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Abstract. When adopting a multi-cloud strategy, the selection of cloud
providers where to deploy VMs is a crucial task for ensuring a good be-
haviour for the developed application. This selection is usually focused
on the general information about performances and capabilities o↵ered
by the cloud providers. Less attention has been paid to the monitoring
services although, for the application developer, is fundamental to un-
derstand how the application behaves while it is running. In this paper
we propose an approach based on a multi-objective mixed integer linear
optimization problem for supporting the selection of the cloud providers
able to satisfy constraints on monitoring dimensions associated to VMs.
The balance between the quality of data monitored and the cost for ob-
taining these data is considered, as well as the possibility for the cloud
provider to enrich the set of monitored metrics through data analysis.

Keywords: Optimized deployment, Monitoring requirements, Metric
accuracy

1 Introduction

A multi-cloud application implies the availability of a set of cloud providers,
not necessarily coordinated with each other, o↵ering the capabilities to host
and run resources and services that compose the application [12]. According to
the Infrastructure as a Service (IaaS) provisioning model, these resources are
Virtual Machines (VMs) and a multi-cloud application can rely on several VMs
living on an infrastructure o↵ered by several providers. In this context, for the
application developer is important to figure out how to match VMs and cloud
providers, ensuring an e↵ective and e�cient execution of the application.

In the recent years, several approaches have been proposed to find the op-
timal deployment of VMs among the di↵erent IaaS providers, mainly focusing
on performance optimization [3] or energy consumption reduction [8]. This work
integrates these important aspects with the perspective of application monitora-
bility: the possibility to measure and assess the performances of the provided
application. Instead of looking for a cloud provider able to sell VMs with some
functional (e.g., size of VM) or non-functional (e.g., VM availability) charac-
teristics, the application developer wants cloud providers able to measure those
characteristics in order to know how the application using the VM behaves.
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Goal of this paper is to propose a deployment optimization method based
on the maximization of the quality of the monitoring system, with respect to
the developer needs, and the cost of the monitoring. Here, we assume that a
Cloud Broker receives the requests for deployment including the monitorability
requirements. Exploiting a knowledge base, managed by the broker, the devel-
oper can easily express the monitorability requirements without entering into the
technical details. The adopted multi-objective mixed integer linear optimization
problem (MILP) can found the deployment solutions maximizing the quality of
monitored data while minimizing the costs. To extend the possible matches, a
Bayesian Network (BN) is adopted to make possible for a cloud provider to es-
timate the values for a dimension - that is not able to measure - based on the
dependencies with other dimensions - which is actually able to measure.

The paper is structured as follows. Sect. 2 introduces the overall approach
identifying the main stakeholders and the basic steps of the mechanism. Sect. 3
provides a formal definition of the optimization problem specifying the way in
which the accuracy of monitored data is computed. Sect. 4 validates the approach
discussing the performance and the limitations. Sect. 5 provides an overview
of the current approaches related to the monitoring match-making in a cloud
scenario. Finally, Sect. 6 concludes the work also outlining future extensions.

2 Overall approach

The stakeholders considered in this approach are a developer and a set of cloud
providers. The developer is interested in finding out where to instantiate the VMs
needed to run a cloud-based application. The cloud providers o↵er the facilities
to host and manage VMs. The selection of the best site where to instantiate a
VM is usually based on both the services o↵ered by the cloud providers and the
quality of these services. VM customization, VM migration, VM monitoring are
possible services o↵ered by cloud providers to the developers. At the same time,
these services can be di↵erentiated with respect to their quality of service (QoS):
time required to instantiate a new VM, availability of the VM, availability of
the entire site, and costs are example of QoS dimensions considered.

In this paper we focus on the monitoring capabilities. Cloud providers express
their o↵erings, while the developer defines its requests according to the models
discussed in the following paragraphs. The proposed match-maker is based on
the implementation of a MILP model to o↵er to the developer a set of admissible
VMs instantiation plans able to satisfy all the constraints while maximizing the
quality of the monitoring data and minimizing the costs.

2.1 Cloud provider monitoring o↵ering model

Cloud infrastructures are equipped with monitoring systems able to measure as-
pects like availability of VMs, CPU load, memory usage, and so on. Not all the
cloud providers o↵er the same set of monitored properties with the same quality.
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Fig. 1: Overall approach.

Moreover, even the same cloud provider o↵er di↵erent levels of monitoring ser-
vice based on di↵erent costs and the same property can be monitored di↵erently
in terms of sampling time, precision, or adopted unit of measure. For instance,
Amazon CloudWatch3 o↵ers a basic monitoring service where pre-selected met-
rics are made available at five-minute frequency with no additional cost, and a
detailed monitoring where the set of metrics is the same but at one-minute fre-
quency and with an additional cost. Yet Paraleap CloudMonix (formerly known
as AzureWatch)4 o↵ers the possibility to monitor an unlimited set of metrics but
at ten-minutes frequency, with no additional cost, or at one-minute frequency
with a fee. Based on this scenario, we can say that an o↵ering of a cloud provider
can include (see Fig. 1):

– Monitored dimensions directly usable by the provider specified by their sam-
pling time and cost for usage (not reported in the figure).

– Monitored dimensions which are not directly measured but their trends
are estimated exploiting the existing dependencies among metrics [18]. A
Bayesian Network is adopted to express the likelihood of a metric to in-
crease or decrease its value when the value of another metric increases or
decreases. The mark (E), i.e., estimate, is used to distinguish these dimen-
sions. Sampling time and cost are provided, where the sampling time depend
on the sampling time of the dimensions used to estimate the value, while the
cost can be zero as the e↵ort required by the cloud provider to estimate this
value could be negligible. With this approach, each cloud provider can extend
the set of monitored dimensions to be o↵ered to the developer, declaring the
reduced quality of the monitored data.

– Monitored dimensions which are not currently measured but the cloud provi-
der is open to install probes able to measure them. The mark (M), i.e.,
make, is used to distinguish these dimensions. Cost in this case could be
significantly higher than the estimate, as more e↵ort is required to the cloud
provider.

3
https://aws.amazon.com/it/cloudwatch/

4
http://cloudmonix.com
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2.2 Developer monitoring request model

For each of the VMs composing the application, the developer specifies the de-
sired monitoring features in terms of dimensions of interest and sampling time.
In the example shown in Fig. 1 we assume that all the dimensions need to be
sampled every 10 seconds. It is also possible to specify a di↵erent sampling time
for each dimension. The developer can define a maximum cost admissible for the
solution (not reported in the figure).

The request model might also include constraints about the structure of the
application. The developer can impose that the final deployment plan places
groups of VMs in the same site. This could be required as the communication
among those VMs is frequent and putting them on the same site can improve
the performances. Other constraints can be related to the data locality or legal
issues that may impose that a VM must be located (or not located) in specific
countries.

As request definition can become a complex task, especially if the developer
is not aware of all the possible dimensions, our approach assumes the existence
of a knowledge base. In the next section, relations between dimensions, metrics,
and metric measurements are defined to allow the developers to derive low-
level requirements (e.g., VM Mem free, VM availability) starting from high-level
requirements (e.g., VM status or VM performance).

3 Problem statement

Before introducing a formalization of a cloud provider o↵ering and a developer
request, we formalize the common elements of our framework: i.e., dimensions,
metrics, and metric measurements.

Definition 1. A dimension is one of the perspectives of the application that

the developer is willing to quantify (e.g. “performance”, “sustainability”). It is

usually an high level requirement that can not be directly measured. It is defined

by its name and a set of metrics used to evaluate the dimension:

di 2 D =< name, {mj} >

Definition 2. A metric defines how to assess a dimension by measuring some

phenomenon. For instance, “response time” and “availability” are metrics re-

lated to the dimension “performance”.

mj 2 M =< name, f(mmk) >

where name is the name of the metric and f(mmk) is the function used to

compute the metric based on some measurements of the environment. They cor-

respond to low level requirements.

Definition 3. A metric measurement is a measurement of the monitoring sys-

tem used to compose the value of a metric. It is defined as:

mmk =< name, type, samplingT ime >
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Fig. 2: Example of knowledge base.

As di↵erent cloud monitoring services can adopt di↵erent names to identify
the same metric (e.g., as a basic example CPUUtil instead of CPUUtilization),
in this paper we assume that both developers and cloud providers share the same
vocabulary, thus no misunderstanding can occur in the match-making process.
Anyway, the Cloud Broker can overcome such a limitation implementing existing
techniques [14] for identifying similarities in names based on text analysis and
domain-specific ontologies.

The set of relations between dimensions, metrics, and metric measurements
constitutes a knowledge base shared by the developers and the cloud providers
(Fig. 2). It provides information on how dimensions are defined: i.e., status (of
both VM and physical servers PHY) can be assessed by CPU Usage, Mem Usage,
and so on, while sustainability by the power consumed or the CO2 emissions.
For some metrics the computation requires more than one measurements (e.g.
CO2 emissions depend on the energy mix5), whereas for other metrics a direct
measurement is possible (e.g., CPU Usage). Both cloud providers and developers
browse the knowledge base to understand what to o↵er and what to request, but
these two actors di↵er in the way they use it to express the requests and the
o↵erings:

– Cloud providers, evaluating the leaves of the knowledge base, realize the cov-
erage of the metric measurements given the installed monitoring infrastruc-
ture. Moreover, for each dimension (the roots) the provider is able to know
which are the covered metrics and so to define the o↵erings. The knowledge
base also provides a tool for providers to know the gap of their o↵erings with
respect to a complete monitoring support.

– Developers use the knowledge base to select the dimensions or the metrics
to be monitored. By working on the higher levels of the tree, it is not needed
for the developer to know the details of the monitoring systems (i.e., the
monitoring measurements). In this way, a developer can simply express in
the request the need for measuring, for instance, the status of a VM. This
implies that all the metrics linked to these dimensions should be supported.
Alternatively, the developer could select only a subset of these metrics.

5
Energy mix is defined as the proportion of the di↵erent power generation technologies, including
fossil fuels, nuclear power, and renewable sources. Variation on this proportion has impact on the
CO2 emissions.
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The knowledge base represents a common knowledge among the several par-
ties involved in the match-making. It can be really implemented if a more formal
agreement is required, or it can be considered as a tacit knowledge.

Definition 4. A cloud provider o↵ering for a site POs
is composed of a col-

lection of probes {pl} supported by the monitoring infrastructure o↵ered by a

provider s. Each sensor is defined as:

pl = {hname, type, samplingT ime, costi}
The type of the sensor is a set of one or more of the three values [A|M |E] that
indicates: (A) the availability of the metric on the monitoring system; (M) the

possibility to modify the monitoring system to also support the measurement of

the metric; (E); the possibility to estimate the trend without modifying the mon-

itoring system. The sampling time provides information about the frequency at

which the measurement is collected. The cost associated to the metric provision-

ing is also specified.

The cost for a metric depends on the business model adopted by the cloud
provider. Some may put the cost as 0 for sensors made already available by the
monitoring system as its cost is included in the overall subscription. To have a
fair comparison among the di↵erent o↵ers, we assume that the cost of monitoring
a metric is explicitly stated in the o↵ering. It is also reasonable to assume that
the cost for modifying the monitoring system to o↵er a metric (option M) implies
a higher cost than the evaluation (option E).

Definition 5. A developer request

DRd = h
_

r

mcdr ,
_

s

ccds [, cost]i

is defined by a set of metric requests, a list of constraints, and, optionally, a

maximum budget. Metric requests and constraints are expressed using the Dis-

junctive Normal Form (DNF). Each minterm represents an alternative, so that

the request includes R admissible configurations for metrics and S configurations

for constraints.

A metric configuration mcdr =
V
(hVMid,mt, samplingT imei) includes the

set of T metrics requested. Each of them specifies the VM to which it refers and

the sampling time.

A constraint configuration ccds =
V
(hVMid, Pidi) specifies where the VMs can

be deployed. If a configuration does not include a VM then no constraints are

imposed.

Formalization of the request and constraints in the o↵ering using the DNF
make the identification of the di↵erent valid alternatives easier as, by construc-
tion, only one minterm is true at the same time. For instance, assuming to have
two cloud providers, i.e., P1 and P2, the constraints in the o↵ering in Fig. 1 can
be expressed as:

(hVM1, P1i^ hVM2, P1i^ hVM3, P2i)_ (hVM1, P2i^ hVM2, P2i^ hVM3, P1i)
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3.1 Optimization problem formulation

The mathematical model of our problem is described using the following sets:

– V is the set of all VMs. The cardinality of this set is V.
– S is the set of all sites. The cardinality of this set is S.
– M is the set of all metric measurements. The cardinality of this set is M.
– MP is the partition6 induced by the set of all metrics in M. The cardinality
of this set is MP.

– SS is the set of couples of VMs (v0, v1) such that VM v0 must be deployed
in the same site of v1. The cardinality of this set is SS.

– DS is the set of couples of activities (v2, v3) such that VM v2 must be
deployed in a di↵erent site of v3. The cardinality of this set is DS.

– SR ✓ V ⇥ 2S is the set of couples (v, {s0, . . . , sn}) such that VM v must be
deployed in one of the sites s0, . . . , sn.

– MR ✓ V ⇥M is the set of all couples (v,m) such that we want to measure
the metric measurement m for VM v.

– S(k) ✓ S is the set of all sites s such that we have a measure of metric
measurement m.

For the parameters we will use the following notation:

– Fs cost of measuring from site s,
– CIm,s is the cost for implementing a probe for metric measurement m in site
s,

– CEm,s is the cost for estimating a probe for metric measurement m in site
s,

– a
(A)
m,s,v 2 [0, 1] is the accuracy of metric measurement m for VM v in site s,

– �a
(E)
m,s,v 2 [�1, 1] is the variation of accuracy for VM v if we decide to

evaluate a metric measurement m in site s,

– �a
(MP )
m,s 2 [�1, 1] is the variation of accuracy for VM v if we decide to

implement a probe related to metric measurement m in site s,
– � is the budget, i.e., maximum amount of money that we want to pay.
– ↵ is the minimum accuracy that we ask.

We will use the following variables:

– ws, binary variable, true if site s is used;
– xvs, binary variable, true if VM v is deployed in site s;
– yms, binary variable, true if metric measurement m in site s is made because
not available (option M);

– zms, binary variable, true if metric measurement m in site s is estimated
because not available (option E);

– l, measuring how much we violate the budget constraint that we fix.

6
This may not be trivial, e.g. in Fig. 2 we have the metric measurement up-time that contributes
to two metrics. In this case, we consider uptime to be in the set defined by the metric with more
value for the user.
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Our problem 7 is then:

maximize
X

m2MP1

(
SX

s=1

(
VX

v=1

(a
(A)
m,s,v

x
v,s

) +
VX

v=1

(�a
(E)
m,s,v

)z
m,s

+
VX

v=1

(�a
(M)
m,s,v

)y
m,s

)), · · ·

maximize
X

m2MP

M

(
SX

s=1

(
VX

v=1

(a
(A)
m,s,v

x
v,s

) +
VX

v=1

(�a
(E)
m,s,v

)z
m,s

+
VX

v=1

(�a
(M)
m,s,v

)y
m,s

)),

minimize l

subject to:

w
s

� x
v,s

8 v 2 V, s 2 S (1)

SX

s=1

x
v,s

= 1 8 v 2 V (2)

y
m,s


VX

v=1

x
v,s

8 s 2 S, m 2 M (3)
a
m,s,v

 1� z
m,s

8 v 2 V, s 2 S, m 2 M (4)

z
m,s


VX

v=1

x
v,s

8 s 2 S, m 2 S (5) x
v0,s

= x
v1,s

8 s, (v0, v1) 2 SS (6)

x
v0,s

+ x
v1,s

 1 8 s, (v0, v1) 2 DS (7)
X

s2(v,{s})2SR
x
v,s

= 1 8 v, (v, {s}) 2 SR (8)

SX

s=1

F
s

w
s

+

MX

m=1

SX

s=1

CE
m,s

z
m,s

+

MX

m=1

SX

s=1

CI
m,s

y
m,s

= � + l (9)

max
s

h
a
(A)
m,s,v

x
v,s

+ �a
(E)
m,s,v

z
m,s

+ �a
(M)
m,s,v

y
m,s

i
� ↵ 8 (v,m) 2 MR (10)

w
s

2 {0, 1} 8 s; x
v,s

2 {0, 1} 8 v, s; y
m,s

2 {0, 1} 8 m, s

z
m,s

2 {0, 1} 8 m, s; l 2 R

The constraints have the following meaning:

1. If we deploy VM v in site s then we use site s.
2. All VMs must be deployed.
3. We can implement a probe relative to metric measurement m in site s only

if we have a VM in that site.
4. We can estimate a metric measurements only if we don’t have the measure.
5. We can ask for an evaluation of the metric measurement m in site s only if

we have a VM in that site.
6. Some VMs must be deployed on the same site.
7. Some VMs must be deployed on di↵erent sites.
8. Some VMs must be deployed on a fixed set of sites.
9. We don’t want to spend too much money.
10. We must measure some metric measurements for some VMs.

7 The proposed problem formulation assumes that the utility of the decision maker
can be well approximated by a linear function as it is reasonable to think that the
second order iterations between the accuracy of di↵erent metric measurements is
negligible.
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Algorithm 1 Accuracy Computation (A)

Input: mm
m

: the metric measurement to evaluate
Input: POs: the monitoring infrastructure o↵ered in site s

Output: a(A)
m,s,v

: the accuracy of the measurement of mm
m

in the site s

1: a(A)
m,s,v

= 0

2: for p
l

2 POs do . Find the probe in POs

measuring mm
m

3: if mm
m

.name == p
l

.name & (A) 2 p
l

.type then . the sensor provides a measured value

4: a(A)
m,s,v

= min(1,
p

l

.samplingTime

mm

m

.samplingTime

)

5: end if
6: end for

In order to have a MILP, we have to change (10) with other linear constraints.
For the discussion we consider m, v fixed. Constraint (10) is equivalent to:

a
(A)
m,1,vxv,1+�a

(E)
m,1,vzm,1+�a

(M)
m,1,vym,1 � ↵ _ a

(A)
m,2,vxv,2+�a

(E)
m,2,vzm,2+�a

(M)
m,2,vym,2 � ↵ _· · ·

a
(A)
m,S,v

x
v,S

+ �a
(E)
m,S,v

z
m,S

+ �a
(M)
m,S,v

y
m,S

� ↵

this can be translate using linear expressions by introducing:

u
s

=

(
1, if a(A)

m,s,v

x
v,s

+ �a(E)
m,s,v

z
m,s

+ �a(M)
m,s,v

y
m,s

� ↵ � 0

0, otherwise
.

that must satisfy P
S

s=1 u
s

� 1. Hence in order to fix the conditions about the
behaviour of us we have to add the following constraints:

a
(A)
m,s,v

x
v,s

+ �a
(E)
m,s,v

z
m,s

+ �a
(M)
m,s,v

y
m,s

� ↵  u
s

↵ � a
(A)
m,s,v

x
v,s

� �a
(M)
m,s,v

z
m,s

� �a
(M)
m,s,v

y
m,s

 1 � u
s

In the following paragraph we describe how the metrics accuracy and their
variations needed for running the optimization algorithm are estimated using a
probabilistic approach supported by a Bayesian network.

3.2 Quality of Data computation

The optimization is based on the accuracy of the measurability of each of the

selected metrics a(A)
m,s,v that depends from several factors. Each metric is derived

from the composition of several metric measurements, which can be available in
the considered site, estimated, or implementable at a given cost. In case all the
metric measurements related to a metric are available, the accuracy of the metric
depends from the discrepancy between the required quality in terms of sampling
time of the metric and the one required. In this case, the lower sampling time
between all of the metric measurements is considered in the evaluation (worst
case), as described in Algorithm 1.

The same approach can be used in case the implementation of a metric
measurement is required (M), since the cloud provider declares the accuracy
that will be provided. In this case, the gain in implementing a new sensor is
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Fig. 3: Bayesian Network for metric measurement estimation

�a
(M)
m,s,v = a

(M)
m,s,v � a

(A)
m,s,v, which is convenient only if a physical sensor is not

yet implemented.

An additional level of abstraction is needed for the computation of the ac-

curacy of an estimated metric measurement (a(E)
m,s,v). In some condition, the

collection of the data required by the developer can be not available without an
additional cost that could bring the total amount of cost higher than the spec-
ified budget. However, in some cases, the cost of the implementation does not
worth the benefit obtained, since for some metric the developer can be interested
in trends more than in precise values. In such cases, an estimation is possible
by modelling correlations through a Bayesian Network. The set of data used for
its generation is obtained from the monitoring of all the sites in the multi-cloud
environment, in order to derive general relations between metric measurements.
The BN is composed of: (i) nodes, each one represents a metric measurement; (ii)
edges, directed links that connect two nodes expressing a dependency between
a parent and a child; (iii) Conditional Probability Tables (CPTs) associated to
each node in the BN, quantifying the influence of the parents on the node. The
CPT usually expresses conditional probabilities between each of the possible
states of the child variable knowing the values of the parents. In this case we
consider binary values, expressing the likelihood that a given metric measure-
ment will increase given the trends of its parent set. An example of BN structure
is shown in Fig. 3, using the metric measurements illustrated in Fig. 1. The BN
is computed using the techniques described in [18]. It is created from the anal-
ysis of the correlation values between the metric measurements collected in all
the sites and refined using the Max-Min Hill Climbing Algorithm [17] for links
orientation. This inter-site BN enables making predictions about the trends even
in sites where the specific measurement is not provided.

The accuracy of the estimated metric measurement can be obtained by com-
bining the accuracy of the metric measurements from which it is derived and
a likelihood value expressing the reliability of the dependency obtained by the
CPT of the node. The accuracy computation of estimated metric measurements
is described in Algorithm 2.
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Algorithm 2 Accuracy Estimation (E)

Input: mm
m

: the metric measurement to estimate
Input: POs: the monitoring infrastructure o↵ered in site s
Input: BN : the correlation existing between the metric measurements

Output: �a(E)
m,s,v

: the accuracy of the estimation of mm
m

in the site s

1: a(E)
m,s,v

= 0

2: for p
l

2 POs do . Find the probe in POs

measuring mm
m

3: if mm
m

.name == p
l

.name & (E) 2 p
l

.type then . the probe provides an estimated value

4: ST = 0
5: for mm

x

2 BN.Parents(mm
m

) do
6: ST = max(ST,mm

x

.samplingT ime)
7: end for
8: rel = p(mm

m

|BN.Parents(mm
m

))

9: a(E)
m,s,v

= min(1, rel · min(ST

mm

m

.samplingTime

)

10: end if
11: end for
12: �a(E)

m,s,v

= a(E)
m,s,v

� a(A)
m,s,v

4 Validation

The optimization problem formulated in Section 3 has been implemented in
C++ using the commercial solver Gurobi8 for the solution of the MILP 9. The
main limitation coming from this choice is that we cannot modify the algorithm
in order to use characteristic of the problem that can improve the speed. Nev-
ertheless, this software is good enough to deal with the real instances and, for
this reason, we do not implement our own algorithm. The optimizer has been
executed on an Intel R� CoreTMi7-5500U CPU @2.40 Ghz with 8 GB RAM and
Microsoft R� WindowsTM10 Home installed. To obtain reliable results, all the
tests described in the following have been conducted 30 times.

As the optimization problem is NP-hard (complexity O(2max[V S,MS])) the
goal of this validation is to figure out how much the response time of the opti-
mizer increases when varying the number of VMs (i.e., V ) and the number of
metrics (i.e., M). Due to the nature of the problem, a reasonable variation of
the number of sites, i.e., S, does not a↵ect strongly the response time as adding
more sites means not only to add constraints and variables but also to increase
the feasible space (the more sites available the more possible solutions). The case
in which we have a high variation of the number of sites will be considered in
future work as a more e�cient algorithm is required (e.g. imposing a very good
initial solution derived from the use of a proper heuristic).

Fig. 4 reports the response time of the optimizer varying the number of
metric measurements included in the requests (from a min of 1 to a max of 17
according to the knowledge base presented in Fig. 2). Each curve corresponds to
the response time required to obtain a solution with di↵erent set of VMs, each
of them specifying a set of metric measurements in their request.

8
http://www.gurobi.com

9
Due to page restrictions we are not able to specify all the elements of the problem in this article.
If interested, the reader can find all the problem specifications and the code for running the
application at https://github.com/monicavit164/requirementMeasurementMILP
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Initial setup
(A0)

One year simulation task

Result 
aggregation

(A3)

Data loading
(A1)

Trajectories
Computation

(A2)

Oceanographic Data

Number 
of years

Activities A1 and A2 
must run on the same 
site

Not deployable in the 
same site as A3 Not deployable in 

USA

Offerings

Cost Capabilities Sampling2time Location

Site0 50 PHY*Layer*monitoring,*no*energy 60"690" UK

Site1 100 PHY+VM*monitoring,*no*energy 30"660" USA

Site2 300 PHY*Layer*monitoring,*yes*energy 30"660" UK

Site3 400 PHY+VM*monitoring,*yes*energy 30"660" UK

Site4 400 a*livello*PHY+VM*e*con*energia 60" USA

Site5 300 all*metrics 120" Italy

Site6 150 all*metrics 600" Italy

Requests
Metrics Sampling2time

A0 VMCPUUsage,-VM-MemUsage,-VM-Availability,-VM-EnergyConsumed 120"
A1 VMCPUUsage,-VM-MemUsage,-VM-Availability,-VM-EnergyConsumed,-VM-I/O-Throughput 120"
A2 VMCPUUsage,-VM-MemUsage,-VM-Availability,-VM-EnergyConsumed 60"
A3 VMCPUUsage,-VM-MemUsage,-VM-Availability,-VM-EnergyConsumed,-VM-Storagespace 60"

Fig. 6: Running example.

It is worth noting that the optimizer will be used at design time, when
the developer wants to deploy the application. For this reason, a result is not
necessarily required in seconds. Some minutes is also an acceptable response
time. Anyway, the chart shows that the optmizer returns a solution in around
5 secs in case of 100 VMs with 17 metric measurements. In the worst case, two
minutes are enough to compute a solution with 1200 VMs with the same number
of metric measurements.

We also considered a real HPC application in the ecology domain [11] shown
with a BPMN in Fig. 6. Without entering into the details, the application starts
with an initial setup (activity A0). The work is then split into several instances
composed of two activities: data loading (A1) and computation (A2). Once all the
instances terminate, the partial results are aggregated (A3) to provide the result
to the final user. We assume that one VM is required for A0 and A3, while for
A1 and A2 the number of VMs may change according to the number of iteration
required. Based on this example, Fig. 6 also includes the requests and o↵erings
tables. The former reflects the requirements in terms of monitoring for each of the
VMs composing the application. The latter reports the capabilities of the 7 cloud
providers where the VMs can be deployed. For the sake of simplicity, the o↵ering
table does not report the detailed list of the supported metric measurements,
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but a high level description (e.g., PHY layer monitoring means all the metric
measurements at PHY level). For the sampling time we assumed that for the
majority of the metric measurements the sampling time is equal.

Fig. 5 shows the Pareto front calculated with 4 VMs, 7 sites, and 7 met-
ric measurements which took 19.2 secs. The curve has very few points as we
have to fulfil some requests related to the metric measurements that we have
to register hence we cannot go below some given price. Furthermore once that
we have implemented all the probes we cannot improve more our solution. The
discontinuous front derives from the adoption of a MILP. In order to compute
the response time in Fig. 4 we have considered, for each point, ten random points
in the Pareto Front by using several weighted sums of the M+1 objectives. The
front in Fig. 5 considered 2 objectives and we compute point solution for a uni-
form grid of 104 points in the square [0, 10]2. The choice of the square is related
to the characteristic of the values of the two objective functions.

5 Related work

Current approaches for monitoring applications distributed in di↵erent cloud
infrastructures are usually provider-centric and focus on solutions to hide the
heterogeneity of the adopted monitoring platforms [2, 19] through a common
interface. As in this paper we follow a multi-cloud approach, the perspective is
client-centric and, in particular, the end-user is the application that coordinates
the access and utilization of di↵erent cloud providers to meet the application
requirements [16]. Here, the role of the Cloud Broker, as seen by the NIST [10],
can provide intermediation services to facilitate the relationships between the
cloud providers and the application (that holds the role of cloud consumer). In
our case, the cloud broker enhances the deployment strategy of the cloud con-
sumer making easier to find the cloud providers able to support the monitoring
capabilities as needed by the application.

Some work in the state of the art has investigated the issue of modelling and
in some cases discovering the relations between di↵erent metrics that can give a
hint about the value of a missing metric, allowing the owner of the application
to reason about the metric even if the real value is not directly provided by the
monitoring system. The framework proposed in [9] looks for influential factors
between metrics, represented in a dependency tree learned using machine learn-
ing techniques. The influential factors existing among indicators are statically
and manually defined by the user. A study conducted by Google [5] employs a
neural network framework that learns from monitored data to model and pre-
dict the outcome of some modifications over the monitored variables. A more
complex and comprehensive approach has been proposed in [18]. Here, relations
between the information collected at several levels of abstraction (monitored
information and complex metrics) is represented in a Bayesian Network built
automatically from the analysis of historical data, and kept updated through a
continuous refinement. Even if in [18] the modelled relations are about satisfac-
tion and dissatisfaction of constraints among metric values, this can be adapted
to model relations about trends observed in the collected data provided by the
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monitoring system. In this work we applied a modification of this approach to
provide a prediction about missing metrics to the user.

The optimized deployment of VMs in a cloud environment can depend on
several factors. In [6] a multi-objective algorithm is employed for VM placement
in a cloud system. The algorithm minimize total resource wastage and power con-
sumption providing a Pareto set of solutions. In [7], a greedy allocation algorithm
is used to optimize the cloud provider’s profit, considering energy e�ciency, vir-
tualization overheads, and SLA violation penalties as decision variables. In these
approaches a single cloud provider is considered, thus measurability is not a rel-
evant issue for the authors.

The relevance of the problem addressed in this paper is witnessed by the exis-
tence of several cloud platforms which di↵er in terms of set of metrics, sampling
times, costs, and flexibility. About the possibility to extend, on user demand, the
monitored metrics, in addition to the already mentioned Amazon CloudWatch
and Paraleap CloudMonix, di↵erent monitoring solutions like Nagios, PCMONS,
and Sensus, support the extensibility of the monitoring metrics10 [1].

Moving to the knowledge base, semantic technologies are gaining more and
more attention also in the cloud computing [15]. Focusing on the monitoring
system, in [13] linked data are used to handle the heterogeneity of the collected
data, whereas [4] provides a semantic meta-model for classifying dimensions and
metrics.

6 Conclusion

In this paper, we have proposed an approach for supporting the deployment of
multi-cloud applications where monitoring capabilities are taken into account.
With a MILP problem, a cloud broker can figure out which is the best associ-
ation among VMs composing the application and can make a request for some
monitoring features, and for a cloud infrastructures providing some monitoring
capabilities. A peculiar aspect of our approach relies on the possibility to extend
the measurable metrics or to estimate the trends of metrics that are not sup-
ported by relying on other metrics. Estimation is based on a Bayesian Network
able to infer how a metric changes with respect to other metrics. The deploy-
ment strategy proposed in this work balances between the cost for monitoring
the application and the quality of the monitored data. The cost usually increases
when the site o↵ers a complete set of measurable metrics, thus with high quality
of measured data. Conversely, the cost decreases for sites with limited set of
measurable metrics that require an estimation of monitoring data, a↵ecting the
quality. The conducted experiments demonstrated the feasibility of the approach
and, given the low response time, our optimizer can be adopted to facilitate the
deployment of multi-cloud applications also composed of hundreds of VMs.

At this stage, the work focused on the IaaS multi-cloud provisioning model.
Metrics considered in this work mainly refer to the physical and the virtualization
layers. A complete set of metrics covering also the PaaS and SaaS provisioning
models needs to be addressed in the future.
10

https://www.nagios.org; https://code.google.com/p/pcmons; https://sensuapp.org
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