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INTRODUCTION 
 
Active Constraints (ACs) are high-level control 
algorithms deployed to assist a human operator in man-
machine cooperative tasks [1], and define regions within 
which it is safe for the robot to move and cut [2]. To 
enhance the performance in cooperative surgical tasks, 
adaptive constraints have been exploited to optimally 
adjust the provided level of assistance according to 
some knowledge of the task, hardware or user. In [3] 
Hidden Markov Models were used for the run-time 
detection of the user intention to leave a guidance 
constraint to circumvent an obstacle. In this work, we 
present a novel, Neural Network (NN)-based method for 
the runtime classification of intentional and
unintentional violations of ACs, that is trained on either 
statistical or frequency features from the enforced 
constraint forces. We investigate which set of 
parameters yield faster and more reliable classification 
results, both for guidance and regional constraints. 
 
METHODS 
 
Active Constraints 
 
During cooperative assistance, intentional violations of 
ACs take place whenever the current action of the user 
is in disagreement with the purpose of the constraint, 
typically resulting from sensing limitations of the 
robotic system. In this case, the constraint is felt as a 
hindrance, resulting in disturbing interaction forces at 
the tip. Unintentional violations occur when the user 
shares the purpose of the constraint and accidental 
errors in the task execution are made. The classification 
of the user’s intended action during the cooperative task 
would allow one to optimally adjust the assistance level 
provided by ACs. ACs can have two purposes [1]:  

- Guidance constraints are enforced to guide the 
motion of the tool along a specified trajectory; 

- Regional constraints are enforced to bound the 
motion of the tool into certain safe regions. 

Both types of constraints were considered in this work, 
and modeled with a planar geometry according to a 
conventional viscoelastic constraint model: 

𝒇 = 𝐾(𝒙 − 𝒙𝑒𝑞) − 𝐷𝒙̇ (1) 

where 𝒙 and 𝒙̇ are the position and velocity of the tool 
tip; K  and D are the stiffness and damping parameters 

(𝐾 > 0, attractive fixture), eqx  is the equilibrium point 

that lies on the constraint where it is closest (Euclidian 
distance) to the current tool tip position. To enforce the 
constraints during the cooperative guidance, the 
commanded torque of the haptic master is computed 
from the resulting Cartesian force 𝒇  according to the 
geometrical Jacobian. 
 
Classification Method 
 
Two NN-based binary classifiers were developed for the 
runtime identification of “intentional” and 
“unintentional” violations of ACs. The two approaches 
exploited different features, extracted from the 
interaction force signal across the tip-constraint 
interface, as follows: 

1. Statistical (StNN): A feedforward NN was 
trained and validated on a dataset of 7 
statistical features computed on the temporal 
evolution of the interaction force: mean, 
variance, energy, maximum value, integral, 
waveform length, average amplitude change; 

2. Spectral (SpNN): A feedforward NN was 
trained and validated on a dataset of 10 spectral 
features computed on the time evolution of the 
force energy distribution using the Wavelet 
decomposition (9 levels) [4]; 

The structures of the StNN and SpNN were composed 
of one hidden layer (15 and 33 neurons respectively, 
“trial and error” optimization), and one output neuron 
(hyperbolic tangent activation functions). 
 
EXPERIMENTAL DESIGN 
 
Experimental setup 
 
The Phantom Omni (Sensable Technologies, Inc.) 
haptic device was used during assisted cooperative 
tasks. The active constraint controller was implemented 
using the “PhanTorque” 1  Simulink-compatible library 
on Matlab/Simulink R2014b platform. Visual feedback 
of the task execution was provided with a 2-D monitor. 
 
 
                                                           
1 https://sir.upc.edu/wikis/roblab/index.php/Projects/Pha
nTorqueLibraries 
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Experimental protocol 
 
To evaluate task-independent properties of the two 
classifiers, two sets of tasks were considered (Fig. 1):  

- Following task. The user was asked to 
accurately move along 2D spline-based paths, 
assisted by a guidance constraint. He/she was 
asked to circumvent any circular obstacles 
placed along the path by acting against the 
constraint; 

- Reaching task. The user had to accurately place 
the pointer on several equally spaced targets, 
which lay within a forbidden region bounded 
by a regional constraint with 50% probability. 

 
 
We asked 12 subjects to perform 10 trials for each of 
the two tasks. The force signal was filtered, recorded, 
segmented to extract non-null interactions ( 0f ) and 
labeled as intentional or unintentional according to the 
known positions of obstacles/region boundaries. Two 
task-related datasets were built from all users across all 
trials. Both SpNN and StNN methods were cross-
validated on each task dataset, and the performance 
were computed in terms of sensitivity (𝑆𝑒)  and 
specificity (𝑆𝑝) over time as: 

))()(/()()( tFNtTPtTPtSe   (2) 

))()(/()()( tFPtTNtTNtSp   (3) 

where 𝑇𝑃 and 𝑇𝑁 are the amount of correctly classified 
intentional (true positive) and unintentional violations 
(true negative), respectively;  𝐹𝑁  and 𝐹𝑃  are the 
amount of misclassified intentional (false negative) and 
unintentional violations (false positive), respectively.  
 
RESULTS AND DISCUSSION 
 
The classification threshold applied on the continuous 
output of the networks was optimized to achieve 90% 
asymptotic specificity. Consequently, the classifier was 
evaluated in terms of sensitivity-time profile (Fig. 2), 
and the minimum time interval to overcome a 90% 
sensitivity level was obtained. The 𝑆𝑒  index shows a 
sigmoidal profile in time for both tasks and methods. As 
reported in Table I, the 90% sensitivity was achieved for 
both methods within 1s for the following task (mean 
velocity 4.17 mm/s), and within 3s for the reaching task 
(mean velocity 8.36 mm/s). In the following tasks, as no 
motion limitation was imposed to the user during 
obstacle avoidance, a greater penetration was recorded 

with respect to the reaching task. Moreover, the StNN 
method resulted in higher performance with respect to 
SpNN method, yielding a 60% time reduction for the 
following task, and a 30% reduction for the reaching 
task. The proper classification timing is chosen based on 
the sensitivity level required by the specific application. 

 
Fig. 2. Sensitivity profiles in time, across methods and tasks.

 
Table I Classification time and relative constraint penetration 
among methods and tasks (𝑺𝒆 = 𝟗𝟎%). 

Task Method Time 
[s] 

Penetration 
[mm] 

Following StNN 0.559 0.82 
SpNN 0.954 1.21 

Reaching 
StNN 0.816 0.51 
SpNN 2.911 0.52 

 
CONCLUSIONS 
 
NN-based algorithms were demonstrated to be suitable 
for the runtime task-independent classification of 
intentional and unintentional violations of ACs. Better 
performance was obtained for the guidance constraints 
with respect to regional constraints. Additionally, the 
use of statistical features yields a faster classification 
with respect to the use of spectral parameters. Future 
work could apply multi-objective model selection to 
find the optimal classifier, introduce data regularization 
(subsampling) to prevent class unbalance and combine 
statistical and spectral features. Moreover, some 
methods to exploit the continuous output of the NN 
could be investigated to optimally modulate the 
constraint assistance according to the probability of the 
user’s intention classification in surgical manipulation 
tasks. 
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Fig. 1. Following Task (left) and Reaching Task (right) 
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