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Abstract

Discrete-time dual switching linear systems are piecewiselinear systems subject
to both stochastic and deterministic commutations. Stochastic jumps, well-suited
to account for unpredictable events like faults or abrupt changes in the parameters,
are modeled by means of Markov chains. The deterministic switches are dictated
by a scheduling signal, used as a control variable in order toachieve stochastic
stability and guaranteed input/output performance. We derive sufficient conditions
for the existence of a state-feedback switching law attaining these goals. Further,
the more challenging co-design problem is addressed, namely the joint synthesis
of a linear state-feedback controller and a stabilizing switching strategy ensuring
a prescribed performance. The results are illustrated by means of a numerical
example concerning a networked control system under communication failures.

Keywords: Markov Jump Linear Systems, Dual switching, Stability,H2
performance,H∞ performance, Networked control.

1. Introduction

Dual switching systems are characterized by the simultaneous presence of a
deterministic switching mechanism and a second stochasticswitching signal giv-
ing rise to ”jumps” occurring at random times. The stochastic jumps, often mod-
eled by resorting to Markov chains, are well suited to model faults/repairs and
several other kinds of system changes due to exogenous uncontrollable events. In
this context, the family of piecewise linear systems whose changes are governed
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by a Markov chain has been extensively investigated under the name of Markov
Jump Linear Systems (MJLS), see e.g. [7], [4], [8]. It is worth remarking that the
analysis and control of such systems must cope with their stochastic nature: for
instance, there exist different definitions of stochastic stability, a feature that ren-
ders stability analysis and system stabilization more varied and challenging than
in the deterministic case. Systems subject to a deterministic switching signal have
also been the object of several research papers dealing withissues that range from
stability analysis and stabilization to guaranteed performance, see the books [12],
[15], the survey papers [6], [13] and the references therein.

The study of deterministically switching systems subject to stochastic changes,
typically associated with faults or other unpredictable events, leads directly to the
class of dual switching systems, characterized by the interplay between switching
signals of very different nature. For a real world example consider a wind tur-
bine connected to an energy storage device. The transition between the operating
modes of the turbine (standby, power-optimization, power-limitation) can be rea-
sonably regarded as governed by a deterministic switching signal whose schedule
is decided by the controller. Conversely, the transitions between the modes of the
storage device (charging, discharging, disconnected) depend on causes exogenous
to the wind generation system and are better described by a stochastic model, e.g.
a Markov chain. Another application example is given by a multi-loop networked
control system (NCS) exploiting a shared communication channel with limited ca-
pacity and affected by failures. Again, the random failuresof the communication
network can be given a stochastic Markov chain description,while, at each time
instant, the scheduling signal selects which control loop is currently attended.

The class of dual switching linear systems has already been the object of some
previous studies. Under the assumption of dwell-time constraints on the determin-
istic switching signal, both the mean-square and the almost-sure stability proper-
ties of the overall system were investigated, [1, 2, 3]. Morerecently, in [3] the de-
sign of stabilizing switching signals ensuring a guaranteed performance has also
been studied. While most contributions so far are concernedwith continuous-time
systems, the goal of this paper is to extend and generalize the results of [3] to the
discrete-time case. The discrete-time framework is more suitable to address NCS
applications on digital communication networks.

First, we study the problem of mean-square stabilization, via switching, of the
origin of an unforced dual switching system. A state-feedback solution is found
assuming feasibility of suitable coupled matrix inequalities, parameterized by a
free design matrix parameter. Further, the design of state-feedback switching laws
guaranteeing the fulfillment ofH2 andH∞ performance requirements is carried
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out. Again, the sufficient conditions for the existence of such switching strategies
are expressed in terms of parameterized Linear Matrix Inequalities (LMI). Op-
timization of the design parameter can be performed to tighten the performance
bounds.

In the second part of the paper, we introduce an additional control input and
tackle the co-design problem of determining both the controller gains and the
switching strategy to attain mean-square stability and prescribed performance
measures. Interestingly, the resulting stabilizing strategy can be implemented
either in closed-loop, assuming perfect knowledge of the state, or in open-loop
through a randomly generated switching signal. The two strategies ensure the
same performance bounds, but in closed-loop the actual performance is in general
better.

The paper is organized as follows. Section 2 provides the problem formulation
for the unforced system and the definition of the performanceindices. In section
3 we design switching strategies ensuring stability and guaranteedH2 andH∞
performance. The problem of co-design of the state-feedback controller gains and
the switching strategy is addressed in Section 4. Section 5 illustrates the results of
the paper in a significant example regarding a failure-proneNCS. The paper ends
with some conclusions and perspectives in Section 6.

The notation adopted in the paper is fairly standard. In particular, the set
of all discrete-time signals with finite 2-norm is denoted byℓ2. Moreover,TN

is the set of right-stochastic matrices of sizeN, i.e. unit row-sum nonnegative
square matrices of sizeN. For a stochastic variablex, the notationE[x] represents
its expected value. For symmetric matrices, the symbol⋆ stands for each of its
symmetric blocks. The symbol⊗ denotes the Kronecker product.

2. Problem formulation

Consider the class of discrete-time dual switching linear systems described by

x(t +1) = Aγ(t)
σ(t)x(t)+Bγ(t)

σ(t)w(t), x(0) = x0 (1)

z(t) = Cγ(t)
σ(t)x(t)+Dγ(t)

σ(t)w(t) (2)

wheret is the discrete time index,x(t) ∈ Rn is the state,w(t) ∈ Rm is a deter-
ministic disturbance, withw(·) ∈ ℓ2, z(t) ∈ Rp is the performance output,γ(t) is
a switching signal taking values in the finite setM = {1,2, . . . ,M}, andσ(t) is
a time homogeneous Markov process taking values in the setN = {1,2, . . . ,N},
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with transition probability matrixΛ. More precisely, the entryλi j ≥ 0 of Λ repre-
sents the probability of a transition from modei to modej, namely

λi j = Pr{σ(t+1) = j|σ(t) = i}
Of courseΛ is a right-stochastic matrix (unit row-sum nonnegative matrix), i.e.
Λ∈TN. Lettingπ(t) denote the probability distribution at timet, it is well-known
that its evolution is governed by the difference equation

π(t+1)′ = π(t)′Λ , π(0) = π0

In the sequel, we assume thatΛ is irreducible and aperiodic, so that the Markov
process admits a unique stationary (strictly positive) probability distribution π̄
satisfyingπ̄ ′ = π̄ ′Λ, see e.g. [5].

In summary, the system is subject to both stochastic jumps governed by the
form processσ(t) and deterministic switches dictated by the control signalγ(t).
Therefore, the state dynamics of the overall system is characterized byNM quadru-
ples(Ar

i ,B
r
i ,C

r
i ,D

r
i ), i ∈ N , r ∈ M .

In accordance with standard notions of stochastic stability, for a given deter-
ministic switching signalγ(t), system (1) is mean-square stable (MS-stable) if,
for w(t) = 0, it follows that

lim
t→∞

E[‖x(t)‖2] = 0

for any initial conditionx0 and any initial probability distributionπ0. Here and af-
terwards, the symbolE[·] will denote the expectation with respect to the stationary
distributionπ̄ .

We will consider two performance indices inspired by the standardH2 and
H∞ norms of deterministic LTI systems. Precisely, letx0 = 0, γ(t) be given, and
definez(k)(t) as the impulse response generated byw(t) = δ (t)ek, whereδ (t)
is the unit discrete-time impulse function andek is thek-th column of them×
m identity matrix. TheH2 performance associated withγ(t) is defined by the
following expected quadratic cost

J2(γ) = E

[

m

∑
k=1

∞

∑
t=0

z(k)(t)′z(k)(t)

]

(3)

As for H∞-type performance, we considerx0 = 0 and the worst-case measure
of disturbance attenuation

J∞(γ) = sup
w∈ℓ2,w 6=0

E [∑∞
t=0z(t)′z(t)]

∑∞
t=0w(t)′w(t)

(4)
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Letting ρ > 0 be the prescribed level of disturbance attenuation, theH∞ require-
ment is guaranteed ifJ∞(γ)< ρ2.

The design of an optimal switching signalγ(t) yielding the minimum of (3)
is a formidable task which would require the use of the Maximum Principle for
optimal stochastic control. In the following, we will consider the simpler problem
of designing a suboptimal feedback controlγ(t) so that the overall system is mean-
square stable and an upper boundJ̄2 of the optimal cost is guaranteed. As for the
H∞-type performance, we will work out a switching design procedure ensuring
J∞(γ)< ρ2. In both cases, sufficient conditions will be provided.

Remark 2.1. In a full information context, the switching signalγ(t) can exploit
the knowledge of both x(t) andσ(t), namely we can designγ(t) = f (x(t),σ(t)).
This is the case that will be considered in the paper. For whatconcerns the case
of partial information, two situations are possible, depending whether justσ(t)
or x(t) is accessible.

In the former case, the system is described by

x(t +1) = Af (σ(t))
σ(t) x(t)+Bf (σ(t))

σ(t) w(t) (5)

z(t) = C f (σ(t))
σ(t) x(t)+D f (σ(t))

σ(t) w(t) (6)

and a possible control design strategy consists in constructing the static decision
map f : N → M . Note that, for a given map f(·), system (5), (6) is a standard
MJLS, for which stability analysis and performance assessment can be carried
out by means of well-established tools, [7]. In order to find the optimal map, an
exhaustive combinatorial search can be rather easily implemented.

When just x(t) is available for feedback, a possible strategy would consist in
using present and past values of x(t) to reconstruct the current value ofσ(t), see
e.g. [10, 16] in continuous-time. Then, relying on a kind of certainty equivalence
principle, one might selectγ(t) as a function of x(t) and the estimatêσ(t), along
with the techniques developed later in this paper. Proving stability and perfor-
mance properties of this heuristic approach is an interesting open issue.

3. Switching strategies design

The first result of this section deals with the design of a state-feedback switch-
ing strategy ensuring MS-stability of system (1) when the disturbancew(t) is ab-
sent.
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Theorem 3.1. Consider system (1) with w(t)= 0. Assume that there exist positive
definite matrices Pri , i ∈N , r ∈M and a right-stochastic matrixΦ = [ϕrs] ∈TM

satisfying,∀i, r, the matrix inequalities

Pr
i > (Ar

i )
′
(

N

∑
j=1

M

∑
k=1

λi j ϕrkPk
j

)

Ar
i (7)

Then, the feedback switching law

γ∗ = g(x,σ) = argminrx
′Pr

σx

makes the closed-loop system MS-stable.

Proof. Consider the stochastic Lyapunov functionV(x, i) = minr x′Pr
i x and

compute its expected one-step difference at timet with the positionsx(t) = x,
σ(t) = i andg= argminrx

′Pr
i x. For brevity, the eventσ(t) = i and the joint event

(x(t),σ(t)) = (x, i) will be indicated byEi andExi, respectively. It results that:

E[∆V(x, i)] = E[V(x(t +1),σ(t+1)|Exi]−V(x, i)

= E[min
r

x(t +1)′Pr
σ(t+1)x(t +1)|Exi]−min

r
x′Pr

i x

= E[min
r

x′(Ag
i )

′Pr
σ(t+1)A

g
i )x|Ei ]−x′Pg

i x

Recall now that the expected value of the minimum of a function is not greater
than the minimum of the expectation. Moreover,

E[Pr
σ(t+1)|Ei] = ∑

j
λi j P

r
j

Therefore, it follows

E[∆V(x, i)]≤ min
r

x′(Ag
i )

′∑
j

λi j P
r
j A

g
i x−x′Pg

i x

Now, beingϕgk ≥ 0 and∑k ϕgk = 1,∀g, it holds that

min
r

x′(Ag
i )

′∑
j

λi j P
r
j A

g
i x≤ x′(Ag

i )
′∑

j
λi j ∑

k

ϕgkP
k
j Ag

i x

Thanks to (7) we obtain

E[∆V(x, i)]< x′Pg
i x−x′Pg

i x= 0
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and MS-stability follows from standard results on stochastic discrete-time Lya-
punov functions, see e.g. [11]. �

By slightly strengthening the conditions of Theorem 3.1, itis possible to de-
sign a stabilizing switching strategy which yields a guaranteedH2 performance.

Theorem 3.2. Consider system (1), (2) with x0 = 0, Br
σ = Bσ and Dr

σ = Dσ ,
∀r ∈ M , and the performance index (3). Assume that there exist positive defi-
nite matrices Pri , i ∈ N , r ∈ M and a right-stochastic matrixΦ = [ϕrs] ∈ TM

satisfying∀i, r the matrix inequalities

Pr
i > (Ar

i )
′
(

N

∑
j=1

M

∑
k=1

λi j ϕrkPk
j

)

Ar
i +(Cr

i )
′Cr

i (8)

Then, the feedback switching law

γ∗ = g(x,σ) = argminrx
′Pr

σx (9)

makes the closed-loop system MS-stable and guarantees that

J2(γ∗)< J̄2 = min
r

E[trace(B′
σ Pr

σ Bσ +D′
σ Dσ )]

= min
r

N

∑
i=1

trace(B′
iP

r
i Bi +D′

iDi)π̄i

Proof. First observe that feasibility of inequalities (8) impliesfeasibility of
inequalities (7), so that the system is MS-stable.

Using again the stochastic Lyapunov function

V(x, i) = min
r

x′Pr
i x

and applying the same arguments (fort ≥ 1) as in the proof of Theorem 3.1, it can
be shown that

E[∆V(x, i)]<−x′(Cg
i )

′Cg
i x

Consider now the trajectories of system (1), (2) whenw(t) = δ (t)ek andx0 = 0
and letx(k)(t) be the associated state variable. In view of the discrete-time version
of the Dynkin’s Formula [14], one obtains (recall that the expectation is taken with
respect to the stationary distribution ofσ(t))

E[V(x(k)(∞),σ)]−E[V(x(k)(1),σ)]<−E

[

∞

∑
t=1

z(k)(t)′z(k)(t)

]
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Thanks to stability and noticing that

E[V(x(k)(1),σ)] = E[min
r

e′kB
′
σ Pr

σBσ ek]

one can conclude that

J2(γ∗) = E

[

m

∑
k=1

∞

∑
t=0

z(k)(t)′z(k)(t)

]

< E

[

m

∑
k=1

min
r

e′kB
′
σ Pr

σ Bσ ek

]

+E

[

m

∑
k=1

e′kD
′
σ Dσ ek

]

< E

[

m

∑
k=1

e′kB
′
σ Pr̄

σ Bσ ek

]

+E

[

m

∑
k=1

e′kD
′
σ Dσ ek

]

for any r̄ ∈ M . Hence

J2(γ∗)< min
r

E
[

trace(B′
σ Pr

σ Bσ +D′
σ Dσ )

]

(10)

so that the result follows. �

In the theorem above we have assumed that the matricesBγ
σ andDγ

σ do not
depend on the controlled switching signalγ(t). This was done for simplicity.
Indeed, when dealing with impulse responses, the values of these matrices are
relevant only at time 0. If such matrices did depend onγ, the valueγ(0) would
be an additional degree of freedom in minimizing the cost. Tobe precise, the
feedback switching law (9) would be valid fort > 0 and (10) would become

J2(γ∗)< min
r

E
[

trace((Bγ(0)
σ )′Pr

σ Bγ(0)
σ +Dγ(0)

σ )′Dγ(0)
σ )

]

so that a minimization with respect toγ(0) could be further performed.
Observe that the performance bound (10) depends both onΦ ∈ TM and the

matricesPr
i satisfying the bilinear matrix inequalities (8). In order to strengthen

this bound, an optimization procedure can be worked out, e.g. by gridding the
free parameters ofΦ in the finite box[0,1]M and solving, for each selectedΦ, a
convex optimization problem.

Remark 3.1. An alternative bound to J2(γ∗) can be obtained by duality, making
use of positive definite matrices Sr

i satisfying the inequalities

Sr
i >

N

∑
j=1

M

∑
k=1

λ ji ϕkrA
k
jS

k
j(Â

k
j)
′+Bi(Bi)

′π̄i (11)
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It is a matter of tedious but easy computation to show that

J2(γ∗)< J̃2 = min
r

N

∑
i=1

trace(Cr
i S

r
i (C

r
i )

′+DiD
′
i)

Finally, consider theH∞ performance associated with the index (4). We can
prove the following result.

Theorem 3.3. Consider system (1), (2) with x0 = 0 and the performance index
(4) with a given value ofρ > 0. Assume that there exist positive definite matrices
Pr

i , i ∈ N , r ∈ M and a right-stochastic matrixΦ = [ϕrs] ∈ TM satisfying∀i, r
the matrix inequalities

[

(Ar
i )
′P r

i Ar
i +(Cr

i )
′Cr

i −Pr
i (Ar

i )
′P r

i Br
i +(Cr

i )
′Dr

i
⋆ −ρ2I +(Br

i )
′P r

i Br
i +(Dr

i )
′Dr

i

]

< 0 (12)

whereP r
i = ∑N

j=1∑M
k=1 λi j ϕrkPk

j . Then, the feedback switching law

γ∗ = g(x,σ) = argminrx
′Pr

σx

makes the closed-loop system MS-stable and guarantees thatJ∞(γ∗)< ρ2.

Proof. First of all, feasibility of (12) implies feasibility of (7), so that the
switching lawγ∗ guarantees MS-stability.

Now, consider again the stochastic Lyapunov functionV(x, i) = minr x′Pr
i x,

and compute its expected one-step differenceE[∆V(x, i)] along the systems tra-
jectories. Straightforward computation leads to

E[∆V(x, i)] < −
[

x′ w′]
[

Pg
i − (Ag

i )
′Pg

i Ag
i +(Cg

i )
′Cg

i (Ag
i )

′Pg
i Bg

i +(Cg
i )

′Dg
i

⋆ ρ2I − (Bg
i )

′Pg
i Bg

i − (Dg
i )

′Dg
i

][

x
w

]

−z′z+ρ2w′w≤−z′z+ρ2w′w

Using again the Dynkin’s formula, and recalling thatx0 = 0, it results that, for all
w∈ ℓ2,

0<−E

[

∞

∑
t=0

z(t)′z(t)

]

+ρ2
∞

∑
t=0

w(t)′w(t)

so that the thesis follows. �

An alternative, yet equivalent, formulation of Theorem 3.3which is amenable
for controller synthesis is obtained by reformulating inequalities (12) in terms of
the unknownsXr

i = (Pr
i )

−1. Indeed, it is just a matter of standard manipulation to
obtain the following result.
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Theorem 3.4. Consider system (1), (2) with x0 = 0 and the performance index
(4) with a given value ofρ > 0. Assume that there exist positive definite matrices
Pr

i , i ∈ N , r ∈ M and a right-stochastic matrixΦ = [ϕrs] ∈ TM satisfying∀i, r
the matrix inequalities



















Xr
i 0 (Ar

i X
r
i )

′ϒr,1
i · · · (Ar

i X
r
i )

′ϒr,M
i (Cr

i X
r
i )

′

⋆ ρ2I (Br
i )
′ϒr,1

i · · · (Br
i )
′ϒr,M

i (Dr
i )
′

⋆ ⋆ Ξ1 · · · 0 0
...

...
...

. . .
... 0

⋆ ⋆ 0 · · · ΞM 0
⋆ ⋆ ⋆ · · · ⋆ I



















> 0 (13)

where
ϒr,k

i =
[√

λi1ϕrkI
√

λi2ϕrkI · · ·
√

λiNϕrkI
]

andΞk = diag{Xk
i , i = 1,2, . . . ,N}. Then, the feedback switching law

γ∗ = g(x,σ) = argminrx
′(Xr

σ)
−1x

makes the closed-loop system MS-stable and guarantees thatJ∞(γ∗)< ρ2.

4. Switching and control co-design

In this section, we discuss a more challenging problem. Given a discrete-time
dual switching linear system with an additional control input variable, we aim at
developing a procedure to jointly design a set of feedback controllers and a switch-
ing strategy so as to guarantee either an upper bound on theH2 performance or a
prescribed bound on theH∞ performance. More precisely, consider the following
system:

x(t +1) = Aγ(t)
σ(t)x(t)+Bγ(t)

σ(t)w(t)+Gγ(t)
σ(t)u(t), x(0) = x0 (14)

z(t) = Cγ(t)
σ(t)x(t)+Dγ(t)

σ(t)w(t)+Hγ(t)
σ(t)u(t) (15)

whereu(t) ∈ Rmu is a control input and all remaining variables are defined as in
Section 2. For simplicity, assume again that both the statex(t) and the Markov
processσ(t) are available for feedback, and the inputu(t) is generated by the
closed-loop control law

u(t) = Kγ(t)
σ(t)x(t) (16)
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The closed-loop system resulting from the application of the control law (16) can
be rewritten as

x(t +1) = Âγ(t)
σ(t)x(t)+Bγ(t)

σ(t)w(t), x(0) = x0 (17)

z(t) = Ĉγ(t)
σ(t)x(t)+Dγ(t)

σ(t)w(t) (18)

with Âr
i = Ar

i +Gr
i K

r
i andĈr

i =Cr
i +Hr

i Kr
i , i ∈ N , r ∈ M .

4.1. H2 performance

In this subsection, we aim at finding a set of matricesKr
i , i ∈ N , r ∈ M ,

and a feedback switching strategyγ = g(x,σ) such that the dual switching system
(17), (18) is MS-stable and itsH2 performance is ensured to be less than an upper
boundJ̄2. To address this problem, it is useful to recall some resultson theH2

performance of a standard MJLS, i.e. whenγ(t) = r is fixed. In this respect, we
have the following result, adapted from [7], Proposition 4.8, that links theH2

performance with the reachability Gramian.

Theorem 4.1. Consider system (17), (18) withγ(t) = r,∀t, Kr
i , i ∈ N given, and

the performance index (3). The system is MS-stable if and only if there exist
positive definite matrices Sr

i , i ∈ N , satisfying,∀i, the matrix equations

Sr
i =

N

∑
j=1

λ ji Â
r
jS

r
j(Â

r
j)
′+Br

i (B
r
i )
′π̄i (19)

Moreover, itsH2 performance can be computed as

Jr
2 = trace

(

N

∑
j=1

(

Ĉr
j S

r
j(Ĉ

r
j)
′+Dr

j(D
r
j)
′) π̄ j

)

Note that the matricesSr
i appearing in eq. (19) can be interpreted as the reach-

ability Gramians, i.e.

Sr
i =

m

∑
k=1

∞

∑
t=1

E[x(k)(t)x(k)(t)′|σ(t) = i]π̄i

An equivalent dual formulation is provided next.
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Theorem 4.2. Consider system (17), (18) withγ(t) = r,∀t, Kr
i , i ∈ N given, and

the performance index (3). The system is MS-stable if and only if there exist
positive definite matrices Pri , i ∈ N , satisfying,∀i, the matrix equations

Pr
i = (Âr

i )
′
(

N

∑
j=1

λi j P
r
j

)

Âr
i +(Ĉr

i )
′Ĉr

i (20)

Moreover, itsH2 performance can be computed as

Jr
2 = trace

(

N

∑
j=1

(

(Br
j)
′Pr

j B
r
j +(Dr

j)
′Dr

j

)

π̄ j

)

Note thatPr
i appearing in eq. (20) can be interpreted as the generator of the

cost-to-go function, i.e.

E[x(k)(t)′Pr
i x(k)(t)] = E[

∞

∑
τ=t

z(k)(τ)′z(k)(τ)|σ(t) = i], t ≥ 1

As for the design of the gain matricesKr
i whenr is fixed, the gains optimizing

the H2 performance are provided by the following convex optimization proce-
dure. The proof can be found in [9].

Theorem 4.3. Consider system (17), (18) withγ(t) = r,∀t, and the performance
index (3). Assume that there exist positive definite matrices Sr

i , Wr
i , i ∈ N and

matrices Yr
i , i ∈ N , satisfying,∀i, the matrix inequalities

[

Sr
i −Br

i (B
r
i )
′π̄i Ωr

i
⋆ Σr

]

> 0 (21)

[

Sr
i (Yr

i )
′

⋆ Wr
i

]

> 0 (22)

where
Ωr

i =
[

√

λ1i(Ar
1Sr

1+Gr
1Y

r
1) · · ·

√
λNi(Ar

NSr
N +Gr

NYr
N)
]

and Σr = diag{Sr
i , i = 1,2, . . . ,N}. Then, letting Kri = Yr

i (S
r
i )
−1, the system is

MS-stable and itsH2 performance is

Jr
2 = inf

Sr
i ,W

r
i ,Y

r
i

N

∑
i=1

trace

(

[

Cr
i Hr

i

]

[

Sr
i (Yr

i )
′

⋆ Wr
i

][

(Cr
i )

′

(Hr
i )

′

]

+Dr
i (D

r
i )
′π̄i

)
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Now, we are in a position to formulate the co-design result for theH2 perfor-
mance.

Theorem 4.4. Consider system (17), (18) with x0 = 0, Br
σ = Bσ and Dr

σ = Dσ ,
∀r ∈ M , and the performance index (3), and select a right-stochastic matrixΦ =
[ϕrs] ∈ TM. Assume that there exist positive definite matrices Sr

i , Wr
i , i ∈ N ,

r ∈M , and matrices Yri , i ∈N , r ∈M , solving the following convex optimization
problem:

J̄2(Φ) = min
r

inf
Sr

i ,W
r
i ,Y

r
i

N

∑
i=1

trace

(

[

Cr
i Hr

i

]

[

Sr
i (Yr

i )
′

⋆ Wr
i

][

(Cr
i )

′

(Hr
i )

′

]

+Dr
i (D

r
i )
′π̄i

)

with














Sr
i −Br

i (B
r
i )
′π̄i Ψ1

i (r) Ψ2
i (r) · · · ΨM

i (r)
⋆ Σ1

i 0 · · · 0
⋆ 0 Σ2

i · · · 0
...

...
...

. . .
...

⋆ 0 0 · · · ΣM
i















> 0, ∀i, r (23)

[

Sr
i (Yr

i )
′

⋆ Wr
i

]

> 0, ∀i, r (24)

where

Ψk
i (r) =

[√

λ1iϕkr(Ak
1Sk

1+Gk
1Y

k
1 ) · · ·

√

λNiϕkr(Ak
NSk

N +Gk
NYk

N)
]

and Σk
i = diag{Sk

i , i = 1,2, . . . ,N}. Then, letting Kri = Yr
i (S

r
i )
−1, the system is

MS-stable under the switching law

γ∗ = g(x,σ) = argminrx
′Pr

σx

where matrices Pri solve the equations

Pr
i = (Âr

i )
′
(

N

∑
j=1

M

∑
k=1

λi j ϕrkPk
j

)

Âr
i +(Ĉr

i )
′Ĉr

i (25)

Moreover theH2 performance of the closed-loop system is J2 < J̄2(Φ).
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Proof. Since its rationale is rather standard, below only a sketch of the proof
is given. For given MS-stabilizing gainsKr

i , one can resort to Theorem 8 and
Remark 3.1, withAr

i → Âr
i , Cr

i → Ĉr
i , to obtain upper bounds̄J2 andJ̃2 to theH2

performance of the closed loop system. When the gains appearing in the statement
are applied, it can be shown that inequality (11) coincides with inequality (23) and
the upper bound̃J2 coincides, after optimization, with̄J2(Φ). �

Remark 4.1. In the previous theorem, the solution of the co-design problem was
derived for a given matrixΦ ∈ TM by solving a convex optimization problem.
The performance upper bound might therefore be optimized bya proper choice of
Φ. Note however that this would lead to a bilinear problem. While in lower di-
mensions gridding techniques could be viable, most sophisticated techniques, like
Cone Complementarity Methods, may be needed. At the cost of some additional
conservatism, one might also reduce the number of free parameters in matrixΦ.

Remark 4.2. It is worth noting that the Eqs. (25) can be compactly rewritten as

P̄k = (Āk)
′
(

NM

∑
s=1

λ̄ksP̄s

)

Āk+(C̄k)
′C̄k

where, for any i= 1, . . . ,N, k= (i −1)M+1, . . . , iM,

P̄k = Pk−(i−1)M
i , Āk = Âk−(i−1)M

i , C̄k = Ĉk−(i−1)M
i (26)

andλks are the entries of matrix̄Λ = Λ⊗Φ,∈ TNM. These equations correspond
to the coupled Lyapunov equations of the extended MJLS

x̄(t +1) = Āσ̄(t)x̄(t)+ B̄σ̄(t)w(t) (27)

z̄(t) = C̄σ̄(t)x̄(t)+ D̄σ̄(t)w(t) (28)

whereB̄k =Bk−(i−1)M
i , D̄k =Dk−(i−1)M

i , i = 1, . . . ,N, k= (i−1)M+1, . . . , iM and
σ̄(t) is a Markov process with transition probability matrix̄Λ. It is easily seen
that system (27), (28) coincides with the closed-loop system (13), (14), (15) when
γ(t) randomly switches according to a Markov chain (independentof σ(t)) with
probability transition matrixΦ. The overall system (27), (28) evolves as a MJLS
with transition probability matrixΛ̄, whose set of modes is the Cartesian product
N ×M . In view of (26), the performance provided by this random switching
strategy is equal tōJ2(Φ). It is also worth noting that the actual performance of
the state-feedback switching strategy of Theorem 4.4, being bounded byJ̄2(Φ),
may well be better.
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4.2. H∞ performance

The co-design problem treated in this subsection consists of finding a set of
matricesKr

i , i ∈ N , r ∈ M , and a feedback switching strategyγ = g(x,σ) such
that the dual switching system (17), (18) is MS-stable and itsH∞ performance is
ensured to be less than a prescribed upper boundρ2.

The co-designH∞ problem is addressed in the following theorem, whose
proof relies on Theorem 2.4 by replacingAr

i X
r
i with Âr

i X
r
i = Ar

i X
r
i +Gr

i Y
r
i , and

Cr
i X

r
i with Ĉr

i Xr
i =Cr

i Xr
i +Hr

i Y
r
i .

Theorem 4.5. Consider system (17), (18) with x0 = 0 and the performance index
(4), and select a right-stochastic matrixΦ = [ϕrs] ∈ TM. Assume that there ex-
ist positive definite matrices Xri and matrices Yri , i ∈ N , r ∈ M , satisfying the
following inequalities:



















Xr
i 0 (Ar

i X
r
i +Gr

i Y
r
i )

′ϒr,1
i · · · (Ar

i X
r
i +Gr

i Y
r
i )

′ϒr,M
i (Cr

i X
r
i +Hr

i Y
r
i )

′

⋆ ρ2I (Br
i )
′ϒr,1

i · · · (Br
i )
′ϒr,M

i (Dr
i )
′

⋆ ⋆ Ξ1 · · · 0 0
...

...
...

. . .
... 0

⋆ ⋆ 0 · · · ΞM 0
⋆ ⋆ ⋆ · · · ⋆ I



















>0

(29)
where

ϒr,k
i =

[√

λi1ϕrkI
√

λi2ϕrkI · · ·
√

λiNϕrkI
]

and Ξk = diag{Xk
i , i = 1,2, . . . ,N}. Then, letting Kri = Yr

i (X
r
i )

−1, the system is
MS-stable under the switching law

γ∗ = g(x,σ) = argminrx
′(Xr

σ)
−1x

Moreover theH∞ performance of the closed-loop system is J∞ < ρ2.

5. Scheduling design in networked control systems

In order to illustrate an application of the dual switching framework, consider
a scheduling problem for a multi-loop networked control system subject to packet
dropout. More precisely, assume thatM linear (possibly unstable) plants have to
be controlled by a single regulator exchanging input-output data through a shared
network, as depicted in Figure 1. The regulator is allowed toattend only one
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Figure 1: The NCS considered in the application.

plant at a time, according to the scheduling signalγ(t) taking values in the setM .
Transmission of actuator data over the network is subject torandom failures, mod-
eled by the Markov processσ(t) taking values in the setN . For simplicity, we
assume that full state information is transmitted by each sensor without failures,
so that the regulator has complete access to the state information of all plants.
As for the regulator-actuator channel, letσ(t) = 1 stand for the no-fault mode,
when all packets are correctly transmitted, andσ(t) = 2 stand for packet dropout
mode, when no packet is delivered. A Markov chain model withN = 2 and tran-
sition probability matrixΛ is assumed to describe the jumps between these two
modes. Of course, more complex models could fit within the given framework.
For instance, one could increase the number of logical states to cope with packet
loss also in the sensor-regulator channel, augment the state to account for time de-
lay effects, and introduce suitable state observers in the regulator when full-state
information is not available.

We first assume that the regulator is equipped withM control laws tailored to
the individual plants and only the scheduling signal has to be designed so as to
satisfy stability and performance requirements. If the regulator has access to the
value ofσ(t), the scheduling design problem can be cast in the formulation of
Section 3.

In a second step, we will exploit the co-design methods of Section 4 assuming
that both the controller gains and the scheduling signalγ are to be designed.

Consider, for simplicity, a Networked Control System (NCS)with two plants

16



(M = 2) described by the sampled-data models

xi(t +1) = Fixi(t)+Giui(t)+Liwi(t), i = 1,2 (30)

yi(t) = Cixi(t) (31)

where the outputyi(t) enter the definition of the performance variablez(t). More
precisely, the performance outputz(t) is such that

z(t)′z(t) = y1(t)
′y1(t)+y2(t)

′y2(t)+µ2(u1(t)
′u1(t)+u2(t)

′u2(t))

so as to weigh the output energy of both plants and the actual control effort in the
cost function.

The control law issued by the regulator is modeled as

ûi(t) =

{

Kixi(t), if γ(t) = i
0, if γ(t) 6= i

and the true actuator signals, affected by random packet loss, are given by

ui(t) =

{

ûi(t), if σ(t) = 1
0, if σ(t) = 2

In other words, the control signal applied to the system in the faulty mode is set to
zero. Letx(t) = [x1(t)′ x2(t)′]′ be the state,u(t) = [u1(t)′ u2(t)′]′ the control
vector andw(t) = [w1(t)′ w2(t)′]′ the disturbance vector.

The objective of the scheduling design (or co-design) is to guarantee simulta-
neous MS-stabilization of both plants, along with the fulfillment of the following
H∞-like performance specification whenx(0) = 0:

J∞(γ) = sup
w∈ℓ2,w 6=0

E [∑∞
t=0z(t)′z(t)]

∑∞
t=0w(t)′w(t)

< ρ2

Hereafter, we assume that plant P1 is a double integrator, described by

F1 =

[

0 1
−1 2

]

, G1 = L1 =

[

0
1

]

, C1 =
[

1 0
]

and plant P2 is a marginally stable system described by

F2 =

[

0 1
0 1

]

, G2 = L2 =

[

0
1

]

, C2 =
[

1 0
]
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The parameterµ in the cost function is set toµ =
√

10.
Finally, let the transition rate matrixΛ of the Markov processσ(t) be given

by

Λ =

[

0.9 0.1
0.8 0.2

]

Note that the stationary probability distribution of this Markov chain isπ̄ = [8/9 1/9]′.

5.1. Scheduling design

We first consider the case when the controller gains are assigned and given by

K1 =
[

1 −2
]

, K2 =
[

0 −1
]

which would provide deadbeat control on each individual loop in absence of fail-
ures and scheduling constraints. The overall system can be written as in (1), (2)
with

A1
1 =

[

F1+G1K1 0
0 F2

]

, A2
1 =

[

F1 0
0 F2+G2K2

]

A1
2 = A2

2 =

[

F1 0
0 F2

]

, Br
i =

[

L1 0
0 L2

]

, Dr
i = 0, i, r = 1,2

In order to represent the performance, takeCγ(t)
σ(t) such that

(Cγ(t)
σ(t))

′Cγ(t)
σ(t) = C̃′C̃+µ2(Kγ(t)

σ(t))
′Kγ(t)

σ(t)

where

C̃=

[

C1 0
0 C2

]

Kγ(t)
σ(t) =







































[

K1 0
0 0

]

, if σ(t) = 1,γ(t) = 1

[

0 0
0 K2

]

, if σ(t) = 1,γ(t) = 2

0, if σ(t) = 2

Our aim is to design a scheduling strategy so as to minimize the boundρ2 on the
H∞ performance, taking into account also the effects of packetdropout. To this
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purpose, we apply the results of Theorem 3.4. After some tuning of the design
parameters, we obtained that, in correspondence of

Φ =

[

0.92 0.08
0.91 0.09

]

the resulting switching strategyγ∗ is stabilizing and the guaranteed attenuation
level isρ = 38.

5.2. Scheduling and controller co-design

We consider now the co-design problem. In this case the system is modeled
by (14), (15) with matricesBr

i andDr
i , i, r = 1,2, defined as above and

Ar
i =

[

F1 0
0 F2

]

, Cr
i =





C1 0
0 C2

0 0



 , i, r = 1,2

G1
1 =

[

G1 0
0 0

]

, G2
1 =

[

0 0
0 G2

]

, G1
2 = G2

2 = 0

H1
1 =





0 0
0 0
µ 0



 , H2
1 =





0 0
0 0
0 µ



 , H1
2 = H2

2 = 0

Making reference to Theorem 4.5, after some tuning we obtained that, in corre-
spondence of

Φ =

[

0.65 0.35
0.9 0.1

]

the designed gains are

K1 =
[

0.8508 −1.0686
]

, K2 =
[

0.0000 −0.6261
]

that, together with the switching strategyγ∗, ensure the attenuation levelρ = 12,
which greatly improves on the result achievable by just scheduling γ with fixed
gains, as done in the previous subsection.

For illustrative purposes a comparative simulation was carried out using ei-
ther scheduling design or scheduling/controller co-design. In all simulations, the
same realization of the Markov processσ(t) was considered. On each plant the
disturbancew1(t) = w2(t) = sin(0.2t), truncated at timet = 40, was applied. The
results are shown in Figures 2 and 3, reporting the time pattern of σ(t) andγ∗(t),
the plant outputsy1(t) andy2(t), and the control signalsu1(t) andu2(t).
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Figure 2: Results of the example with the scheduling technique of Section 5.1.

It is apparent that in the co-design strategy the control effort is much reduced
thanks to the coordinated action ofγ(t) and the properly designed gainsKi. The
actual attenuation level was computed in both simulations,yieldingJ∞(γ) = 62.71
for the scheduling design strategy andJ∞(γ) = 57.79 for the scheduling/controller
co-design strategy. For comparison, the open-loop switching strategy of Remark
4.2 was also tested. The results are displayed in Figure 4 andthe achieved perfor-
mance isJ∞(γ) = 78.76, worse than using the state-feedback switching but still
below the guaranteed bound on the average cost. Note that a distinct advantage of
the open-loop random scheduling strategy is that it does notneed any information
on the current mode of the Markov processσ(t).

6. Concluding remarks

The problem of designing a state-feedback switching law fordiscrete-time
dual switching linear systems subject to Markov jumps has been solved. Design
specifications include mean-square stability and the achievement of guaranteed
H2 andH∞ costs. These results may prove useful in several contexts, such as
scheduling problems for NCS’s with capacity limitations and random faults. Fur-
ther research will address the same problems in case only partial information on
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Figure 3: Results of the example with the scheduling and controller co-design technique of Section
5.2.
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Figure 4: Results of the example with random scheduling and controller co-design technique of
Section 5.2.
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the system state is available.
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