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Abstract

Discrete-time dual switching linear systems are pieceVinsar systems subject
to both stochastic and deterministic commutations. Sttahpmps, well-suited
to account for unpredictable events like faults or abrupihgjes in the parameters,
are modeled by means of Markov chains. The deterministitthes are dictated
by a scheduling signal, used as a control variable in ordechieve stochastic
stability and guaranteed input/output performance. Wiredsufficient conditions
for the existence of a state-feedback switching law attgitihese goals. Further,
the more challenging co-design problem is addressed, paimejoint synthesis
of a linear state-feedback controller and a stabilizingawng strategy ensuring
a prescribed performance. The results are illustrated bgnsmef a numerical
example concerning a networked control system under conuation failures.

Keywords: Markov Jump Linear Systems, Dual switching, Stabili#
performanceZ, performance, Networked control.

1. Introduction

Dual switching systems are characterized by the simuliaeoesence of a
deterministic switching mechanism and a second stochawtiching signal giv-
ing rise to "jumps” occurring at random times. The stocl@siimps, often mod-
eled by resorting to Markov chains, are well suited to modelté/repairs and
several other kinds of system changes due to exogenoustunitainie events. In
this context, the family of piecewise linear systems whdsges are governed
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by a Markov chain has been extensively investigated unagen#ime of Markov
Jump Linear Systems (MJLS), see e.qg. [7], [4], [8]. It is vimaaemarking that the
analysis and control of such systems must cope with thethsigtic nature: for
instance, there exist different definitions of stochadabgity, a feature that ren-
ders stability analysis and system stabilization moreedhaind challenging than
in the deterministic case. Systems subject to a deternusisitching signal have
also been the object of several research papers dealingssites that range from
stability analysis and stabilization to guaranteed penoice, see the books [12],
[15], the survey papers [6], [13] and the references therein

The study of deterministically switching systems subjestbchastic changes,
typically associated with faults or other unpredictablerds, leads directly to the
class of dual switching systems, characterized by theplagibetween switching
signals of very different nature. For a real world examplasider a wind tur-
bine connected to an energy storage device. The transitivvelen the operating
modes of the turbine (standby, power-optimization, poliveitation) can be rea-
sonably regarded as governed by a deterministic switchgmabwhose schedule
is decided by the controller. Conversely, the transitiogisvieen the modes of the
storage device (charging, discharging, disconnectedrepn causes exogenous
to the wind generation system and are better described mchasttic model, e.g.
a Markov chain. Another application example is given by atiflabp networked
control system (NCS) exploiting a shared communicatiomokéwith limited ca-
pacity and affected by failures. Again, the random faillwEthe communication
network can be given a stochastic Markov chain descriptidrle, at each time
instant, the scheduling signal selects which control Igoquirrently attended.

The class of dual switching linear systems has already lhexeoltject of some
previous studies. Under the assumption of dwell-time gaigs on the determin-
istic switching signal, both the mean-square and the aksws stability proper-
ties of the overall system were investigated, [1, 2, 3]. Meently, in [3] the de-
sign of stabilizing switching signals ensuring a guarasteerformance has also
been studied. While most contributions so far are concenidcontinuous-time
systems, the goal of this paper is to extend and generakzeetults of [3] to the
discrete-time case. The discrete-time framework is moitalsie to address NCS
applications on digital communication networks.

First, we study the problem of mean-square stabilizatianswitching, of the
origin of an unforced dual switching system. A state-feettsolution is found
assuming feasibility of suitable coupled matrix inequedif parameterized by a
free design matrix parameter. Further, the design of $esdback switching laws
guaranteeing the fulfillment of#% and.7#, performance requirements is carried
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out. Again, the sufficient conditions for the existence aftsawitching strategies
are expressed in terms of parameterized Linear Matrix laktigs (LMI). Op-
timization of the design parameter can be performed todiglhe performance
bounds.

In the second part of the paper, we introduce an additionatrebinput and
tackle the co-design problem of determining both the cdletrgains and the
switching strategy to attain mean-square stability andgieed performance
measures. Interestingly, the resulting stabilizing stygtcan be implemented
either in closed-loop, assuming perfect knowledge of théestor in open-loop
through a randomly generated switching signal. The twdegras ensure the
same performance bounds, but in closed-loop the actuainpeaihce is in general
better.

The paper is organized as follows. Section 2 provides thielenoformulation
for the unforced system and the definition of the performandies. In section
3 we design switching strategies ensuring stability andanteed 7 and 77,
performance. The problem of co-design of the state-feddbaatroller gains and
the switching strategy is addressed in Section 4. Sectitbasbrates the results of
the paper in a significant example regarding a failure-pi8&. The paper ends
with some conclusions and perspectives in Section 6.

The notation adopted in the paper is fairly standard. Ini@aer, the set
of all discrete-time signals with finite 2-norm is denoted 4y Moreover, 7y
is the set of right-stochastic matrices of si¥gi.e. unit row-sum nonnegative
square matrices of si2¢. For a stochastic variable the notatiorkE x| represents
its expected value. For symmetric matrices, the symbstands for each of its
symmetric blocks. The symbal denotes the Kronecker product.

2. Problem formulation

Consider the class of discrete-time dual switching lingatesns described by

Xt+1) = AfX®)+BIw), X(0)=x (1)
2t) = CHx(t)+ DA w(t) 2)

wheret is the discrete time index(t) € #" is the statew(t) € Z™ is a deter-
ministic disturbance, withv(-) € (5, z(t) € ZP is the performance outpug(t) is
a switching signal taking values in the finite sef = {1,2,...,M}, anda(t) is
a time homogeneous Markov process taking values in thefset {1,2,... N},



with transition probability matrix\. More precisely, the entry;; > 0 of A repre-
sents the probability of a transition from mod® modej, namely

Aij=Pr{o(t+1)=jlo(t)=i}

Of courseA is a right-stochastic matrix (unit row-sum nonnegativenmgti.e.
N\ € IN. Letting ri(t) denote the probability distribution at tinbgt is well-known
that its evolution is governed by the difference equation

nt+1) =nt)N , m0)=rm

In the sequel, we assume thats irreducible and aperiodic, so that the Markov
process admits a unique stationary (strictly positive)optility distribution 7t
satisfyingr = A, see e.g. [5].

In summary, the system is subject to both stochastic jumpsrged by the
form process(t) and deterministic switches dictated by the control sigit).
Therefore, the state dynamics of the overall system is cteniaed byNM quadru-
ples(A[,B{,C{,D}),ic A ,re #.

In accordance with standard notions of stochastic stgpitt a given deter-
ministic switching signal/(t), system (1) is mean-square stable (MS-stable) if,
for w(t) = 0, it follows that

fim E[x(t)[2] =0

for any initial conditionxy and any initial probability distributiomp. Here and af-
terwards, the symbd|-] will denote the expectation with respect to the stationary
distributionr.

We will consider two performance indices inspired by thendtad .77 and
%, norms of deterministic LTI systems. Precisely,xgt= 0, y(t) be given, and
definez®¥ (t) as the impulse response generatedwf) = &(t)e,, whered(t)
is the unit discrete-time impulse function aadis thek-th column of them x
m identity matrix. The# performance associated witkit) is defined by the
following expected quadratic cost

J(y) =E [§ iz@ (t)’z<k><t>] 3)

k=1t

As for 7, -type performance, we considey= 0 and the worst-case measure
of disturbance attenuation

B E (37 o 2(t) 2(t)]
T = S S owitw(t)

(4)
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Letting p > 0 be the prescribed level of disturbance attenuationtheequire-
ment is guaranteed & (y) < p?.

The design of an optimal switching signgl) yielding the minimum of (3)
is a formidable task which would require the use of the Maxim®rinciple for
optimal stochastic control. In the following, we will codsi the simpler problem
of designing a suboptimal feedback conty(l) so that the overall system is mean-
square stable and an upper bouaof the optimal cost is guaranteed. As for the
H-type performance, we will work out a switching design picwe ensuring
Jw(y) < p2. In both cases, sufficient conditions will be provided.

Remark 2.1. In a full information context, the switching signglt) can exploit
the knowledge of both(®y and a(t), namely we can desigy(t) = f(x(t), o(t)).
This is the case that will be considered in the paper. For wduaicerns the case
of partial information, two situations are possible, degery whether juso(t)
or x(t) is accessible.

In the former case, the system is described by

X(t+1) = A;((f)(t))x(t)+B;((‘tj)(t))w(t) (5)
2t) = i +0e " wt) (6)

and a possible control design strategy consists in constrg¢he static decision

map f: 4 — .. Note that, for a given map({), system (5), (6) is a standard
MJLS, for which stability analysis and performance assesgman be carried

out by means of well-established tools, [7]. In order to fihd bptimal map, an

exhaustive combinatorial search can be rather easily irmglieted.

When just &) is available for feedback, a possible strategy would cdrnisis
using present and past values d¢f)xto reconstruct the current value of(t), see
e.g. [10, 16] in continuous-time. Then, relying on a kind eftainty equivalence
principle, one might selegt(t) as a function of &) and the estimaté (t), along
with the techniques developed later in this paper. Provitadpitity and perfor-
mance properties of this heuristic approach is an interestpen issue.

3. Switching strategies design

The first result of this section deals with the design of aestaédback switch-
ing strategy ensuring MS-stability of system (1) when thetuidbancen(t) is ab-
sent.



Theorem 3.1. Consider system (1) with(fy = 0. Assume that there exist positive
definite matricesR i € .47, r € .# and a right-stochastic matrisp = [¢rs] € T
satisfying,vi, r, the matrix inequalities

(B4

Then, the feedback switching law

|j Pri ij> Air (7)

||M§

y* = g(x,0) = argminx P, x
makes the closed-loop system MS-stable.

Proof. Consider the stochastic Lyapunov functigiix,i) = min, XP'x and
compute its expected one-step difference at tinnéth the positionsx(t) = x,
o(t) =i andg = argminX'P'x. For brevity, the eventr(t) = i and the joint event
(x(t),o(t)) = (x,i) will be indicated bys; andéy;, respectively. It results that:

| = ENVXt+1),0(t+1)|&]—V(xi)
E[minx(t+1) PotrnX (t+1)|<§xi]—mrinx’P,rx
= E[minX (A%) P ., AD)X|1] — X PX

E[AV (x,1)

Recall now that the expected value of the minimum of a fumcisonot greater
than the minimum of the expectation. Moreover,

E[Po. )4 = ZAIJ

Therefore, it follows

E[AV (x,i)] < minx (A Z)\. P! AIx— X'Px
Now, beingggk > 0 andy ¢k = 1,Vg, it holds that
minX (A%)"y AijPIAPX <X (A)) 5 A Z PokP Al
] ]
Thanks to (7) we obtain
E[AV (x,i)] < XP¥—XP% =0
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and MS-stability follows from standard results on stocitagiscrete-time Lya-

punov functions, see e.g. [11]. O
By slightly strengthening the conditions of Theorem 3.1s ipossible to de-

sign a stabilizing switching strategy which yields a guéead.’# performance.

Theorem 3.2. Consider system (1), (2) withhx= 0, B, = By and D, = Dy,
Vr € ., and the performance index (3). Assume that there existiyposlefi-
nite matrices P, i € .47, r € .# and a right-stochastic matri = [¢rs] € Iu
satisfyingvi, r the matrix inequalities

N M
R > (A) (Zlkzlm j (brkpjl() A +(C)'C (8)

=
Then, the feedback switching law

Y = g(x,0) = argminx'P;x 9)
makes the closed-loop system MS-stable and guarantees that

Ly)<dh = rqinE[trace(B’aPcr,Bo-i-D’ng)]

N
- rqinZ\trace{B{F’{BiJrDi’Di)ﬁ
i=

Proof. First observe that feasibility of inequalities (8) implifsasibility of
inequalities (7), so that the system is MS-stable.
Using again the stochastic Lyapunov function

V(x,i) = mrinx’Pi’x

and applying the same arguments ¢for 1) as in the proof of Theorem 3.1, it can
be shown that

E[AV(x,i)] < —X (CP)'Cx
Consider now the trajectories of system (1), (2) winh) = (t)ex andxg =0
and letx¥ (t) be the associated state variable. In view of the discrate-tiersion
of the Dynkin’s Formula [14], one obtains (recall that thpestation is taken with
respect to the stationary distribution@ft))

EV (x(k) (), 0)] ~ENM(x(K)(1),0)] < —E [iz(") (t)yz" (t)]

t=
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Thanks to stability and noticing that
EV(x(k)(1),0)] = E[rqine&B’aP{,Baa(]

one can conclude that

S
Q) = E|Y z<k><t>’z<k><t>]
[K=1t=
[ m m
< E minglB,P5Boex | +E | S €DyDotx
=1 K=1
[ m B m
< E|Y B;PsBoe| +E | Y eDgDoe
| K=1 K=1
for anyr € .#. Hence
Jo(y") < minE [tracgB,P;By + Dy, Do) | (10)
so that the result follows. O

In the theorem above we have assumed that the ma@iges1d DY, do not
depend on the controlled switching signdt). This was done for simplicity.
Indeed, when dealing with impulse responses, the valuekesiet matrices are
relevant only at time 0. If such matrices did dependypthe valuey(0) would
be an additional degree of freedom in minimizing the cost.b&mrecise, the
feedback switching law (9) would be valid for- 0 and (10) would become

J(y") < minE [trace((B}',(O))’pchBg(O) i D};(O))’D};(O))]

so that a minimization with respect 0) could be further performed.

Observe that the performance bound (10) depends both enZy and the
matricesP’ satisfying the bilinear matrix inequalities (8). In orderdtrengthen
this bound, an optimization procedure can be worked out, lkyggridding the
free parameters ab in the finite box[0,1]M and solving, for each selecta® a
convex optimization problem.

Remark 3.1. An alternative bound toxJy*) can be obtained by duality, making
use of positive definite matricep $atisfying the inequalities

N M
§>5 Y AidwAS (A +Bi(Bi) 7T (11)
j=1k=1



It is a matter of tedious but easy computation to show that
N

Ly)<h= min Ztrace{C{S(C{)’ +DiD;)
i=

Finally, consider the’%, performance associated with the index (4). We can
prove the following result.

Theorem 3.3. Consider system (1), (2) withhyx= 0 and the performance index
(4) with a given value ob > 0. Assume that there exist positive definite matrices
P",ie 4, re .« and a right-stochastic matri® = [¢;s] € Fu satisfyingvi,r

the matrix inequalities

(Y ZIN +(C)C - (A)) 28] +(C/)'D]
* —p2 + (B 2Bl + (DI)'D} <0 (22)

whereZf = 3N ) 51 AijdrkPE. Then, the feedback switching law
y* = g(x,0) = argminx P;x
makes the closed-loop system MS-stable and guarantees.thya) < p°.

Proof. First of all, feasibility of (12) implies feasibility of (7)so that the

switching lawy* guarantees MS-stability.

Now, consider again the stochastic Lyapunov funcNam,i) = min, XP'x,
and compute its expected one-step differeB@AV (x,i)] along the systems tra-
jectories. Straightforward computation leads to

9 _ (A9Y 9299 9\/c9 9y 5299 9\/ DY
ERVxi)] < —[X W] [P. (A7) «%*AI +(G)'G pzl(él()Bg};ig—g?(g()D%’D?} [\ﬂ
—Z74 pWw < —Zz+ pWw

Using again the Dynkin’s formula, and recalling tlxagt= 0, it results that, for all
We 52,

0<-E [iz(t)’z(t) +p? iw(t)’w(t)

so that the thesis follows. O

An alternative, yet equivalent, formulation of Theorem @dch is amenable
for controller synthesis is obtained by reformulating inalities (12) in terms of
the unknowns( = (P")~1. Indeed, it is just a matter of standard manipulation to
obtain the following result.




Theorem 3.4. Consider system (1), (2) withhyx= 0 and the performance index
(4) with a given value ob > 0. Assume that there exist positive definite matrices
P",ie 4, re .« and a right-stochastic matri® = [¢;s] € Fu satisfyingvi,r

the matrix inequalities

X0 (Airxir>/Y1i'71 (AirXir)/Y}ﬂM (Cir)(ir>/
« opA B o @)Y (o))
=1
s 0 ° >0 @)
' : 0
* ok 0 =M 0
B * * I

where

Yir’kz[\/f\i1¢rk| VAizbud o A/ ANGrd ]

and=K = diag{XX,i = 1,2,...,N}. Then, the feedback switching law
V" =g(x,0) = argminx (X;)*x

makes the closed-loop system MS-stable and guarantees.thya) < p°.

4. Switching and control co-design

In this section, we discuss a more challenging problem. i&Gavdiscrete-time
dual switching linear system with an additional controluhpariable, we aim at
developing a procedure to jointly design a set of feedbaokrotlers and a switch-
ing strategy so as to guarantee either an upper bound o##hperformance or a

prescribed bound on th#&3, performance. More precisely, consider the following
system:

Xt+1) = ANXO)+ B W) +Ghl M), X(0) =X (14)
2t) = CYx(®)+ DU w(t) +HL u(t) (15)

whereu(t) € 2™ is a control input and all remaining variables are definechas i
Section 2. For simplicity, assume again that both the stdbeand the Markov

processo (t) are available for feedback, and the inugt) is generated by the
closed-loop control law

u(t) = Y x() (16)



The closed-loop system resulting from the application ef¢antrol law (16) can
be rewritten as

Xt+1) = ANxt) + B w), x(0)=x (17)
2t) = CYx(t)+ DA wit) (18)

with Al = A + G'K andCl =CI +H/K!,ic A, rc . 4.

4.1. s performance

In this subsection, we aim at finding a set of matrigési € 4", r € .4,
and a feedback switching strategy- g(x, o) such that the dual switching system
(17), (18) is MS-stable and it#> performance is ensured to be less than an upper
boundJ,. To address this problem, it is useful to recall some resritthe .77
performance of a standard MJLS, i.e. wheh) =r is fixed. In this respect, we
have the following result, adapted from [7], PropositioB,4hat links the %%
performance with the reachability Gramian.

Theorem 4.1. Consider system (17), (18) witft) = r,Vt, K', i € .4 given, and
the performance index (3). The system is MS-stable if ang ibrthere exist
positive definite matrices S € .4/, satisfyingyi, the matrix equations

zAJ.Afsf (A))'+B] (BT (19)
Moreover, its 7% performance can be computed as

N
J, = trace( > (CjS|(C) +Dj(D)) n,-)
=1

Note that the matrice§ appearing in eq. (19) can be interpreted as the reach-
ability Gramians, i.e.

§=3 3 ERRON o) = i)

k=1t=

An equivalent dual formulation is provided next.

11



Theorem 4.2. Consider system (17), (18) witft) =r,Vt, K', i € .4 given, and
the performance index (3). The system is MS-stable if ang ibrthere exist
positive definite matrices'Pi € .4, satisfyingyi, the matrix equations

(Z AijP ) ehlel (20)

Moreover, its 7% performance can be computed as

N
X = trace(Z ((B)'P{B! + (Dj)'Dj) ﬁ,)

=

Note thatP" appearing in eq. (20) can be interpreted as the generatbeof t
cost-to-go function, i.e.

[oe]

e R 0] = Ely 29020 (mjo) =i, t>1

As for the design of the gain matrick$ whenr is fixed, the gains optimizing
the 7% performance are provided by the following convex optimaatproce-
dure. The proof can be found in [9].

Theorem 4.3. Consider system (17), (18) wiftit) = r,Vt, and the performance
index (3). Assume that there exist positive definite matreW', i € .4 and
matrices Y, i € .4/, satisfyingyvi, the matrix inequalities

S-EER 9 @y
7]

where
O = [VM(AS +GY]) - VANARS O]

and 3" = diag{§,i = 1,2,...,N}. Then, letting K = Y(§)~1, the system is
MS-stable and it performance is

:Slr?f” Ztrace( Cl H] ﬁ (\T\i/:r)/} [((ﬁ:rr))//}‘i‘Dir(Dir)/ﬁ)
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Now, we are in a position to formulate the co-design resultte .7 perfor-
mance.

Theorem 4.4. Consider system (17), (18) witly x 0, B}, = By and D, = Dy,
Vr € ., and the performance index (3), and select a right-stocbasatrix ® =
[rs] € Im. Assume that there exist positive definite matrices8, i € .4,

r € ., and matricesY,i € ./, r € ., solving the following convex optimization
problem:

Jo(d) = rr}inq,qu itrace([c{ H] E q{/:r)/} [((g'rr))/,} -l-D{(D{)’ﬁ)

with

[§ —B[(B))m WiHr) Wi(r) --- WM(n)]
s st 0 .. o
* 0 = - 0 |>0 Vir (23)
B
E (\\/({/rirq >0, Vi,r (24)

where

WK = [V (RS GRS - v/ Anifier (A S + GYY)]

and =K = diag{S,i = 1,2,...,N}. Then, letting K = Y(§)~1, the system is
MS-stable under the switching law

Y = g(x,0) = argminx Px

where matrices Psolve the equations
~ N M k ~ ~ ~
=) (33 digwPl | A +C)C (25)
j=1k=1

Moreover thes# performance of the closed-loop systemzi&l];(tb).
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Proof. Since its rationale is rather standard, below only a sket¢heoproof
is given. For given MS-stabilizing gairt§/, one can resort to Theorem 8 and
Remark 3.1, withAl — A/, CI — €/, to obtain upper bounds andJ, to the.7#
performance of the closed loop system. When the gains apgeathe statement
are applied, it can be shown that inequality (11) coincidiis imequality (23) and
the upper bound, coincides, after optimization, witly(®). O

Remark 4.1. In the previous theorem, the solution of the co-design gmblvas
derived for a given matrixp € %y by solving a convex optimization problem.
The performance upper bound might therefore be optimizeddsgper choice of
®. Note however that this would lead to a bilinear problem. M/m lower di-
mensions gridding techniques could be viable, most saphist techniques, like
Cone Complementarity Methods, may be needed. At the cosinaf additional
conservatism, one might also reduce the number of free pateamin matrixd.

Remark 4.2. Itis worth noting that the Egs. (25) can be compactly rewrntas
_ _ NM_ _\ _ -
= (Ak)/ Z AksPs | A+ (Ck>/Ck
s=1

where, foranyi=1,....N, k= (i—1)M+1,...,iM,

) A_‘k = AI!(i(iil)

and A are the entries of matrid = A ® d, € Inum. These equations correspond
to the coupled Lyapunov equations of the extended MJLS

Xt+1) = EE(t)ﬂU‘i‘B:E(t)W(t) (27)
Z(t) = CgpX(t) + Dgqyw(t) (28)

)M M )M

B = Pik—(i—  G— éik—(i— (26)

whereB, =B "™ D =D "M =1 N, k=(i-1)M+1,...,iMand

o(t) is a Markov process with transition probability matix It is easily seen
that system (27), (28) coincides with the closed-loop ay$1e), (14), (15) when
y(t) randomly switches according to a Markov chain (independémat(t)) with
probability transition matrix®. The overall system (27), (28) evolves as a MILS
with transition probability matrix\, whose set of modes is the Cartesian product
N x .. Inview of (26), the performance provided by this randonmaving
strategy is equal tdx(P). It is also worth noting that the actual performance of
the state-feedback switching strategy of Theorem 4.4 ghednuinded byl (®),
may well be better.
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4.2. ¢, performance

The co-design problem treated in this subsection considiading a set of
matricesK{, i € .4/, r € ., and a feedback switching strategy- g(x, o) such
that the dual switching system (17), (18) is MS-stable anddt, performance is
ensured to be less than a prescribed upper bpdnd

The co-designi, problem is addressed in the following theorem, whose
proof relies on Theorem 2.4 by replacidgX” with A’X" = A'X" + Gl'Y!, and
CI X" with CIXF = CI X"+ HIY/

Theorem 4.5. Consider system (17), (18) with % 0 and the performance index
(4), and select a right-stochastic matrix = [¢;s] € Im. Assume that there ex-
ist positive definite matrices/Xand matrices Y, i € .4/, r € ., satisfying the
following inequalities:

DJ 0 (A HGIY)YT e (X GV (X HIY)

x pA Byt 8y (O]

* ok =1 0 0
>0

: : : " : 0

*x ok 0 =M 0

B * * I 1
(29)

where

Y = [Vl Vbl - Aol

and =K = diag{XX,i = 1,2,...,N}. Then, letting K = Y(X")~1, the system is
MS-stable under the switching law

Yy =g(x,0) = argminx (X§) " x

Moreover the#, performance of the closed-loop system.is<Jp?.

5. Scheduling design in networked control systems

In order to illustrate an application of the dual switchimgnhework, consider
a scheduling problem for a multi-loop networked controltegssubject to packet
dropout. More precisely, assume thatlinear (possibly unstable) plants have to
be controlled by a single regulator exchanging input-oudiata through a shared
network, as depicted in Figure 1. The regulator is alloweattend only one
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Figure 1: The NCS considered in the application.

plant at a time, according to the scheduling sign) taking values in the se# .
Transmission of actuator data over the network is subjaetrtdom failures, mod-
eled by the Markov process(t) taking values in the set/". For simplicity, we
assume that full state information is transmitted by eacls@ewithout failures,
so that the regulator has complete access to the state iationmof all plants.
As for the regulator-actuator channel, keft) = 1 stand for the no-fault mode,
when all packets are correctly transmitted, aritl) = 2 stand for packet dropout
mode, when no packet is delivered. A Markov chain model Witk 2 and tran-
sition probability matrixA\ is assumed to describe the jumps between these two
modes. Of course, more complex models could fit within thegiframework.
For instance, one could increase the number of logicalstateope with packet
loss also in the sensor-regulator channel, augment theetstatcount for time de-
lay effects, and introduce suitable state observers indgelator when full-state
information is not available.

We first assume that the regulator is equipped Wthontrol laws tailored to
the individual plants and only the scheduling signal haseaésigned so as to
satisfy stability and performance requirements. If theutapr has access to the
value of o(t), the scheduling design problem can be cast in the formulaifo
Section 3.

In a second step, we will exploit the co-design methods ofi@ed assuming
that both the controller gains and the scheduling sigraak to be designed.

Consider, for simplicity, a Networked Control System (N@&th two plants
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(M = 2) described by the sampled-data models

Xi(t+1) = Fx(t)+Giu(t)+Liw(t), i=1,2 (30)
yi(t) = Gix(t) (31)

where the outpuy;(t) enter the definition of the performance variab(g. More
precisely, the performance outm(t) is such that

Z(t)'z(t) = y1(t)ya(t) +y2(t)'ya(t) + U2 (us(t) ug (t) + ua(t) ua(t))

S0 as to weigh the output energy of both plants and the actnélat effort in the
cost function.
The control law issued by the regulator is modeled as

L Kix(t), if y(t)=i
o= {0 170

and the true actuator signals, affected by random packgtdos given by

(G, if o) =1
”'(t>_{ 0, if o(t)=2

In other words, the control signal applied to the system é&fdulty mode is set to
zero. Letx(t) = [x1(t)" x2(t)") be the stateu(t) = [ui(t)’ ux(t)’]’ the control
vector andn(t) = [wi(t)”  we(t)’) the disturbance vector.

The objective of the scheduling design (or co-design) isuargntee simulta-
neous MS-stabilization of both plants, along with the flrifgnt of the following
Jt%-like performance specification whet0) = 0:

E[5P0z)'2(0)] _

Jo(Y) = sup =
W) welp, w0 YioW(t)'W(t)

Hereafter, we assume that plant P1 is a double integratecyitbed by
0 1 0
Fl:[—l 2], G1=L1=[1], Ci=[1 0
and plant P2 is a marginally stable system described by
01 0
FZ:{O 1], G2=|-2=[1], C2=[1 0
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The parameten in the cost function is set tg = v/10.
Finally, let the transition rate matriX of the Markov procesg (t) be given

by
0.9 01
n= lO.S 0.2]

Note that the stationary probability distribution of thislov chainist=[8/9 1/9]".

5.1. Scheduling design
We first consider the case when the controller gains arerassignd given by

Ki=[1 -2, Ko=[0 —1]
which would provide deadbeat control on each individuaplooabsence of fail-
ures and scheduling constraints. The overall system carritterwas in (1), (2)
with
Al — —
0 ) 0 R+GK:

1 {Fl—f—GlKl 0] A2 {Fl 0 }
9 1 —
A = A%={F1 O}, B{:{Ll O}, DI =0, i,r=1,2

0 R 0 Ly
In order to represent the performance, té:lg%)) such that

(Cv(t) )/Cv(t) — G+ uz(Kg(t))’KV(t)

a(t)) “ao(t) (t)/ “a(t)
where
~ |C. O
[ el
([Ky 0] . B B
I 0 0_ ’ if U<t) - 17 y(t) =1
KW ={!T0 o] .
t _ _
a(t) 0 Ky’ if o(t)=21,yt)=2
. O, if o(t)=2

Our aim is to design a scheduling strategy so as to minimi&dttundp? on the
s performance, taking into account also the effects of padkgbout. To this
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purpose, we apply the results of Theorem 3.4. After somentuof the design
parameters, we obtained that, in correspondence of

o [092 008
~ (091 009

the resulting switching strategy’ is stabilizing and the guaranteed attenuation
level isp = 38.

5.2. Scheduling and controller co-design

We consider now the co-design problem. In this case the mystenodeled
by (14), (15) with matrice8] andD}, i,r = 1,2, defined as above and

' Ci 0

A = ';1 FOJ Cl=1|0 C, ir=12
: 0 0

1 _ [G1 O »_[0 0 1_ 2

G = 0 o Gl__o G| G2=G;=0
[0 0 0 0

HI = |0 0|, Hf=|0 0|, H}=H7=0
Y 0 u

Making reference to Theorem 4.5, after some tuning we obththat, in corre-
spondence of

0.65 035
q"{o.g 0.1}

the designed gains are
K;=[0.8508 —1.0686, K,=[0.0000 —0.6261]

that, together with the switching strateg$, ensure the attenuation leyel= 12,
which greatly improves on the result achievable by just daheg y with fixed
gains, as done in the previous subsection.

For illustrative purposes a comparative simulation wasi@arout using ei-
ther scheduling design or scheduling/controller co-desig all simulations, the
same realization of the Markov procesét) was considered. On each plant the
disturbancevs (t) = wy(t) = sin(0.2t), truncated at timé= 40, was applied. The
results are shown in Figures 2 and 3, reporting the time patteo (t) andy*(t),
the plant outputy; (t) andy,(t), and the control signals; (t) andux(t).

19



a(t) Output of Plant 1 Control variable of Plant 1
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Figure 2: Results of the example with the scheduling teamaf Section 5.1.

It is apparent that in the co-design strategy the controlref$ much reduced
thanks to the coordinated action yt) and the properly designed gaiks The
actual attenuation level was computed in both simulatigietding J..(y) = 62.71
for the scheduling design strategy aldy) = 57.79 for the scheduling/controller
co-design strategy. For comparison, the open-loop switchkirategy of Remark
4.2 was also tested. The results are displayed in Figure tharathieved perfor-
mance isl.(y) = 78.76, worse than using the state-feedback switching but still
below the guaranteed bound on the average cost. Note thstirrctindvantage of
the open-loop random scheduling strategy is that it does@ed any information
on the current mode of the Markov procesg).

6. Concluding remarks

The problem of designing a state-feedback switching lawdiscrete-time
dual switching linear systems subject to Markov jumps hantsolved. Design
specifications include mean-square stability and the gement of guaranteed
75 and 77, costs. These results may prove useful in several contaxth, &s
scheduling problems for NCS'’s with capacity limitationglaandom faults. Fur-
ther research will address the same problems in case ortiglpaformation on
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Figure 3: Results of the example with the scheduling androtiet co-design technique of Section
5.2.
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Figure 4: Results of the example with random scheduling amdroller co-design technique of
Section 5.2.



the system state is available.
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