four of the weathering parameters ( 0 d
c , 0 w

c , 0
dE  and 0

wE ) are 

also known making the independent parameters to calibrate 20.      

In Fig. 8 the experimental test results concerning the yielding of a Gravina Calcarenite are 

summarized and the calibrated yield functions are compared. The corresponding surface 

parameters are summarized in Table 1, where the initial value for ps, pt and pm are also 

reported. ps0=1000 kPa was determined by following the procedure presented by Lagioia and 

Nova (1995) and using the experimental isotropic compression test results on the Gravia 

Calcarenite used for this study. 

The mechanical behavior of the Gravina di Puglia calcarenite has been intensively 

investigated by Lagioia during his PhD (Lagioia, 1994). For this reason, both plastic potential 

and mechanical destructuration material parametres proposed by Lagioia et al. (1996) and 

Lagioia and Nova (1995), respectively have been used.  Only the value of t , that is here set 

to one (Table 2), in order to better fit our triaxial compression test (Fig. 9), was changed.  
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,dis cr , *
rS , 0 d

c , 0 w
c , 0

dE , 0
wE  were already experimentally calibrated in Ciantia et al 

(2014a,b). Their values are summarized in Table 3. The only remaining elastic parameters to 

calibrated are grK , b and   

grK  is evaluated from oedometric test results when the material is totally debonded (Fig. 

10a). b can be assessed by employing the following equation: 

 1gr b EK K Y              (49) 

Were K is the oedometric stiffness corresponding to a certain degradation stage, defined 

by YE. In particular under either dry or wet intact conditions, K= 0
dK  and 0

wK  respectively 

(Fig. 10a). By reporting on the K/ 0
dK - YE plane the experimental results the value of b can be 

easily derived (Fig. 10b). The Poisson ratio  is determined by relating the intact oedometric 

stiffness 0
dK   to the intact Young modulus 0

dE  (     1

0 01 1 2 1d dE K       ). By 

assuming  to be constant, also the Young modulus E may be used to derive b. The 

calibrated parameters are summarized in Table 4.  
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4 Model Validation 

4.1 Uncoupled hydro-chemo-mechanical tests 

To validate both the mechanical hardening and plastic potential parameters, the 

oedometric compression tests on dry and wet Gravina Calcarenite samples were employed 

(Fig. 11). The experimentally observed post yielding plateau is not captured in a satisfactory 

way by the model because in this phase of the test, compaction bands develop within the 

specimen (Arroyo et al, 2005, Castellanza et al., 2009b; Dattola et al, 2014, Buscarnera and 

Laverack, 2014), while the simulations assume the sample not to localize. Nevertheless the 

mechanical hardening and plastic potential parameters calibrated in the previous section by 

means of a triaxial compression test are sufficiently good to fit the mechanical behavior of the 

calcarenite when loaded in oedometric conditions.  

In Fig. 12 the weathering function Y, derived by the authors by means of the multiscale 

approach previously described, is compared with the experimental results by Ciantia et al 

2014. The good agreement between experimental data and the model results validates the 

upscaling procedure and in particular the hydro-chemo-micromechanical assumptions made 

in defining the bond meso-REV scheme and the bond area evolution (§ 2.2). In Fig. 12a the 

3D graphical representation highlights the short and the long term weathering processes: the 

first evolving with saturation on the plane 0dis   and the second evolving with dis  on the 

plane Sr=1. Analogously, in Fig. 13, another series of numerical simulations, highlighting the 

dependence of both strength and stiffness on the dissolved mass in terms of dis , is compared 

with the experimental evidence. Here too, the good agreement supports the aforementioned 

multiscale procedure. 
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4.2 Coupled hydro-chemo-mechanical experiments 

The weathering tests described in Ciantia et al 2014, carried out by means of the WTD 

and the creep test device under accelerated weathering conditions have been numerically 

simulated to validate the model. In particular four hydro-chemo-mechanical coupled test 

results have been simulated: 

The first concerns the STD process only and consists in reproducing the failure of a dry 

pillar when saturated with water. The second concerns both STD and LTD processes. The test 

is identical to the previous one but, in this case, failure is not caused by the saturation induced 

weakening but by the long term dissolution of diagenetic bonds. 

The third simulates a test where the LTD process does not cause the failure of the 

material (oedometric conditions) and the experiment continues also after the chemical induced 

yielding. Finally in the last experiment the GDP is investigated as dissolution induced 

volumetric deformations of a granular soluble material are studied. The reference material is a 

soil composed by clusters of calcarenite. This experiment validates the approach used to 

incorporate chemical deformations. 

 

4.2.1 Saturation induced failure in weathering creep tests 

A detailed description of this test is Ciantia et al, 2014: a dry cylinder of calcarenite is 

saturated by water under a constant uniaxial vertical load. In Fig. 14 numerical results are 

compared with experimental data. The dry material is first loaded up to a stress state that 

exceeds its ultimate wet strength and subsequently the sample is saturated. During saturation, 

which starts at point A, the material deforms as the vertical load is kept constant but the 
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elastic stiffness drops due to the STD process. At the same time the strength of the material 

decreases and in this case the strength drop induces the failure (point B).  

 

4.2.2 Long term debonding induced failure in weathering creep tests 

In this case both STD and LTD processes take place. After saturation, the material stress 

state still lies within the current wet yield locus. For this reason, failure will be reached only 

subsequently, when an acid flux of 3.7 mean pH attacks the material. In Fig. 15 the 

experimental results are compared with numerical simulations in terms of mean vertical strain 

(a), stress path (b) and stress strain curve (c). It is worth noting that the effects induced by 

both STD and LTD processes are captured by the model in a satisfactory way. 

  

4.2.3 Oedometric weathering test on calcarenite  

Also in this case, a detailed description of the test here numerically simulated is in Ciantia 

et al, 2014. As it was for the previous tests, in principle the test should be interpreted as a 

small scale boundary value problem. In fact, the in - and the out - fluid pH are different: the 

weathering function should assume different values across the specimen. Nevertheless, 

hereafter the numerical simulations assume the sample to be a REV. Three tests are here 

considered, these characterised by a pH of 3.65, 3.75 and 3.85. The chosen values fluctuate 

around the mean of the in - and the out - pH measured experimentally (Fig. 16a). Since [H+] is 

function of pH, by employing eq. (24) the accumulated dissolved mass can be estimated (Fig. 

16b). 

As is evident in Fig. 17a, the loading phase is simulated by imposing a constant rate to 

the axial stress until the final value of 2005 kPa is reached. The theoretical stress state in the 
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triaxial plane follows the linear path OA inside the initial elastic domain 
0

dryf ; both radial and 

axial stresses increase proportionally, as is expected in the case of an elastic material loaded 

under oedometric conditions.  

Subsequently, the material is saturated (saturation phase) and both the axial stress and the 

radial strain are kept constant (
a

s =2005 kPa, 0
r

e = ). In this case, the reduction in the elastic 

domain takes place in such a way that the stress level (point C) remains inside the yield locus 

of the intact wet rock, 
0
wetf . As a consequence, no plastic strains develop. The material 

deforms because of the variation in the elastic stiffness induced by the STD process. After 

total saturation (point C) the acid weathering phase starts. Both the axial stress and the radial 

strain are still kept constant, Sr is maintained equal to one and an acid flux of constant pH 

(3.65, 3.75 and 3.85 for the three different tests) is imposed. The acid accelerates the 

dissolution process with a rate proportional to the imposed pH (eq. (24)) and hence diss  

increases with time. Here too, the hardening variables pm and pt and the stiffness of the 

material are forced to reduce by the weathering function. The change in stress induced by the 

reduction in the elastic domain size takes place as it follows: initially, the radial stress and the 

axial strain are fixed to point C (end of saturation phase); then, when point C is reached by the 

yield locus which is shrinking ( wet

yield
f ), the material yields and plastic strains develop to restore 

consistency. Consequently, the internal variable ps increases while pm and pt decrease 

monotonically (Fig. 17b). As is evident from Fig. 17a, the stress image point moves along a 

line with a slope of –1.5, which in the triaxial plane represents a locus at constant value of 

axial stress.  
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The process stops after about three hours of acid flux. Points D, D′ and D′′ in Fig. 17 are 

related to the final state of the material in the case of pH equal to 3.65, 3.75 and 3.85, 

respectively. The elastic domain represented by the surface wet

damaged
f  in Fig. 17 concerns the 

3.85 pH test and in Fig. 17c the simulation of the deviatoric stress against the deviatoric strain 

is presented. In Fig. 18 both numerical and experimental radial stresses and axial strains 

occurring during the whole experiment are compared. The agreement seems to be quite 

satisfactory.  

On the other hand, the rapid changes (discontinuities) characterizing the experimental 

results are not captured by the model. These “jumps” are probably a direct consequence of 

instability phenomena occurring in the material during the test. It is well known that, as the 

highly porous structure dissolves, the material weakens until the constant vertical load cannot 

be sustained. Sometimes, owing to the particular microstructure of the material, axial strains 

localize along horizontal layers. This phenomenon is known as compaction banding (Arroyo 

et al, 2005, Castellanza et al., 2009b; Dattola et al, 2014, Buscarenara & Leverak, 2014). As 

the formation of a compaction band is a dynamic process, the jumps in vertical strains and the 

associated discontinuities in the radial stress are justified.  

In Fig. 17c and Fig. 18, a good agreement in terms of variation in stresses and strains is 

evident. In particular the values calculated by the model at the end of the saturation phase 

(point C) are very satisfactory while at the end of the weathering phase (points D, D′ and D′′) 

the discrepancy is probably due to the non-uniformity of the pH value across the specimen 

during the experimental test which cannot be captured by the numerical simulation which 

assumes the specimen as a unique REV.  
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In Fig. 19, weathering is also testified by the clockwise rotation of the plastic strain rate 

unit vectors which stops when the material is totally weathered.  

 

4.2.4 Acid accelerated weathering of granular calcarenite (oedometric conditions) 

This test refers to a stress controlled non-conventional oedometric test on a material that 

starts from unbonded conditions ( ,dis cr = 0,  pt0=0,  ps0 = 20 kPa). The experiment, detailed in 

Ciantia et al, (2014), is subdivided into three different phases. The loading phase (O-A in Fig. 

20) is performed under water saturated conditions. This is to prevent the results to be affected 

by the STD. Subsequently the creep phase (A-B) starts. Even if the vertical stress is kept 

constant, both vertical strains and radial stresses increase. After about one hour, when the 

strain rates become negligible, a 2.4 l/h flux of 2.5 pH acid is imposed from the bottom. As 

was expected, grain dissolution process induces chemical deformations, decrease in the radial 

stresses, while vertical strains rapidly evolve (B-C). After one hour of acid flux the sample is 

washed with water (C-D). In this last phase both axial strains and radial stresses stop evolving 

(Fig. 20). 

 

5 Conclusions 

In this paper, a generalized strain hardening single potential elastoplastic constitutive 

model considering the hydro-chemo-mechanical coupling for soft porous rocks has been 

presented. The three elementary hydro-chemo- mechanical weathering processes i) short term 

debonding, STD; ii) long term debonding, LTD and iii) grain dissolution process GDP, 

experimentally observed occurring at the micro-scale are incorporated by means of a suitable 
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multiscale approach. Extended hardening laws, usually phenomenologically calibrated are 

micro-mechanically justified. Furthermore hydro-chemical damage has been introduced in the 

formulation by means of a scalar damage function. Even in this case its evolution is described 

by using a multiscale approach. To incorporate the dissolution induced chemical deformations 

experimentally observed once the soft rock is turned into a granular material, an additional 

strain rete tensor is introduced. The model has been validated by employing already published 

experimental data concerning different types of tests performed on Gravina calcarenite 

samples. The model has clearly shown to be capable of reproducing the mechanical 

consequences of the STD process. In case of both the LTD and GDP processes, physical time 

becomes an intrinsic variable of the model controlling the mechanical behavior of the 

material. Such feature gives to the proposed constitutive model the capability of predicting the 

temporal evolution of the mechanical response of soft carbonate rocks such as calcarenites.   
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8 Tables   

Table 1: Yield surface parameters and initial conditions 

af 

(–) 

mf 

(–) 

Mfc 

(–) 

Mfe 

(–) 

k 

(–) 

ps0 

(kPa) 

pt0 

(kPa) 

0.75 1.5 1.3 1.0 8±3 1000±200 350±100 

 

Table 2: Plastic potential and mechanical hardening/softening parameters 
Parameters ag 

(–) 

mg 

(–) 

Mgc 

(–) 

Mge 

(–) 

rs 

(–)
 

zs 

(–) 

rt 

(–) 

zt 

(–) 

Lagioia et. al, (1995, 1996) 1e-6 1.2 1.657 1.292 16.66 -0.1 15 1 

 

 

Table 3: weathering parameters 

xdis,cr 

 (–) 

*

r
S

 

(–) 

0

d
c

s   

(kPa) 

0

w
c

s  

 (kPa) 

0

dE  

(MPa) 

0

wE  

(MPa) 

0.4 0.3 2440±100 1760±100 315.0±100 150.0±50 

 

Table 4: Elastic parameters  

gr
K  

(MPa) 

n 

(-) 
pr 

(kPa) 

db 

 (–) 

40±5 0.09±0.02 1e+6 5±1 

 

 

 

 

9 Figures 
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Fig. 1 Sketch of the material micro-structure: a) STD of DP bonds and b) LTD of DG bonds 
 

 

Fig. 2 Schematic representation of the STD, LTD and GDP processes: a) phase diagram of calcarenite in 
terms of Sr and diss b) Evolution of weathering in calcarenite (weathering path in a)) as a function of the 
state variables of the STD, LTD and GDP weathering processes. 
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Fig. 3 Idealised microscopic schematic view of the material: a) diagenetic and depositional bonds, b) 
idealised geometry, c) cross-section A-A of the bonds and micro-variables definition, d) idealised porous 
microstructure. 

 

 
Fig. 4 a) Homothetic shrinkage of yield locus induced by STD and LTD and (b) zoom of tensile zone. 

 

Fig. 5 Schematic representation of dissolution effects on unbonded soils 
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Fig. 6 Schematic representation of dissolution effects on bonded soft rocks 
 

 

 

Fig. 7 : Definition of diss,cr: a) Solid volume variation and b) deformation with accumulated dissolved mass 
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Fig. 8 Yield locus calibration: hydro-chemo weathering shrinkage 
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Fig. 9 Calibration of both the plastic potential and the mechanical degradation parameters: a) dilatancy 
versus stress ratio in drained triaxial compression test on a Gravina calcarenite (sample under a cell 
pressure of 2000 kPa), b) shape of the calibrated plastic potential, c,d) comparison between numerical 
simulations and experimental data for the Gravina calcarenite relative to a standard drained triaxial 
compression test with a confinement cell pressure of 2000 kPa. 
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Fig. 10 Calibration of parameter b: a) Oedometric compression test results on samples characterized by 
different values of dis corresponding to different values of YE, b) interpolating linear function describing 
the relationship between YE and K/Kgr. 

 

 

Fig. 11 Oedometric compression of calcarenite in dry and saturated conditions. a) stress path in deviatoric 
plane, b) vertical stress-strain relationship. 
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Fig. 12 Validation of the weathering function Y(xdis, Sr): a) 3D view of the weathering function and its 
comparison with experimental data from Ciantia et al 2014; weathering function with respect to b) degree 
of saturation and c) normalised accumulated dissolved mass. 
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Fig. 13 a) Experimental results of uniaxial compression tests performed on Gravina Calcarenite at 
different levels of weathering (data from Ciantia et al 2014), b) numerical simulation of the latter uniaxial 
compression tests, c) comparison of numerical results and experimental data relative to oedometric 
compression tests performed on Gravina Calcarenite at different levels of weathering d) validation of 
stiffness weathering function YE(xdis, Sr). 
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Fig. 14 Saturation induced failure of a small scale dry pillar: a) vertical stress versus time b) axial average 
deformation versus time, c) stress average-strain plot and d) sequence of photographs testifying the 
saturation phase. 
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Fig. 15. Acid induced failure of a small scale pillar: a) test phases and picture of the experimental set up, 
b) stress path in the p : q plane, c) axial and radial strains versus time and d) stress strain response. 
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Fig. 16  Acid accelerated weathering under oedometric conditions: a) pH history imposed; b) comparison 
between measured and simulated diss as a function of time 

 

 

 

 
Fig. 17 Acid accelerated weathering under oedometric conditions: a) Experimental and theoretical stress 
path in the triaxial plane, b) evolution of internal variables controlling the size of the yield locus with time 
and c) deviatoric stress q versus deviatoric strains es 
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Fig. 18 Acid accelerated weathering under oedometric conditions: a) effective radial stress sr vs.  time; b) 
Axial strain ea vs. time, (c), (d) radial sr and axial stress sa vs. time and vs. axial strain ea  respectively. 
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Fig. 19 Acid accelerated weathering under oedometric conditions: Stress path, evolution of the yield locus, 
plastic potential and plastic flow direction in the triaxial plane 

 



50 

 

Fig. 20 Acid accelerated weathering of unbonded calcarenite under oedometric conditions: a) test phases 
and in-out pH measurements, b) stress path in the p : q plane, c) evolution of deformations with time, d) 
axial and radial stresses with respect to time, e) axial stress-strain curves. 
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10 Appendix A:  

The damage variable D is formulated by using the isotropic damage introduced by 

Kachanov (1958) and applying the same multiscale approach adopted for the bond strength. 

Analogously to what done for the material strength (eq. (8)), the material stiffness can be 

written as: 

 
 
0

0

X 1

1

d

d

E E D

E E D

  


 
    (50) 

where E is the Young modulus, 0
dE  is the Young modulus in the dry initial condition, X is an 

upscaling constant and D is the scalar damage variable. 0
dE  and D  represent the Young 

modulus in dry initial conditions and damage defined at the micro (bond) scale, respectively. 

Formulating damage at the micro-scale as: 

 
   22

0 0, 0,

0 0

dia dia dep dep depA n r d n r dA
D

A A

    
   (51) 

where A0 is the initial total bond area. By defining: 

 
 
1

1

E

E

Y D

Y D

  


 
    (52) 

the micro-scale and macro-scale stiffness weathering functions respectively, following the 

same approach used to determine the macro-scale weathering function it is possible to obtain: 

   

   

22
0,0,

0 0

2
2

2
, ,

2
20 0 0
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, ,0 0
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2 -
1- +1 + 1-2 +

sus depdia dia r nr n dis dis
E A A sus sus

dis cr dis cr

w d w
dis dis

E sus susd d
dis cr dis cr

Y D

E E E
Y D

E E

 
 

 

 
 

 

  
    

  


      
 

  (53) 

for ,dis dis cr   (bonded material) and 
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   
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2
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0
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

    (54) 

for ,dis dis cr   (unbonded material). Analogously to the weathering function in eq. (21), sus  

is related to the degree of saturation. Thus, the stiffness weathering function results: 

, , E E dis E susY Y Y     (55) 

where 
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, ,0

,

1-

0


 



 

  
     
 

w
dis

dis dis crd
E dis dis cr
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Y E     (56) 

and 
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d w
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r rd
E sus r

r r

E E S
S S

Y E S

S S

ìï æ öï ÷çï ÷ç £ï ÷ï ç ÷= çí ÷è øïïï >ïïî

    (57) 

for ,dis dis cr   (granular material).  In conclusion eq. (29) can be recast as 

 ( ) ( )( )1,
e ee e

b E
YY de e= +D D  (58) 
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11 Appendix B:  

According to eqs.(38), (33) and (5), the evolution in time of the state variables (, q) is 

governed by the following system of ordinary differential equations: 

      
   e c

M E

g
Yσ D ε ε D

σ
      (59) 

   , , , ,    Y Y Yq h σ q η σ q       (60) 

subject to the algebraic constraint posed by the Kuhn–Tucker complementarity conditions 

(Nova, 2012).  For a plastic state, in which  f = 0, the constraint     : , , 0f  σ q σ q  

implies that (see, e.g., Simo and Hughes, 1997): 

 0
f f

f
 

    
 

 σ q
σ q

      (61) 

According to the consistency condition, if 0f   then 0   and the process is elastic 

(elastic unloading from a plastic state). On the other hand, if 0f   then plastic strains can 

occur ( 0  , plastic loading). Taking into account the constitutive equation (59) and the 

hardening law(60), if plastic loading occurs, then: 

 

0

   
       
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   
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  



e e c
M E

e

f f f f
Y Y

f g f

D ε η D D ε
σ q σ σ

D h
σ σ q

      (62) 

Assuming that, for all admissible states (, q), the yield condition, the flow rule and the 

hardening law are such that the inequality: 
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 : 0e
p

f g f
K

  
    
  

D h
σ σ q

      (63) 

is always satisfied, then eq. (62) provides the following expression for the plastic 

multiplier: 

 
1    

        
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   e e c
M E

p

f f f f
Y Y

K
D ε η D D ε

σ q σ σ
      (64) 

in which  : 2x x x   is the ramp function. 

Substituting the above expression for the plastic multiplier in eqs. (59) and (60), the time 

rates of  and q can be expressed as a function of the corresponding rates of the total strain  

and the weathering function Y as follows: 

 
E

c
Y Y E cY Y     σ Dε D D D ε       (65) 

 
E

c
Y Y E cY Y      q Gε G G G ε       (66) 

where: 
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for plastic loading processes ( 0  ), and: 

 : eD D      ;     :G 0       (75) 

 :Y D 0      ;      :Y G η       (76) 

 :
EY MD D      ;      :

EY G 0       (77) 

 : e
c  D D      ;      :c G 0       (78) 

the second and fourth order tensors in eq. (47) hence result: 
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 3GDP
ij cD CD I  (82) 

  STD
ij YD D  (83) 

   
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DAMAGE dep
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