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Abstract— This paper addresses the computational issues
involved in the solution to an infinite-horizon optimal con-
trol problem for a Markov Decision Process (MDP) with a
continuous state component and a discrete control input. The
optimal Markov policy for the MDP can be determined based
on the fixed point solution to the Bellman equation, which
can be rephrased as a constrained Linear Program (LP) with
an infinite number of constraints and an infinite dimensional
optimization variable (the optimal value function). To compute
an (approximate) solution to the LP, an iterative randomized
scheme is proposed where the optimization variable is expressed
as a linear combination of basis functions in a given class:
at each iteration, the resulting semi-infinite LP is solved via
constraint sampling, whereas the number of basis functions is
progressively increased through the iterations so as to meet
some performance goal. The effectiveness of the proposed
scheme is shown on a multi-room heating system example.

I. INTRODUCTION

The goal of this paper is to develop computationally ef-
fective control design methods for large scale systems where
continuous dynamics, discrete dynamics, and uncertainty
are tightly coupled, [1]. We adopt the quite comprehensive
modeling framework of Markov Decision Processes (MDPs,
[2]) with a continuous, possibly hybrid, state space, and
explore the use of randomized methods to defeat the curse of
dimensionality hampering the use of standard control design
techniques.

We focus on the problem of designing a state feedback
control policy that maximizes an infinite-horizon expected
discounted reward function for an MDP with a hybrid state
space and a discrete input space. The considered stochastic
optimal control problem can be solved –in principle– through
dynamic programming by determining the fixed-point of the
Bellman equation so as to determine the so-called optimal
value function and then the optimal control policy (see e.g.
[3], [4]). The optimal value function and policy can be
efficiently computed when the state and control spaces are
finite and not too large compared with the memory storage
capacity. If the state space is infinite but its dimension is
small, computations can be performed by gridding the space,
approximating the original MDP with a finite state MDP, and
determining the (approximate) optimal value function and
control policy on the grid points, see e.g [5], [6], [7]. As a
result, the practical use of dynamic programming is limited
by the exponential growth with the problem dimensions of
the computation and storage requirements.

Inspired by [8] and [9], we develop in Section II an
approximate dynamic programming method resorting to ran-
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dom sampling of the state space instead of gridding in
order to overcome these limits. Scalability of the proposed
approach could be further enhanced by taking advantage of
model abstraction techniques (see e.g. [10] and the reference
therein), which, however, are not considered in this paper.

As in [11] dealing with finite state MDP, we start by
rephrasing the Bellman equation as a constrained Linear Pro-
gram (LP) where the unknown quantity to be determined via
optimization is the optimal value function, and it is subject
to a set of constraints, one per each state-control input pair.
When the state space has a continuous component, the result-
ing LP is infinite dimensional in both the decision variables
and the constraints. By expressing the optimal value function
to be determined as a linear combination of a finite number
of basis functions, then, the infinite LP is transformed into a
semi-infinite LP, i.e., an LP with a finite number of decision
variables but an infinite number of constraints, which, in
turn, can be tackled via the scenario approach to robust
convex optimization. The idea of the scenario approach is
to consider a finite number N of constraints only, and solve
the resulting finite LP. If N is appropriately chosen, then, the
originally infinite constraints are guaranteed to be satisfied
probabilistically, with a certain confidence, [12], [13], [14].
Quality of the obtained approximation of the value function
(and, hence, of the resulting policy) is strongly affected by
the choice of the basis functions. This is indeed a key issue
in function approximation as well, where data samples in
the form of input and output of an unknown (static) function
are available and an approximation of the function through a
linear combination of basis functions is looked for. Families
of universal approximators have been studied in this context
(see e.g. [15], [16], [17]), but an effective method to select an
appropriate finite number of functions out of a given family is
still to be developed. The present paper represents a first step
in this direction within the more challenging framework of
approximate dynamic programming, the additional challenge
being that input/output data samples are not available for the
unknown optimal value function.

To compute an approximate solution to the infinite LP
reformulation of the Bellman equation, in Section III an
iterative Approximate LP (iALP) scheme is proposed where
the optimization variable is expressed as a linear combination
of basis functions in a given class. At each iteration, the basis
functions are given and the resulting semi-infinite LP can
be solved via constraint sampling. Through the iterations,
the number of basis functions is increased by adding a
suitably chosen basis function at each iteration. The iterative
procedure is halted when some performance goal is reached
or some upper bound on the number of basis functions is
hit. From an implementation point of view, the solution to
each scenario LP involves integral calculations, which may



hamper the computational efficiency of the method. However,
in certain cases, depending on the stochastic kernel governing
the MDP evolution and the chosen basis functions, integrals
admit an analytic solution, which makes the overall approach
particularly appealing. This is the case of the multi-room
heating system example in Section IV.

II. OPTIMAL CONTROL & LP REFORMULATION

Consider a discrete time MDP H = (S,U , Ts), with
state space S, control space U , and controlled transition
probability function given by the stochastic kernel Ts :
B(S) × S × U → [0, 1] that assigns to each s ∈ S and
u ∈ U a probability measure Ts(·|s, u) on the Borel space
(S,B(S)). Ts(·|s, u) describes the next state conditional
probability distribution given that the current state is s and
the control input u is applied, and it is still well-defined
when the state space S is hybrid, i.e., S = Q × X , where
Q = {q1, . . . , qm} is a finite discrete state space and X = R

n

is a continuous state space, [18]. Given an MDP H , our goal
is to design a state feedback control policy that optimizes
some performance index when applied to H . To this purpose,
we next recall the notion of Markov policy.

Definition 1 (Markov Policy): A Markov policy π for an
MDP H = (S,U , Ts) is a sequence π = (π0, π1, π2, . . . ) of
maps πk : S → U , k = 0, 1, 2, . . . , from the state space S
to the control space U . If all the maps πk are identical, then,
the policy is said to be stationary. �

We denote the set of stationary Markov policies as Πm. In
the sequel, we shall consider only stationary policies.

We can now formulate the control problem as that of
determining a Markov policy π⋆ ∈ Πm that maximizes the
average discounted reward:

V π(s) = Eπ
s

[

∞
∑

t=0

γtℓ
(

s(t), µ(s(t))
)

]

, (1)

where γ ∈ (0, 1) is the discount factor, Eπ
s [·] denotes

the expectation with respect to the probability measure P π
s

associated with the policy π and the initial condition s(0) =
s, and ℓ : S×U → R is the reward per stage function, which
is assumed to be bounded. We shall next recall known facts
regarding the dynamic programming solution to this control
problem, [4].
The reward function (1) associated to a stationary Markov
policy π = (µ, µ, µ, . . . ) ∈ Πm can be characterized through
the recursive equation

V π(s) = ℓ(s, µ(s)) + γEs′∼Ts(·|s,µ(s)) [V
π(s′)] ,

where Es′∼Ts(·|s,u)[·] denotes the expectation with respect
to the conditional probability distribution Ts(·|s, u) for s′:
Es′∼Ts(·|s,u) [V

π(s′)] =
∫

S V π(s′)Ts(ds
′|s, u). The optimal

value function V ⋆(s) = supπ V
π(s) is the unique fixed point

to the Bellman equation: V ⋆(s) = T [V ⋆(s)], where T is
called Bellman operator and is given by

T [V (·)] (s) = sup
u∈U
{ℓ(s, u) + γEs′∼Ts(·|s,u)[V (s′)]}.

An optimal policy µ⋆ : S → U can be computed from the
optimal value function as follows

µ⋆(s) ∈ arg sup
u∈U
{ℓ(s, u) + γEs′∼Ts(·|s,u)[V

⋆(s′)]}.

Grid-based solutions to the problem of computing the op-
timal value function and the optimal control policy can be
adopted when the state space dimension is low, [7], [19].

The problem of determining V ⋆(·) can be rephrased as the
following LP:

min
V (·)

∫

S

Ψ(s)V (s)ds (2)

subject to:

V (s) ≥ ℓ(s, u) + γ

∫

S

Ts(s
′|s, u)V (s′), ∀s ∈ S, u ∈ U ,

where Ψ : S → R+ is a weighting function on the state
space S. Indeed, a feasible solution V (·) to (2) satisfies:
V (s) ≥ T [V (·)](s), ∀s ∈ S, and, since the Bellman operator
T is a monotonic contraction mapping, it holds that V (s) ≥
T [V (·)](s) ≥ T 2[V (·)](s) ≥ . . . · · · ≥ T n[V (·)](s) ≥
· · · ≥ V ⋆(s), ∀s ∈ S, which shows that V (·) is an upper
bound on V ⋆(·), and, hence, minimizing

∫

S
Ψ(s)V (s)ds is

equivalent to minimizing
∫

S Ψ(s)|V (s)−V ⋆(s)|ds which is
the Ψ-weighted 1-norm of the error. This gives an interpreta-
tion of Ψ(·) as a state-relevance weight, which can be chosen
so as to give higher weight to regions of the state space
in which we would like a better approximation. If we set
∫

S Ψ(s)ds = 1, then Ψ(·) can be interpreted as a probability
distribution over the state space S, and

∫

S
Ψ(s)V (s)ds as the

expected value of V (·) with respect to Ψ(·): Es∼Ψ(·)[V (s)].
The LP (2) is hard to solve since optimization is performed

over an infinite dimensional functional space and the number
of constraints is infinite. In the following section we shall
provide an approximate solution to (2) for the case when the
state S is hybrid, i.e., S = Q×X , under the assumption that

Assumption 1: The control space U is a finite set. �

This assumption is quite standard in practice, since when U
is not finite some gridding is typically performed to find a
numerical solution to the problem.

III. ALP SOLUTION

Given a finite set of pre-specified basis functions Φk =
{gi : X → R}ki=0 defined on the continuous state space
X , we approximate the optimization variable V (·) in (2) as
follows:

V w
k (q, x) =

k
∑

i=0

wiqgi(x), (q, x) ∈ S, (3)

with the coefficients of the linear combination that depend
on the discrete state component q ∈ Q.
By plugging (3) into (2), and recalling that

∫

S Ψ(s)V (s)ds =
Es∼Ψ(·)[V (s)], the resulting Approximate Linear Program
(ALP) is given by:

min
{wiq, i=0,...,k}q∈Q

E(q,x)∼Ψ(·)

[

k
∑

i=0

wiqgi(x)

]

(4)

subject to:
k
∑

i=0

wiqgi(x) ≥ ℓ(s, u) + γE(q′,x′)∼Ts(·|s,u)

[

k
∑

i=0

wiq′gi(x
′)

]

,

∀s = (q, x) ∈ S, u ∈ U .



Since the state space S = Q × X has infinite cardinality,
(4) is a semi-infinite LP problem and it is hard to solve.
We then head for a suitable relaxation of the problem so as
to make its solution computable. This relaxation consists in
reducing the constraints to a finite number while retaining
some (probabilistic) guarantees on the satisfaction of the
constraints that are not considered when computing the
solution. This is achieved through the so-called scenario
approach [14], which is briefly explained next.

A. Scenario-based ALP

Consider the semi-infinite convex optimization problem:

min
w∈Rd

cTw

subject to: fδ(w) ≤ 0, ∀δ ∈ ∆
(5)

where δ is some uncertainty parameter taking values in a
set ∆ according to some probability distribution P . Let us
formulate a relaxed version of problem (5):

min
w∈Rd

cTw

subject to: fδ(i)(w) ≤ 0, i = 1, 2, ..., N,
(6)

where δ(i), i = 1, . . . , N , are independently extracted at
random from ∆ according to P . Then, the following theorem
holds.

Theorem 1 ([14]): Suppose that, for any δ ∈ ∆, fδ(w)
is convex as a function of w ∈ R

d, and that problem (6)
is feasible for every N . Denote as w⋆

N its solution. Select a
‘violation parameter’ ǫ ∈ (0, 1) and a ‘confidence parameter’
β ∈ (0, 1). If N satisfies:

d−1
∑

i=0

(

N

i

)

ǫi(1− ǫ)N−i ≤ β, (7)

where d is the number of optimization variables, then, with
probability 1 − β, w⋆

N satisfies all constraints in (5) except
for a fraction of probability at most ǫ. �

By interpreting s ∈ S as the uncertainty parameter δ
distributed over ∆ = S according to P = Ψ, and including
the constant function g0(x) = 1, x ∈ X , in the basis
functions set Φk = {gi : X → R, i = 0, . . . , k} (so as
to guarantee the feasibility condition), the ALP problem (4)
can be approximately solved via Algorithm 1.

The quality of the solution obviously depends on the
set Φk of basis functions that are chosen to approximate
the optimal value function, which also has some impact on
the computational effort involved in the ALP solution and,
hence, its scalability. This issue is addressed next through an
iterative approach.

B. Iterative ALP (iALP)

The optimization variable V (·) in (2) is approximated
through V w

k (·) in (3) which is a linear combination of the
basis functions in the set Φk = {gi : X → R}ki=0 of
cardinality k + 1. In this section, we propose to solve the
problem of defining the set Φk, i.e., deciding how many
basis functions and which basis functions to include, through
an iterative procedure, where at each iteration j one basis
function is added to Φj , starting from the set Φ0 that contains
only the constant function g0(x) = 1, x ∈ X , needed for the

Algorithm 1 Scenario-based ALP
1: Fix ǫ ∈ (0, 1) and β ∈ (0, 1);
2: Compute N satisfying (7) where d = (k + 1)|Q|;
3: Extract N values s1, . . . , sN from S according to Ψ(·).

Set SN = {s1, . . . , sN};
4: Solve the relaxed ALP problem:

min
{wiq, i=0,...,k}q∈Q

E(q,x)∼Ψ(·)

[

k
∑

i=0

wiqgi(x)

]

(8)

subject to:
k
∑

i=0

wiqgi(x) ≥ ℓ(s, u)

+ γE(q′,x′)∼Ts(·|s,u)

[

k
∑

i=0

wiq′gi(x
′)

]

,

∀s = (q, x) ∈ SN , u ∈ U .

constrained LP problem (4) and its scenario version (8) to
be always feasible.
More precisely, we consider a family of basis functions that
are finitely parameterized via some meta-parameter vector
ϑ: F = {f(·;ϑ) : X → R, ϑ ∈ Θ}. For instance, f(·;ϑ)
can be a Gaussian basis function parameterized through its
mean and covariance matrix.

The iterative procedure works as follows.
We set a maximum number K of basis functions to be added
to Φ0, and generate a sampled space SN , with N computed
according to Theorem 1, using K in place of k to determine
d (i.e., d = (K+1)|Q|). The solution to (8) computed based
on Φ0 is considered as baseline.
At each iteration j ≤ K , a new set of basis functions is
constructed as follows:

Φj(ϑj) = {gi : X → R}j−1
i=0 ∪ {f(·,ϑj) : X → R},

where gi : X → R, i = 1, . . . , j − 1, were defined in the
previous j−1 iterations. The meta-parameter ϑj of the newly
introduced basis function is tuned at iteration j by solving
the following optimization problem:

min
ϑj

Hj(ϑj), (9)

with Hj(ϑj) defined as follows

Hj(ϑj) = E(q,x)∼Ψ(·)

[

j−1
∑

i=0

wiq(ϑj)gi(x) + wjq(ϑj)f(x,ϑj)

]

,

where the coefficients wiq(ϑj), i = 0, 1, . . . , j, q ∈ Q, of
the linear combination of basis functions depend on ϑj since
they are obtained by solving the scenario LP (8) with Φj(ϑj)
as set of basis functions.
The optimization problem above is nonlinear, but since we
are tuning only a single basis function, the tuning of ϑj can
be efficiently implemented by standard nonlinear optimiza-
tion routines, possibly starting from an initial random guess.
Once a solution ϑ

⋆
j is found, then, we set gj(·) = f(·;ϑ⋆

j ).
The iterative procedure stops when either a certain condi-

tion related to the quality of the solution, evaluated possibly



in terms of the Bellman residual, is met, or the maximum
number of iterations K is reached. When it does stop, a
new set SN of hybrid states is sampled (with N computed
according to Theorem 1 using the actual number of basis
function that were included) and (8) is solved once again so
that the probabilistic guarantees given by the scenario theory
are retained.
The iterative ALP (iALP) is summarized in Algorithm 2.

Algorithm 2 Iterative ALP

1: Fix ǫ ∈ (0, 1), β ∈ (0, 1), and K;
2: Compute N satisfying (7) where d = (K + 1)|Q|;
3: Start from Φ0 containing the constant function;
4: Extract N values s1, . . . , sN from S according to Ψ(·).

Set SN = {s1, . . . , sN};
5: j ← 1
6: repeat
7: ϑ

⋆
j ∈ argminϑj

Hj(ϑj) involving the solution to
(8) with Φj(ϑj) as set of basis functions;

8: Set Φj = Φj−1 ∪ {f(·,ϑ
⋆
j ) : X → R}

9: j ← j + 1
10: until j > K or the accuracy is met
11: k ← j − 1
12: Run Algorithm 1 with the set of basis functions Φk

IV. NUMERICAL EXAMPLE

We consider the multi-room heating system example that
was originally proposed in [20] and further elaborated in
[21], [18], [7]. The problem consists in regulating the tem-
peratures of n rooms. Each room has one heater, but only
one heater at a time can be active. The goal is to maintain the
temperature of each room inside a prescribed range [xl, xu]
. The optimal policy is a switching strategy that, at each time
step, decides based on the current temperatures of all rooms
and current status of the heaters whether heating a room or
not, and, in the former case, which room should be heated.

The multi-room heating system can be modeled as an
MDP process on a hybrid state space S = Q×X . The hybrid
state s = (q, x) is composed of a discrete state component
q ∈ Q = {1, . . . , n + 1} that specifies the room that is
being heated (no room if q = n+ 1) and a continuous state
component x = (x1, . . . , xn) ∈ X = R

n that represents
the average temperatures of all n rooms. The control space
U = Q is the set of all possible actions that correspond
to heating the uth-room if u < n + 1 or none of them if
u = n+ 1.

For a given discrete state q, the evolution of the continuous
state component xi is governed by the stochastic difference
equation

xi(k + 1) = xi(k) +
[

bi(xa − xi(k)) + cihi(k)+ (10)
∑

j=1,...,n;j 6=i

aij(xj(k)− xi(k))
]

∆t+ ηi(k), i = 1, . . . , n,

obtained by discretizing the corresponding continuous time
dynamic, using the constant-step Euler-Maruyama method
with discretization step ∆t. Parameter aij represents the
heat exchange coefficient between room i and room j, bi
is the heat loss rate of room i to the ambient, and ci is

the heat rate of the heater in the ith room. They are all
non-negative constants and are all normalized with respect
to the average thermal capacity of room i. The term hi(k)
is a boolean function that assumes the value 1 if q(k) = i
(i.e. when the ith room is heated), and 0 otherwise. The
ambient temperature xa is considered to be constant, and the
disturbance ηi affecting the temperature of room i is assumed
to be a sequence of i.i.d. Gaussian random variables with
zero mean and variance ν2∆t, independent of ηj , ∀j 6= i.
System (10) defines on the Borel space (X ,B(X )) a Gaus-
sian transition function Tx : B(X )× S → [0, 1] given by

Tx( · | (q, x)) = N ( · |Ξx+Γ(q), ν2∆tIn), (q, x) ∈ S, (11)

where Ξ is a square matrix of size n, Γ(q) is an n-
dimensional column vector, and In is the identity matrix of
size n. Each elements of Ξ and Γ(q) can be obtained from
the parameters in (10).
The evolution of the discrete state is driven by the transition
function Tq : Q × Q × U → [0, 1], with Tq(q

′|q, u)
representing the probability of a transition from q ∈ Q to
q′ ∈ Q when the control input u is applied. Here we take

Tq(q
′|q, u) =











1, u = q = q′

1− α, u 6= q, q′ = q

α, u = q′, q′ 6= q

, (12)

with α ∈ [0, 1] being the success probability of the thermo-
stat control action. If a discrete transition from q to q′ 6= q
occurs at time step k, then, the continuous state is reset
according to the dynamic equations (10) with the discrete
state set to q. Finally, using on (11) and (12), the transition
probability function Ts : B(S) × S × U → [0, 1] can be
defined as

Ts(dx, q
′ | q, x, u) = Tx(dx | q

′, x)Tq(q
′ | q, u). (13)

Let A = Q × Ax, with Ax := {(x1, . . . , xn) ∈ R
n :

xi ∈ [xl, xu], i = 1, . . . , n}. Then, the reward function to be
maximized can be expressed as

V π(s0) = Eπ
s0

[

∞
∑

k=0

γkρ(s(k), s(k + 1))

]

, (14)

where γ ∈ (0, 1) is the discount factor, and ρ : S × S →
{−1, 0, 1} is the reward per stage, which is set equal to

ρ(s, s′) =











−1, s ∈ A and s′ /∈ A

1, s /∈ A and s′ ∈ A

0, otherwise

(see [7] for more details).
By setting ℓ(s, u) =

∫

S ρ(s, s′)Ts(ds
′|s, u)ds, the reward

function (14) associated to a stationary Markov policy π =
(µ, µ, µ, . . . ) ∈ Πm can be rewritten in the form (1).

A. Comparison between iALP and AVI

In order to compare the performance of the iALP solution
with that of the Approximate Value Iteration (AVI) scheme
described in [7], we applied both algorithms to the multi-
room heating system problem. We considered two different
setup: a) two rooms and b) three rooms, numbered sequen-
tially in a row. As for the parameters entering the problem



description, coefficients aij were set equal to 0.33 if either
j = i + 1 or j = i − 1, and 0 otherwise. Coefficients
bi and ci were set equal to 0.25 and 12, respectively, for
all rooms. α was set to 0.8, ∆t = 1/10, xa = 6 and
ν2 = 1. The “safe” temperature range for each room was
set equal to [xl, xu] = [17.5, 22], and the discount factor γ
in (14) to 0.95. The parameters of the scenario approach were
β = 10−5 and ǫ = 0.01, and the maximum number of basis
functions in Algorithm 2 was K = 20, leading to a number
of scenario realisations N = 10632 for the two-room case
and N = 13363 for the three-room case. As for the AVI, we
used m = 40 grid points within Ax for the two-room case
and m = 15 for the three-room case.

Function Ψ((q, ·)) over X was set equal to a n-variate
Gaussian density function with independent components,
each one with mean µΨ = xl+xu

2 and variance σ2
Ψ = 5,

for any q ∈ Q. As for functions gi : X → R entering the
approximate optimal value function expression in (3), we
used n-variate Gaussian function with independent compo-
nents and with support limited to either Ax or Āx depending
on the fact that the basis function is used to approximate
the optimal value function over Ax or Āx. Additionally, we
include the indicator functions over Ax and Āx.

In the implementation of the iALP algorithm, in order to
decide if taking a basis function with support limited to Ax

or Āx, we toss a coin. Since the optimal value function is
much simpler over Ax, we set the probability of obtaining a
basis function with support limited to Ax equal to 0.25.
As a stopping criterion we monitored the mean square
Bellman residual (MSBR) computed over the scenario re-
alisations, i.e.

MSBRj =
1

N

∑

s∈SN

(V w⋆

j (s)− T [V w⋆

j (s)])2,

where V w⋆

j (·) is the (approximate) optimal value function
obtained via the scenario-based ALP at iteration j in Algo-
rithm 2.

We next show the results obtained using the iALP proce-
dure and compare them with those obtained with the AVI
approach. We first present the two-room case, and then the
three-room case.

In the two-room case, the iALP Algorithm stopped after
two iterations only, assigning no basis function over Ax and 2
basis function over Āx, besides the constant functions needed
to ensure feasibility. In Figure 1 we can compare the optimal
value function computed using the AVI scheme and that ob-
tained using the scenario-based ALP. As expected, the ALP
solution is an upper bound for the optimal value function
(here considered to be the solution of the AVI algorithm as a
reference). Interestingly, despite the fact that graphically the
two functions are not so similar, the approximation found
by the iALP approach achieves a quite small value for the
mean square Bellman residual (MSBR = 3.95 · 10−4 with
1
N

∑

s∈SN
V w⋆

j (s)2 = 0.5004).
As for the control policies, we focus on the discrete state

q = 1 and report in Figure 2 the iALP policy (left) and
the AVI policy (right). Different colors represents different
actions to execute when the system is in a particular state, in
our case red is u = 1, green is u = 2 and blue is u = 3. The

Fig. 1. Value function. iALP: gridded yellow. AVI: blue to green.

black rectangle represents the “safe” set. Despite the lack of
representation capabilities due to the small number of basis
function, the obtained policy captures the essential strategy
to control the multi-room system. Notice that the policies
are more similar close to the center of the “safe” set, and
they are more different outside the “safe” set. Yet, the iALP
policy reproduces the essential behavior. To better justify this
statement, we run a set of Monte Carlo simulations. Each
simulation consists of two trajectories that start from the
same random point in the hybrid state space and then follows
the two policies while being subject to the same disturbances
realizations. For each run and for both simulations per run,
we recorded the reward collected by the system along a 300-
step time horizon and computed the empirical estimate of
the expected reward. The number Nmc = 57565 of runs was
derived from Hoeffding’s inequality, Nmc > 2

ǫ2
log

(

1
δ

)

, so
as to guarantee an accuracy ǫ = 0.01 of the estimated reward
with confidence 1 − δ = 1 − 10−5. The obtained empirical
mean is reported in Table I under the “2-rooms” column.

In the 3-room case, the iALP algorithm started from a
situation where only the two constant functions were present,
and stopped after including 10 basis functions: 1 over Ax and
9 over Āx. The mean square Bellman residual was MSBR =
3.65 · 10−4 with 1

N

∑

s∈SN
V w⋆

j (s)2 = 0.6395, revealing
again that the obtained solution almost satisfies the Bellman
equation. A comparative evaluation between the iALP and
AVI policies was performed via Monte Carlo simulations and
is reported in the “3-rooms” column of Table I. A sample of
the simulated temperature trajectories is reported in Figure 3,
which shows that there is no apparent difference between the
two approaches in controlling the system.

2-rooms 3-rooms
iALP 0.6718 0.6853

AVI 0.6785 0.6873

TABLE I

IALP AND AVI PERFORMANCE COMPARISON.



Fig. 2. Optimal policy - Left: iALP. Right: AVI.
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Fig. 3. System evolution in an MC trial - Top: iALP. Bottom: AVI.

V. CONCLUSIONS

In this paper, we propose an iterative approximate linear
programming approach to the solution of an optimal control
problem for an MDP with a hybrid state space and a discrete
control space. Iterations are introduced to progressively de-
fine the set of basis functions that is used to approximate the
optimal value function. A randomized approach is adopted
at each iteration to overcome the curse of dimensionality
issue due to the presence of a continuous component of the
state. Preliminary results obtained in a multi-room heating
system example appear promising. Still simulation results
were limited to low dimensional instances and further tests
are needed to assess the scalability of the approach.

REFERENCES

[1] J. Lygeros and M. Prandini, “Stochastic hybrid systems: a powerful
framework for complex, large scale applications,” European Journal
of Control, vol. 16, no. 6, pp. 583–594, 2010.

[2] C. H. Papadimitriou, Computational complexity, C. H. Papadimitriou,
Ed. Addison-Wesley, 1994.

[3] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximators.

[4] D. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific, 1995.

[5] A. Abate, S. Amin, M. Prandini, J. Lygeros, and S. Sastry, “Com-
putational approaches to reachability analysis of stochastic hybrid
systems,” in Hybrid Systems: Computation and Control, ser. Lecture

Notes in Computer Sciences, A. Bemporad, A. Bicchi, and G. But-
tazzo, Eds. Berlin: Springer-Verlag, 2007, vol. 4416, pp. 4–17.

[6] A. Abate, J. Katoen, J. Lygeros, and M. Prandini, “Approximate model
checking of stochastic hybrid systems,” European Journal of Control,
vol. 16, no. 6, pp. 624–641, 2010.

[7] M. Prandini and L. Piroddi, “A self-recovery approach to the prob-
abilistic invariance problem for stochastic hybrid systems,” in 51st
IEEE Conference on Decision and Control, 2012.

[8] A. Petretti and M. Prandini, “An approximate linear programming
solution to the probabilistic invariance problem for stochastic hybrid
systems,” in 53rd IEEE Conference on Decision and Control, Los
Angeles, USA.

[9] N. Kariotoglou, S. Summers, T. Summers, M. Kamgarpour, and
J. Lygeros, “Approximate dynamic programming for stochastic reach-
ability,” in European Control Conference, 2013.

[10] M. Prandini, S. Garatti, and R. Vignali, “Performance assessment and
design of abstracted models for stochastic hybrid systems through a
randomized approach,” Automatica, vol. 50, no. 11, pp. 2852–2860,
2014.

[11] D. de Farias and B. V. Roy, “The linear programming approach to
approximate dynamic programming,” Oper. Res., vol. 51, no. 6, pp.
850–856, 2003.

[12] G. Calafiore and M. Campi, “Uncertain convex programs: randomized
solutions and confidence levels,” Mathematical Programming, vol.
102, no. 1, pp. 25–46, 2005.

[13] ——, “The scenario approach to robust control design,” IEEE Trans-
actions on Automatic Control, vol. 51, no. 5, pp. 742–753, 2006.

[14] M. Campi, S. Garatti, and M. Prandini, “The scenario approach for
systems and control design,” Annual Reviews in Control, vol. 33, no. 2,
pp. 149–157, 2009.

[15] G. Cybenko, “Approximation by superpositions of a sigmoidal
function,” Mathematics of Control, Signals and Systems,
vol. 2, no. 4, pp. 303–314, 1989. [Online]. Available:
http://dx.doi.org/10.1007/BF02551274

[16] J. Park and I. W. Sandberg, “Universal approximation using radial-
basis-function networks,” Neural Comput., vol. 3, no. 2, pp. 246–257,
Jun. 1991.

[17] L. Breiman, “Hinging hyperplanes for regression, classification, and
function approximation,” IEEE Transactions on Information Theory,
vol. 39, no. 3, pp. 999–1013, May 1993.

[18] A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Probabilistic
reachability and safety for controlled discrete time stochastic hybrid
systems,” Automatica, vol. 44, no. 11, pp. 2724–2734, 2008.

[19] W. Powell, Approximate Dynamic Programming: Solving the Curses
of Dimensionality. John Wiley & Sons, 2007.
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