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Abstract. Technical codes for buildings deal with cracked reinforced concrete structures as-
suming concrete as a compression—only material, whereas rebar provides the structural compo-
nent with the required tensile strength [1]. Numerical methods can handle reinforced concrete
structures calling for demanding non-linear analysis. Indeed, well-known convergence issues
arise when copying with concrete as a compression—only material. Recently, an alternative
energy—based approach has been proposed to solve the equilibrium of a linear elastic no—
tension medium exploiting its hyper—elasticity [2]. A topology optimization problem distributes
an equivalent orthotropic material to minimize the strain energy of the no-tension body, thus
avoiding more demanding non-linear analysis. This contribution provides an extension to the
analysis and optimal design of reinforced concrete structures. Following [3], truss members
are modeled within a two—dimensional no—tension continuum in order to model structural el-
ements made of reinforced concrete. The solution of the equilibrium is straightforward within
the approach proposed inl[2], thus allowing performing analysis at the serviceability limit state
with cracked sections. Also, introducing the areas of the reinforcement bars as an additional
set of unknowns, a problem of size optimization is outlined to cope with the optimal rebar of r.c.
structures. Preliminary numerical simulations are shown to assess the proposed procedure.
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1 INTRODUCTION

An extensive research has been done in the last decades addressing the non-linear analysis
of reinforced concrete (r.c.) structures, see e.g. the seminal paper [4]. At the serviceability limit
state, the practical detailing of a reinforced concrete structure is based on simple assumptions,
i.e. the adoption of linear elastic modeling for the composite structural member and the as-
sumption that concrete strength in tension is negligible [5]. Implementing this theoretical model
within a numerical code is not trivial, due to well-known instabilities arising when addressing a
linear elastic no—tension body through conventional incremental approaches. Recently, [6] has
proposed to solve the equilibrium of a no—tension solid resorting to a minimization problem that
adopts the displacement field as unknown and the strain energy of the hyper—elastic no—tension
body as objective function.

An alternative energy—based approach has been proposed in [2]. A topology optimization
problem [7] distributes an equivalent orthotropic material to minimize the strain energy of the
compression—only body, thus resorting to an established and computationally efficient formula-
tion of compliance minimization that avoids more demanding non-linear analysis.

A possible extension to the simplified analysis of reinforced concrete structures is investi-
gated in this contribution. Following[3], truss members are modeled within a two—dimensional
no—tension continuum in order to address two—dimensional structural elements made of rein-
forced concrete. The solution of the equilibrium is straightforward within the approach pro-
posed in[[2], thus allowing performing analysis at the serviceability limit state with cracked
sections. Preliminary numerical simulations are shown to investigate the capabilities of the
proposed procedure.

Moreover, introducing the areas of the reinforcement bars as an additional set of unknowns
for the minimization problem, size optimization is outlined as a possible extension of the pro-
posed procedure to cope with the optimal rebar of r.c. structures. A first numerical test shows
that the computational burden tied to this extension is almost equivalent to that required for the
solution of the equilibrium equations.

The outline of the paper is as follows. Sectlon] 2.1 recalls fundamentals of the topology
optimization problem used to address linear elastic no—tension structures according to [2, 8],
whereas Section 2.2 introduces the minimum compliance problem to cope with r.c. members.
Sectior B presents preliminary numerical simulations performed on a benchmark example and
Sectiorl 4 provides remarks and outlines the ongoing research.

2 PROBLEM FORMULATION
2.1 Equilibrium of no—tension structures as a topology optimization problem

The analysis of a 2D no—tension continuum is re—formulated as a topology optimization
problem for minimum compliance. The equilibrium of any compression—only structure is
solved seeking for the distribution of an 'equivalent’ orthotropic material that minimizes the
potential energy of the hyper—elastic solid. A one—shot energy—based procedure computes the
non—incremental solution under given loads, provided that the applied forces are compatible
with the no—tension constraint.

A 2D Cartesian reference is considered to address a no—tension isotropic solid in the region
Q2. Prescribed displacements are enforced along its constrained boundary, whereas trac-
tion ¢, is assigned along its free bounddry, An equivalent orthotropic material is introduced
to mimic the behavior of a no—tension bodyz;,(;) are the symmetry axes of the equiva-
lent phase that are assumed to be aligned with the directigns; () of the principal stresses
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(o7, 077) at any point inQ2. The parametef defines the orientation of the axes,(z;;) with
respect to the given Cartesian reference.
In weak form, the energy—based minimization problem can be stated as follows:

min [ Do, o, O)e(w) 2lu) dO

Pmin<p1,p2< 1

st. /QD(pl,pg, 0)e(u) e(v) dQ2 = /Ft to-vdlandu |r,=u, Vo, 1)
0| z21 =zrand Zy = zpy,
p1,p2 | or <0andor; <O0.

The above equation adopts the compliance (i.e. twice the strain—energy) as objective function,
u is the displacement field;(u) the strain tensor an®) the fourth—order elasticity tensor of

the "equivalent’ orthotropic material. Using a suitable transformation maifé, one has that

D = T-'DT. Exploiting the Voigt's notationD, which is the constitutive tensor written in

the material framez, z,), reads:

B . Ey ik, 0
D= T vo1 )y By 0 ) (2)
S 0 (1= D120e1)Gho

whereE1 and E} are the Young’s moduli of the ’equivalent’ orthotropic materigh, v, its
Poisson’s ratios (beingy,/E, = s/ E») andG1, its shear modulus.

A generalization of the so—called SIMP model [9] relates the elastic constants of the equiv-
alent material and thosé/( ) of the isotropic no—tension material according to the following
interpolations:

- _\E s E
Ei_p?Ea Vij = p? ) Gz]_\/ﬁﬁ2(1+y)a (3)

for i,7 = 1,2. Each minimization unknowp, ranges betweep,,;, > 0 and1 to penalize

or preserve stiffness along the relevant axis depending on the sign of the principal stress. To
avoid any tensile stress in the solid, Eqf$4)Enforce vanishing stiffness of the equivalent or-
thotropic material along the direction of any arising positive principal stress. The adopted lower
boundp,,;, avoids singularity of the stiffness matrix when solving the discrete formulation,
wherea® = 3 is conventionally assumed [7].

2.2 Equilibrium of r.c. structures as a topology optimization problem

The generalization of the above problem to the finite element analysis of a cracked reinforced
concrete structure seen as a strengthened no—tension body is straightforward. Following [3],
truss elements are modeled within a two—dimensional continuum in order to cope with the
arising composite structure. The formulation is presented in its discrete form.

A finite element discretization made 6f truss elements is used for the reinforcement bars,
along with M four—node plane elements for the underlying compression—only structure. An
element—wise constant discretization is adopted to cope pyith,, #, see Section 2.1. The
stiffness matrix of theg—th truss—like element is denoted ng whereasr;; andz,; are the
discrete minimization unknowns that govern the stiffness of the equivalent material’ along its
symmetry axes, being the value of the orientation parameter in théh element. Denoting by
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K;(x1;, x9;, t;) the stiffness matrix of the-th plane element, the implemented discrete form for
the minimization of the strain energy of a 2D r.c. structure reads:

Tonin <T14,22;< 1
t M K;(zy, 205, 1) U N KiU; =F
S.L dict z(xlzaxma z) +Zj:1 i Yi =

t; ‘ 1= 21 and%z = ZII,

(4)

T1iy L4 ‘ Uz’,[ S 0 anda“] S 07

whereU; is the vector of the d.o.f.s of the 2D finite elemers; is the vector of the d.o.f.s
of the truss elements and is the array of the nodal loads. Eqn.(4) is fully along the lines
of Eqn.[1). It is recalled that the structural compliarités the work of the external loads
computed at equilibrium. Dealing with a composite structure, the overall strain energy depends
on the amount stored in the underlying compression—-only material and that stored in the steel
reinforcement.

Sequential convex programmirig [10] and analytical computation of the sensitivities [7] can
be used to solve the minimization problem stated in E¢n.(4).

Instead of implementing demanding sets of stress constraints, the penalization approach al-
ready used in [Z,18] is herein adopted to cope with Eqh)(4A set of penalized densities;,
Z»; can be introduced for a straightforward computation of a modified strain efefgyvhich
the terms related to any possible positive principal stress arising in the underlying compression—
only material are reduced by a parameter 0.5. Providing the optimizer with the reduced
objective functionC and its sensitivitie®C'/dx1;, IC /dx»;, variablesx;, x, are updated pre-
venting any distribution of stiff material along the weak direction(s) of the no—tension body.

Introducing a new set of minimization unknowns to cope with bars having different sec-
tions, minor modifications are required in Eqn.(4) to cope with a problem of size optimization.
A preview of this approach is shown in Section]3.2, addressing the optimal detailing of r.c.
structures.

3 NUMERICAL SIMULATIONS

A set of preliminary numerical simulations are presented in this section, adopting the formu-
lation described above to cope with the analysis of the reinforced concrete cantilever represented
in Figureld. The left edge is clamped and a nodal faPce: 1 kN is applied at the upper right
corner.

Concrete is modeled as a linear elastic no—tension material with Young mo#fulus
20,000 MPa and Poisson’s ratig. = 0.15, whereas the prescribed steel reinforcement is dis-
cretized through linear elastic truss elements with Young modalus- 210,000 MPa. The

lP=1kN

th=50 cm

—50 cm—
AN

150 cm

Figure 1: Geometry and boundary conditions for the numeaipplication.
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Figure 2: Finite element mesh and steel reinforcement layout
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Figure 3: Analysis of the r.c. cantilever: principal stresses in the concrete specimen along with uniaxial stresses in
the reinforcement (MPa) computed for a conventional linear elastic beam (a) and a no—tension beam (b).

area of each bar is twice that of a circular section with diamgter 12 mm.
Sectior 3.1l assesses the proposed procedure of analysis, whereas[Séction 3.2 outlines a pos-
sible extension to the size optimization of the steel reinforcement.

3.1 The analysis problem

Figure[2 shows the two—dimensional finite element discretization used to handle the concrete
cantilever along with the truss elements that model stirrups and longitudinal reinforcement, both
with the same diametef,. For simplicity’s sake, no reinforcing covering is considered in this
preliminary investigation. Stirrup spacing is uniform along the beam and equal to half the height
of the square section.

Figure[3(a) shows results computed through a linear elastic analysis that models concrete as
a material with equal behavior in tension and compression. Principal stresses in the concrete
specimen and uniaxial stresses in the reinforcement are represented in the same picture. Due
to the enforced compatibility, the steel reinforcement and the concrete beam carry different
amounts of the external load, depending on their stiffness. As expected, the upper part of the
beam is tensile—stressed (red vectors), whereas the region under the neutral axis is compressed
(blue vectors). Minor axial stresses are found in the longitudinal reinforcement; stirrups are
nearly unloaded.
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Figure 4: Optimization of the r.c. cantilever: achieved latyo

Figurel3(b) shows results computed through the minimization problem of Eqn. (4), which al-
lows modeling concrete as a linear elastic no—tension material. Results shown in this picture are
guite different with respect to those of the previous one. No tensile stress arises in the concrete
body (no red vector is found). The tensile stresses in the upper longitudinal reinforcement are
around230 MPa, whereas compressive stresses in the lower horizontal bars are atdiRd.

The direction of the principal stresses computed in the two—dimensional concrete domain
clearly shows the expected activation of a strut—and—tie model for shear resistance that involves
the stirrups, now tensile—stressed by ne&élivPa. Note that the inclination of the struts in the
arising truss—like structure is not the same along the cantilever. This can be directly compared
with established results of strut—and—tie modeling, seele.g.[1, 11].

3.2 The optimization problem

The formulation in Eqn.[{4) can be straightforwardly modified to cope with the detailing of
the optimal amount of steel reinforcement in the cantilever.

Replacing the stiffness of thge-th reinforcement baK’ with z;K7, being0 < z; <1
a sizing unknown that allows for a variation of the diameter of the bar section in the range
0 < ¢, < 12mm, the problem in Eqn.[{4) minimizes the strain energy of the composite
structure solving, within the same formulation, the equilibrium of the no—tension cantilever and
the size optimization of the prescribed reinforcement bars.

Figure[4 shows the distribution of the unknownsfound by the algorithm to detect opti-
mal sections, enforcing that the allowed global amount of reinforcement is half the case with
z; = 1, V5. Figurelb represents the principal compressive stresses found in the concrete spec-
imen along with the uniaxial stresses computed in the reinforcement. Removing the horizontal
reinforcement lying in the compressive—stressed region and suitable portions of the stirrups, a
lighter layout is achieved than in Figure 2 without introducing any remarkable variation in the
computed stress field. The achieved solution is trivial, but allows outlining capabilities of the
proposed formulation that can be conveniently exploited in case of more complex geometry,
load and reinforcement patterns.
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Figure 5: Optimization of the r.c. cantilever: principalesses in the concrete specimen along with uniaxial
stresses in the reinforcement (MPa).

Figurel® reports the history plot of the objective function for the analysis problem and the
optimization problem that have been considered above. Both curves are similar, convergence
is smooth and the computational cost is limited, as for conventional problems of topology opti-
mization for minimum compliance.

4 CONCLUSIONS

A topology optimization problem has been formulated as an alternative approach to cope
with the analysis of cracked reinforced concrete structures, assuming the hyper—elastic no—
tension model for concrete. An energy—based formulation which was originally developed for
plain elements has been herein extended to handle compression—only composite structures em-
bedding bars of steel reinforcement.

Results found by the preliminary analysis commented above are in very good agreement with
established theories addressing the behavior of cracked reinforced—concrete structures, see e.g.
[11]. The proposed approach allows for a direct computation of compressive stresses acting in
the concrete domain along with axial stresses in the steel reinforcement. This matches well—
known methods used in engineering practice that neglect the tensile strength of concrete, see
e.g. [5].

Moreover, a problem of size optimization has been outlined to cope with the optimal rebar
of r.c. sections through minor modifications of the proposed numerical procedure.

The ongoing research is mainly focused on the assessment of the analysis problem, the de-
velopment of the optimization problem and the extension of the proposed approach to cope with
the optimal fiber—reinforcement of existing structures, see in particulafr [12, 13] for plain and
reinforced concrete structures ahd|[14, 15] for masonry structures.

Referring to computational issues, adaptive techniques are currently under investigation to
improve the accuracy in the evaluation of both the displacement field and the stress field in the
no—tension layer while decreasing the computational effort, see in particular [16, 17].
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Figure 6: Convergence curves for the analysis problem andgtimization problem (Nm).
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