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Abstract

This paper presents an Ant Colony Optimization (ACO) system to deal jointly with sequencing, routing and line-
side storing problems in a mixed model car assembly line. In today’s market, the customers demand an even
wider range of car models. Consequently, the majority of car manufacturers have changed from a single model
assembly line to mixed model assembly lines, generating enormous challenges for the operation of the assembly
line. Taking a holistic look at car production (i.e. considering sequencing, routing and line-side storing) allows
us to study performance optimization of the production process. We started with a review of the existing algo-
rithms. We could not find any papersaddressing this problem jointly. We developed a Mixed Integer Programing
(MIP) formulation for the problem. Unfortunately, only small instances of the problem can be solved up to opti-
mality, and thus we developed an ACO.

The mathematical model of the operation of the assembly line was based on the approach of sequence rules,
whereby the assembly line can handle a pre-determined production ratio (rate?) for each option. The approach
for the inventory and sequence part was an extension of the Inventory Routing Problem, whereby the inventory
and the transportation costs are minimized. Two approaches of ownership of the material handling vehicles are
examined. In our tests, we prove that the benefits of joint decision are larger when the value of the space is high-
er than in a low-cost facility. The holding cost acts as an amplifier of the possible savings. The main thrust of
this work consists in the development of the MIP and ACO system and discussion of the managerial insights for
the production and replenishment. Additionally, the change of the modelling approach from single problems to a
jointly approach.

Keywords: Sequencing, replenishment, MIP, ACO.
1. Introduction

The increase in car manufacturing complexity due to the globalization of business, and im-
mense variety of the models being produced, makes it necessary to take the decision to con-
sider more than one part of the production. Car manufacturers have evolved from selling one
model of one car, as Ford did with his Ford-T, without offering many choices. Nowadays, a
representative case is BMW, which theoretically offers 10 ** configurations of their cars, out
of which millions have been actually demanded (Meyr 2009).

Effective scheduling of the final assembly line could allow good control of the entire system
(Miltenburg et al. 1990). The assembly line is the “drum” that sets the rhythm for this orches-
tra, and the suppliers and the entire related activities should follow them. Some parameters
such as production capacity and production ratio are “almost” fixed but the scheduling, the
inventory and ways to replenish are not fixed.

The scheduling should pursue the smoothing of requirements of components to facilitate the
entire operation of the supply chain (Drexl and Kimms 2001). A related problem is the inven-
tory necessary for this operation. A high inventory level in the assembly line is a big cost con-
tributor. The car manufacturer’s objective is to keep low stock levels, performing the replen-
ishment of the production line and providing the required components at the right time



(Monden 1983). If the shipment arrives too early there may be no place to store it, if the
shipment arrives too late the car assembly line has to be stopped.

The problem of scheduling the car assembly line is not new, although using a holistic look at
car production (i.e. considering sequencing, replenishment and routing) allows us to study
performance optimization of the production process. There is a growing interest in solving
multi-objective problems, which has led the researcher to combine algorithm and create an
extension of the classical algorithms to achieve their objective (Lopez-Ibafiez and Stiitzle
2010).

The novel contribution of this paper consists in the proposal and test of a joint model to de-
cide the sequencing of the assembly line and to obtain routes that optimize the replenishment
and the line-side storage of the automotive assembly line. We developed a Mixed Integer Pro-
graming (MIP) formulation and Ant Colony Optimization (ACO) to deal with bigger instanc-
es. The idea behind those algorithms is that instead of addressing the scheduling, routing and
inventory problems separately, we could obtain a better solution with a joint approach

Authors, after a preliminary analysis that involved factory tours of as many as a dozen of cars
assembling plants around Europe and Japan, believe that the problem presented in this paper
is still relevant in today’s manufacturing environment. The material handling to provide com-
ponents to the workstations is done using forklifts, tow (tugger) trains or any other transporta-
tion vehicles and the proper routing for the replenishment vehicles is still necessary.

The present work is a continuation of an earlier study of car assembly lines to explore the ad-
vantage of the joint decision in planning and scheduling. In the earlier study (Pulido et al.
2013), we developed a MIP for the routing and inventory problem. In this work, we deal joint-
ly with the sequencing, routing and inventory problems: since only very small instances can
be solved using MIP, we developed an Ant Colony Optimization algorithm to deal with larger
Instances.

Dincbas et al. (1998) defines the sequencing problem as the selection of the appropriate order
in which cars are produced. Sequencing problems have been discussed in the literature for
many years. They are NP problems with a high complexity. It is necessary to find proper se-
quences, since it is unreasonable to require that the assembly line moves slowly enough to
allow every option to be put on every car. A set of consecutive cars is subject to sequencing
rules that restrict the maximum number of occurrences of certain characteristics in a sequence.
The line can handle a predetermined quota of cars for each option. The algorithm searches for
a sequence of models that meets the demand without violating any rule (Boysen 2009). The
sequencing rules are typically of type H, : Ny, which means that out of N, successive models,
only Hy, may contain the option 0 (Drexl and Kimms 2001). Giard and Jeunet (2010) present a
model that offers the option of hiring utility workers to allow the violation of spacing con-
straints which results in more colour grouping (??? Not clear).

Inventory Routing Problem (literature review should be restructured dividing it into subsec-
tions. This is clearly one). The Inventory Routing Problem (IRP) is defined as “a starting
point for studying the integration of different components of the logistics value chain” (check
missing ‘) i.e. inventory management and transportation. Traditionally, production and
transportation issues have been dealt with separately. It is expected that improvements may be
obtained by coordinating production and transportation. It is less obvious how to do it (Camp-
bell et al. 1998)(this should be right after the end of the quotation). The replenishment of the
production line is critical for the proper operation of the assembly line. An excess of invento-



ry creates an increase in the cost of working capital, space cost, and the risk of material obso-
lescence. On the other hand, a lack of components will probably result in rework costs or even
in the stoppage of the line.

The other (here we describe a “second” system. Which is the first??) system used in the car-
manufacturing environment for the replenishment of components is the Set pallet system (SPS)
that is used in some Toyota plants, which consist in change the line-side storage or flow racks
for a moving pallet or dollies traveling with the cars being assembled. As the size of the dolly
is not enough to carry all the components need to assemble one car, the dolly needs to be
changed in the different parts of the assembly line, and the transport of the dollies from the
warehouse to the connection points also requires routing techniques. Albeit being conceived
to work in plants adopting traditional material handling systems, the model presented in this
paper could be adapted for dealing with this material handling approach.

Following a classical approach, we started with the MIP and we followed with a heuristic.
The election of the heuristic was Ant Colony Optimization introduced by Dorigo et al (1996)
since it has offered good results for this kind of problems (Gottlieb et al. 2006, Silvia et al.
2008), and the representation of the pheromones make the interaction process more didactic (??
Why didactic? I would avoid this comment).

The remainder of the paper is organized as follows: Section 2 describes the problem. Section
3 provides a MIP mathematical formulation of the problem. Section 4 provides an ACO algo-
rithm. The computational study is in Section 5 and in Section 6 and 7 some managerial in-
sights, conclusions and further directions for research are given.

2. Problem Statement

we should be mentioning here that — when defining the problem (in the following) — we will
clarify the 3 main aspects characterizing an assembly line: namely assembling process (and
takt time), traveling time, CSP. The process to assemble a car requires the car’s chassis (Body
in White) to pass through several workstations. We define that the car is assembled when it
has passed through all workstations which install the different components. Some car
configurations require more than a takt time (we must first define takt time!) at the work-
station to carry out the tasks assigned to that very workstation. Other configurations require
less time. Additionally, all the components required in the workstation have to be replenished
from the warehouse. Each model has a set of characteristics, such as types of wheels and tires,
radio, sunroof, car seat, etc. In every workstation, a kit of components is installed; these com-
ponents can have different trim levels. The combination of components and trims gives us the
characteristics. To make it clearer; in the case of radio, High trim could mean radio/MP3, and
Low trim could mean radio/CD.

(I would suggest to rewrite: first assembly process split in tasks, then takt time, only then you
could introduce the concept of high/low trim)

The holding cost is a figurative (fictitious?) cost or penalty for have an excess of line side
storage for the following reason: the probability of damage or loss of a component increases
along the time that the component itself remains in the line-side storage. The holding cost of
the high trim components will be higher than that of the low trim components. The space of
the line-side storage is limited, and an excess of inventory could obstruct the proper operation
of the line. When there is excess of components the operator spends more time searching and
selecting components.



When considering the forklift — or the towing train (trailer), we have to consider the so-called
displacement time. The displacement time is the sum of the acceleration time, the travel dis-
tance, the braking time, and the time to unload components. The displacement times between
stations are similar since the only time that is distance dependent is the traveling time, (I
avoided the sentence because “slower” = “more relevant”) then only impact the result if the
distance is considerable.
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Figure 1 Displacement time of transportation vehicle

Here change in topic is abrupt. Find the right connection.

Then it is necessary to find sequences that keep the ratio in each workstation. Each time the
production ratio is above this number, it is considered as a rule violation. The present problem
is an extension to the Car Sequencing Problem (CSP) proposed for the ROADEF challenge in
2005, where we also consider the inventory level, and the replenishment of these components.

3. MIP Formulation
In this section, we begin by introducing the notation needed to formulate the problem. After-
wards, we present the mixed integer linear program for the joint solution of the problem.

Any chance to make this table a little bit more compact? Shall we divide the parameters in
groups or categories? Eg. Cost parameters; parameters to model other constrains; decision
variables; dummy variables.

Description
R Homogenous transportation vehicles that could perform a route;
L locations (workstations and warehouse);
M car model configurations;
C car components;
A trim levels;
] characteristic ] € all car components X trim levels;
T discretized production time;
D,, total demand of model m € M;
Ry 1 if the model m € M requires characteristic j€ J;
AVH amortization cost (per period) per transportation vehicle;
TDISy, displacement time from / € L to /€ L;




TC traveling cost per distance unit;
MC moving cost of component;
CAP maximum capacity of kits in a transportation vehicle;
LEN maximum length of the route;
HC; holding cost of component corresponding to characteristic j € ] per time unit;
ST, safety stock with characteristic j € J in location | € L;
SToj initial stock for characteristic j € J in location 1 € L;
H;: N; at most H; of N;successively sequenced cars may have characteristic j € J;
V(; violation rule cost per characteristic j € J;
M a large scalar value;
W, 1 if route r € R attends [/ € L; O otherwise;
Xriu 1 if [ € L immediately precedes I' € L, on route r € R; 0 otherwise;
Vel 1 if model m € M is processed on cycle 7 € T in location | € L, 0 otherwise;
tr discrete time in which the route r € R arrives to the location [ € L;
dem;, demand for component of characteristic j € J in cycle T € T, in location | € L;
dem/ accumulated demand for the component with j € JatcycleTt€ T inl € L;
Ciire amount of component replenished with j € Jrequiredinl€EL,in€RinT € T;
Cisrt accumulated amount of component with j€Jinl€L,inr ERincycle T €T;
qjur amount of component required with characteristic j € J in I’€ L in route r € R;
Stig Stock of component to characteristic j € Jinl € L atcyclet € T;
a, 1 if the route r € R is used for the replenishment; O otherwise;
Beri 1if t,; = ord(7) , 0 otherwise;
fiur flow of component with characteristic j € J between l and I’' € Lin r € R;

Table 1. Set, Parameters and Variables

This part could be maybe postponed. Consider this please.

Equation (1) is the objective function. (shall we invest 3 lines to explain the component of the
Objetive Function?) Eq. (2) warrants that the demand is satisfied. Eq. (3) allows only one car
is at one station. Eq. (4) makes sure that the car pass to the next station. Eq. (5) is the produc-
tion ratio rule. Eq. (6), Eq. (7) and Eq. (8) ensure that each location is served by one route. Eq.
(9) obeys route to have a predecessor except for the warehouse. Eq. (10) forces that if a route
reaches a location, the route departs from that location. Eq. (11, 12) set the number of routes
equal to the number of vehicles. Eq. (13) accounts a route if the vehicle visits at least one lo-
cation. Eq. (14) sets the maximum length of the route. Eq. (15) limits the number of vehicles
used to the available ones. Eq. (16, 17) define the time that arrival time for each location.
Equation (18) sets the maximum capacity of the route. Eq. (19) sets the demand of certain
characteristic only when the car required this characteristic. Eq. (20) defines the amount of
components that is left at the station. Eq. (21) sets the accumulated demand. Eq. (22, 23) set
that the accumulated components required. Eq. (24) defines the stock. Eq. (25) establishes the
safety stock. Eq. (26, 27, 28) establish that the required amount of components will be equal



only to the replenished components when the replenishment occurs. Finally, equations (29,
30) define the time of the replenishment.

The problem:
min. Y, TCXTDISy, Xxy, + MC Y jyr fjum + AVHX Y + X HC XSty + (1)
Zj‘r VC]'XZ]-T
subject to
e Yma =Dp VMEMVIEL (2)
Ym Vmu <1VteTvileL\{WH} 3)
Yme = VYmi-11-1 VMEMVTET,VIEL\{WH} 4
Ym ZZT_NT"‘I Rnj Vmen < Hj + Mzj; Yj €], YT €T,V EL\{WH} )
Zrlll:ﬁll e =1 VI €L {WH} (6)
YrvuerXey =1 V1 €L \{WH} (7)
errl=1VIEL\{WH} (8)
Wy = Xzt Xr YT ERVIE L\ {WH} )
YiXp =X Xpn VI EL, VT ER (10)
Zrlxrlwh =Zrar (11)
Zrll Xrwhir = Zr oy (12)
lel Xyllr < anr VreR (13)
Y Xr = LENVYTER (14)
rar < |R]| (15)

if l=wh t,; >TDIS; —M(1—x,) —MQ2—w; —w,,) VI €ERVLI €L (16)

Z]lf}whlr‘zCAP Vr €ER (18)

demjy = YXm RmjYmn VjEJLVTET,VIEL (19)

fiwr = Fjeers 2 Qe — M1 = 2xp) = M1 = xp1p1) = M(3 — wyg — Wy — (20)
wor) Yje], vLU,I" eLVreR

demfy = demj,, —demj; Vj€],VI€LVteT\{1} 21

ift=1cj; =cu VJELVI ELVTERVTET ={1} (22)

else cji. = ¢jji, g + Cupe V€V €LVT ERVTET\{1} (23)

Stiyy = SToj; —demi + ¥, ¢z, VjEJVTET\{1}LVIEL (24)

Stjy = STy VjEJVTET,VIEL (25)

Cure = Qi — M1 = Brp) —M(A =Xy x,y)VjEJ VU ELVr €ERVTET (26)

Cure < qy VjELVI ELVr€RVTET (27)

Citrr S MXB VjELVI ELVr€ERVTET (28)

ty ST+MQA —Br) +M(A =Y %) VTER VI ELVTET (29)

ty =2T—MQA—=By) —MA-Y,x,) VFERVI ELVTET (30)

4. Ant Colony Optimization
This should be completely rewritten (more precise)
For the ACO problem, we use the following notation. The problem is defined by a 12-tuple (C,
Class, O, ], A, S, h,n, r, V, T DIS) such that:
o CO ={cy, ..., cn} 1s the set of cars to be produced;
Class = the set of all different cars sharing the trim level for all components;
0 = {04, ..., 0y, } 1s the set of different components;
A: trim levels; (follow order: J comes first)

o
o
o
o ] :characteristic ] € OXA;



o S ={sq,..,5n} is the set of stations to install the different components;

H;: N; at most H; of N;N; successively cars may have characteristic j;

o 1 :Cx0 —{0, 1}, 7;; =1 if in station s; the component with the characteristic H; is
installed, r;; = 0 otherwise;

o V :defines a maximum number of transportation vehicles; and

T (missing?)

o TDISg, : defines displacement times from station S; to station ;.

O

(@]

The following notation is used to denote the change of sequences:

o asequence is noted ™ = {c;1, Ci2, -, Cix } 5

unique set of options required by a car is a class classOf (¢;) = {hjeH|r;; = 1};

o aroute is defined as a nonempty subset of stations attended by each vehicle,
Ry, = {S0,S1, -++» Sm+1} Where sg = s;,,,1 denotes the depot;

o the set of all sequences that may be built is 7.

o the concatenation € of two sequences is the first followed by the second;

o asequence m; is a subsequence of another m, , m; € 7y, if there exist another sequence
that can be concatenated to m; to create mo;

o 1 cycle (takt) time; and

o the cost of the sequence © and the route R depend upon the number of violated con-
straints, the vehicles used and the distance traveled by each vehicle, and the amount of
stock in the assembly line (see equation 32).

O

The problem is solved when a production plan is found that violates the !'minimum number
of!! (if there is a cost for the violation, then the solution is the one minimizing costs, not vio-
lations!) sequence rules and the routes for replenishing all the components are identified, so
that the capacity and constraints are met. Each route will be attended by only one vehicle. A
production plan will be defined as the set of production sequences and the routes for the vehi-
cles that permit replenishment of the components for the given production requirements. The
solution is driven by four main costs: the cost to the use utility workers for overloading of the
station, due to violations of the sequence rule (33), the use of the transportation vehicles (34),
the distance travelled by the transportation vehicles (35), and the inventory cost of the com-
ponents (36).

cost(m, R) = Yo.e0 anﬂn violation(my, 0;) XvioCost + Y, (travelCost(Vn) + (32)
vehicles Used(V,,)xCost) + Y, holdingCost(s,,)

where
violation(my, 0;) = 0 if Xy, Tj < Hj ; 0 otherwise (33)
vehicles Used(V,) = 0 of distanceTraveled(V,) = 0, 1 otherwise (34)
travelCost(Vn) = ),;cg TDIS;;, XunitCOstKm (35)
holdingCost(s,,,) = X.j; stockj, XunitCostStock (36)

4.1  ACO Algorithm. From the literature review, we found out that the majority of algo-
rithms for the CSP has a single objective of Minimize the violations, and CSPLib and
ROADEEF are the reference instances. Recently the use of multiples pheromones has given
good results. For the IRP or vehicle routing problem with extensions (VRP) more approaches
that are multi-objective appear and multiple ant colonies (?? Is it relevant??). The test instanc-
es for VRP problems is out of our context (WHY?) (see Table 2). In general I wouldn’t put
this paragraph here. Better in the literature review...



Type
of ACO Multiple Multiple
Paper prob- Data Type Obj ecgve Pherorrll)one
lem
Gottlieb et al., 2003 CSP CSPLib classic No No
Gravel et al. 2005 CSP CSPLib, classic No No
Gagné et al. 2006 CSP Roadef classic No No
Solnon 2008 CSP Roadef classical No YES
Morin et al. 2009 CSP CSPLib, ACS-3D No YES
Solomon 1987 VRP Own ACS No No
Gambardella et al. 1990 | VRP Solomon ACS No No
Baran and Schaerer 2003 | VRP Solomon | multiple YES YES
Bell et al. 2004 VRP | Christofides | multiple YES No
Huang and Lin 2010 IRP Solomon, | modified YES No

Table 2. Review of the CSP and IRP problems using ACO (is a short explanation of the “ACO
TYPE” required? Here or in section about literature?)

Following the ACO scheme, where each part of the problem is modeled as the search for a
best Hamiltonian (define) path in the graph, solutions are constructed using a pheromone
model, then the solutions are used to modify the pheromone values. As we use utility workers
for the sequence part, all the sequences are feasible by definition. But sequences not respect-
ing the takt-time or workload balncing will have to bear extra costs). A big enough set of
transportation vehicles is defined to ensure that all the routes are feasible and capable of de-
livering the components when needed.

The algorithm uses two types of ants: the sequencing ants and the routing ants. A routing ant
will have terminated its path when all the stations are visited.

The vehicles depart from the depot with a load of components equal ling (on average) the
number of vehicles v divided by the number of stations s times the number of cars produced n,
always respecting the vehicle capacity (see Eq. 37).

Here there is confusion (also in the way concepts are preented) between the physical structure
of the problem and the logical structure of the solving algorithm. The various parts should be
re-ordered to make reading smoother.

v Xn

. < capacityOfVehicles (37)

When describing the problem you mix some parts describing the “physical” structure of the
problem and the logic behind the algorithm. It would be better to separate them and proceed
in order.

Each vehicle from the replenishment route departs from the warehouse (s; = 0), visits the
stations and goes back to the warehouse again at the end of the route. The transportation time
includes traveling from station s;to station s; and unloading the components. In order to pro-
mote the exploration of different solutions each routing ant starts the exploration from a
different point, we multiply the probability matrix for the Eq. 38 as a factor of the selection of
the cands in the algorithm 1. This last sentence is not clear — explain by introducing probabil-
ity matrix first



(ord(ant) + 1)

(38)
totalNnumberOfAnts

We give a detailed formulation of the construction algorithm in the appendix (ok but explain
this at the very beginning: we are going to give a brief outline of how the algorithm works,
and in the appendix you will find full details...). First, pheromone trails are initialized, and
then at each cycle sequence ants construct a full sequence and a full route from an empty se-
quence and empty route. Cars are iteratively added until the sequence is completed. At every
step, candidate cars are restricted to the ones that generate the minimum cost; this means that
the election is restricted only to cars which create minimum extra cost. With this set of candi-
dates (cand),the next car is chosen using transition probability Eq. (39 or 40). the sequencing
ants keep doing this, until all the cars are sequenced. Then the demand over the time is calcu-
lated and the replenishment route is built. In order to build the route (the routing ant?) start
from an empty route. The depot is duplicated a number of times to equal the number of trans-
portation vehicles. We start to add stations from the non-attended locations (candS) between
the ones that generate the minimum cost and we choose for each vehicle the one that adds the
minimum cost; the probability Eq. (41) will depend on 753 and 1 values. Once all stations have
been attended, we decrease the number of vehicles and repeat the creation of routes, unless
that number of vehicles cannot attend all the stations on time. We should keep the best solu-
tion to lay pheromones. Finally, we repeat the entire process. The algorithm stops iterating
after a maximum number of cycles have been performed.

(the following sentence is not very clear — could you explain better?) The probability of build-
ing the car sequence is inspired by the one described by Solnon (2006) for combining two
pheromones in section 6. The vehicle routing is inspired by the approach of Baran (2003). The
first colony minimizes the number of vehicles, while the second colony minimizes the inven-
tory cost. Both colonies use independent pheromones and collaborate in sharing a global best
solution. This solution is used to update the pheromones.

[Tl(erCi)]al[Tzclassof(ci)]“z

Sepccandlta(c;c)]  Teaclassof )2

p(c;, candCar, ) = if the last car of  is ¢; (39)

[tpclassOf(c;)]¥?
checand[fz classof(c;)]*?
[z (505 )] ™ [As05)1”
Zskecands[[fs (Sirsj)]aS [U(Sirsj)]ﬁ]

p(c;, candCar, ) = if T is empty (40)

p(s;, candS,R,,) = if s; C candS, 0 otherwise (41)

Where al, a2, a3, § (take care - the formatting of the indexes is gone) are relative weights for
the pheromone and heuristic values respectively. A full solution is defined as the sequence
and the route of vehicles to replenish the components. After each iteration, we obtain a full
feasible solution to the problem which is improved after each iteration. A decrease in the use
of the vehicle is given after several iterations where vehicles select the ‘nil” route.Rewrite this
last sentence, it is not clear

4.2.  Pheromones. The three proposed (ok so open stating clearly that we decided to use 3
kinds of pheromone. Also the concept of pheromone itself shall be defined BEFORE. other-
wise the following paragraph will not be clear) pheromone structures achieve complementary
goals; the first aims to identify a good sequence; the second aims to identify critical cars; the
third aims to identify vehicle routes that could deliver the components on time.



o pheromone T,. Ants lay an amount of pheromone 7,(c;,cj ) on a couple of cars (ci,c;) € CxC.
7, represents the past experience of sequence car c; after ci. This pheromone is bounded
with [Tmin, Tmax] and it is initialized at Tmax for every couple.

o pheromone t,. Ants lay pheromones on car classes cc € Classes(C) and the amount of
pheromone t,(cc) represents the past experience with the car sequence of this class without
violating constraints. This pheromone is bounded with [Tmin, Tmax] and it is initialized at
Tmin.

o pheromone 3. Ants lay pheromones on the path between the current location and the pos-
sible location (s;,sj) € S and the amount of pheromone levels of 73(s;,s; ), indicating how
proficient it has been in visiting station j after i. This pheromone is bounded with [Tmin,
Tmax] and it is initialized at Tmin.

o heuristic n(si sj). The dynamic attractiveness (once again — before you should have ex-
plained the concept of attractiveness depending on the pheromone level) of the arc (i,j) will
be: n(si sj ) = 1/stock;, it will be computed dynamically depending on the inverse of the
stock level in each station at each time.

4.3.  Pheromones update. Each pheromone will be laid and updated according to its charac-
teristics.

Updating Pheromone 7; Once every ant has constructed a sequence, the quantity of phero-
mone in all pheromone trails is decreased (take care of the many typos — read over if you have
time) in order to simulate evaporation multiplying every arch by (1—pl). Then the best ant
deposits along its path a trail of pheromone inversely proportional to the total cost generated
by the violated constraints. If the resulting pheromone value is lower or higher than the range,
it will be adjusted to the closest boundary.

Updating Pheromone 7, Ants lay pheromones on car classes during the construction; when
no more cars can be scheduled without new (why new? Better saying “without breaking con-
straints”???) constraints, some pheromone is laid in the classes of the cars that have not been
scheduled. The pheromone update occurs during the construction step. Every ant adds phero-
mone, not just the best ant. In order to simulate evaporation each class is multiplied by (1 —

p2).

Updating Pheromone 73 First, local updating is conducted by reducing the amount of pher-
omone on all visited arcs by multiplying current pheromone levels by (1 — p3). Global trail
updating is performed for all the arcs included in the best route found by one of the ants.

Title of the subsection here is “ACO parameters tuning”

The ACO was tuned, using as starting values those suggested by Dorigo (1996) and Solnon
(2008). Then we keep the values fixed and run the algorithm for the different instances (this is
not clear — explain how many times you moved the parameters and by how much, and how
many instances you used to test the different settings), and we select the best values. (explain
that in the following table we will present the values of the parameters which performed bet-
ter/best)

B An | Pn | Tmin | Tmax Note
Pheromone 1 3 11%]0.01 | 4 | experience of carj after car;
Pheromone 2 6 2% | 1 10 Critical Models

10



Pheromone 3 2 105 0.1 5 | experience of loc; after loc,
Heuristicn | 5 Heuristic info

Table 3. ACO Parameter settings

5. Computational study

The MIP was modelled in AIMMS 3.13 and the standard solver Gurobi 5.5 was used to obtain
the solution to the problem. The ACO was programmed in C++ using Code::Blocks. The
computational experience was performed in a machine with a processor Intel Core i3-2350 M
2.30 GHz 6 Gb RAM running under Windows 7.

As there are no public instance in the literature (for which problem exactly? Instance of the
“right” scale probably — I mean, some are existing but not large enough, correct?), we based
all the experimentation in the instances used on Regin & Puget (1997) instances #1, #2, #3
and #4, which has been widely, used in other articles These instances are public at car se-
quencing problem lib (www.csplib.org). From this sequence we make up the missing data in
order to obtain some smaller and some larger instances. We create a reduced instance
(R#No.r), which contains the first 50 cars of the instances. We create an extended instance
duplicating the number of stations (R#No.e) keeping the same production ratio. For the in-
stances of 200 or more cars found in the literature, the MIP is not able to build the model. As
no comparison point for this problem exists, no experimentation was performed with bigger
instances. A terminating criterion of 3600 seconds was set for all the instances.

There are two typical ownership options for the transportation vehicles that will be experi-
mented. The first one is when the car manufacturer is the owner of the fleet and each transpor-
tation vehicle generate an amortization, traveling and moving cost. The second one is used a
material handling company, in this case only traveling, and moving cost exist.

Car | VRP | HC | Total Obj A aco aco Af Af
Instance nlj(?d i\;(; EZ seq (d)= Joint % u g % %

(a) (b) (c) | atbtc (e) d-e ® d-f | e-f

R#l.r 9 50 5 500 | 458 | 910 1868 | 1740 6.8 1803 37.8 | 3.5 | -3.6
R#2.r 7 150 |5 0 458 | 912 | 1370 | 1235 | 9.8 | 1307 | 43 | 46 | -5.8
R#3.r 8 50 5 300 | 458 | 1001 | 1759 | 1564 11.1 1565 | 58.1 11 | -0.1
R#4.r 10 50 5 600 | 458 893 1951 | 1841 5.6 1899 | 294 | 2.6 | -3.2
R#1 22 | 100 | 5 0 828 | 3192 | 4020 | 3632 9.6 3625 125 9.8 | 0.2
R#2 22 | 100 | 5 600 828 | 2887 | 4315 | 4050 | 6.14 | 3954 | 423 84 | 24
R#3 25 | 100 | 5 400 828 | 3324 | 4552 | 4072 10.5 | 4099 154 9.9 | -0.7
R#4. 23 | 100 | 5 200 828 | 3213 | 4241 | 3963 6.5 3876 | 762 | 8.6 | 2.2
R#l.e 22 | 100 | 10 0 1650 | 6214 | 7864 | 7759 1.34 | 7464 194 5.0 | 3.8
Ri#2.e 22 | 100 | 10 | 1200 | 1650 | 6332 | 9182 | 9038 1.57 | 8785 179 43 | 2.8
R#3.e 25 | 100 | 10 | 800 | 1783 | 6427 | 9010 | 8810 | 2.22 | 8442 139 6.3 | 4.18
Ritd.e 23 | 100 | 10 | 400 | 1650 | 6174 | 8224 | 8113 1.35 | 7808 168 5.1 | 3.8

Table 4. Computational Results of car manufacturing ownership of transportation vehicles.

In the Table 4 the computational results are presented. The first four columns present the in-
stances and their characteristics. The following columns present the solution for the car se-
quencing (a), vehicle routing problem (b) and the holding cost (c). Column (d) presents the
sum of these costs. Column (e) presents the total cost of the Joint Approach solved with the
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MIP. The next column (f) is the difference between the MIP joint approach and the separate
approach. The column (f) shows the mean of the 50 ACO runs, the next column is the stand-
ard deviation of 50 ACO runs. The last column presents the difference between the ACO and
the separate approach. The solution of the car sequencing R#1, R#2, R#4 are the same of the
best known in literature, while in the case of R#3 our algorithm could not achieve the best
known solution (of 3 failures???) in the given time. Despite the fact that the ACO cannot
achieve the optimal solution, with exception of small instances, within all the instances ob-
tains better results than the MIP using the one-hour stop criterion; in all the cases, in less than
2 minutes, especially for the extended instance where the GAP is bigger.

Car | VRP | HC | Total Obj A aco aco Af Af

Instance nlj:d Ic\;(; EZ seq (d)= Joint % 7 o % %
(a) (b) (¢) | atb+c (e) d-e ® d-f | ef

R#l.r 9 50 5 500 510 866 1876 | 1781 5.06 1812 | 438 | 34 | -1.7
R#2.r 7 50 5 0 514 | 926 1440 | 1295 | 10.07 | 1342 | 62.7 | 6.8 | -3.6
R#3.r 8 50 5 300 522 | 961 1783 | 1613 | 9.53 1708 | 75.1 | 42 | -59
R#4.x 10 50 5 600 505 995 | 2100 | 1855 | 11.67 | 1955 | 615 | 69 | -5.4
R#1 22 100 | 5 0 1189 | 2918 | 4107 | 3887 | 5.36 | 3932 | 89.6 | 43 | -1.2
R#2 22 100 | 5 600 | 1192 | 3002 | 4794 | 4399 | 8.24 | 4410 | 1025 | 8.0 | -0.3
R#3 25 100 | 5 400 | 1194 | 3153 | 4747 | 4460 | 6.05 | 4443 | 80.7 | 64 | 04
R#4. 23 100 | 5 200 | 1194 | 3134 | 4528 | 4339 | 4.17 | 4278 | 553 | 55 | 14
R#l.e 22 100 | 10 0 5120 | 6373 | 11493 | 11491 | 0.02 | 11074 | 126.1 | 3.6 | 3.6
R#2.e 22 100 | 10 | 1200 | 4530 | 5836 | 11566 | 11485 | 0.70 | 11135 | 138.2 | 3.7 | 3.0
R#3.e 25 100 | 10 | 800 | 4522 | 6642 | 11964 | 11841 | -0.65 | 11381 | 107.5 | 3.3 | 3.9
R#4.e 23 100 | 10 | 400 | 3992 | 6170 | 10562 | 10489 | 0.69 | 10148 | 149.2 | 39 | 3.3

Table 5. Computational Results of using a material handling company.

In the Table 5, the computational results of using a material handling company are presented.
The joint approach obtains better results, or in the bigger instances similar results. When the
bigger instances are solved, the size of the model do not allow the solver to explore all the
branches of the tree. In one instance (R#3.e) the Joint approach was 0.6% below the tradition-
al approach, but in the rest of the case achieve at least the same results but in the majority
better results. In this approach the routing cost in the big instances become more relevant than
in the first approach because of the intense use of material handling and no discount for inten-
sive use is modeled.

The aim of this paper is not to discuss whether or not to outsource material hanling, but to
discuss the benefits of joint approach and ACO in the two cases. The outsourcing decision
will depend on the strategy of the company. The purpose of the experimentation of the two
approaches is to highlight that make sense a joint approach in both cases. Therefore, the re-
sultant cost of Table 4 and Table 5 are not comparable since the transportation cost is highly
dependent on the negotiation of the contractual terms with suppliers and workers.

Allowing (this sentence is not clear) the decision model to decide from among several options
increases the possibility of achieving a better solution. Unfortunately, as we expect for the
MIP the computational cost in some cases is excessive for the savings. (not clear at all —
please explain better — with examples)
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6. Managerial insights

The “engine” of car supply chain is the assembly line, it keeps the rhythm of the orchestra.
Using the traditional car assembly line sequencing approach, the production-planning depart-
ment obtains the better car sequence, then the better routing and the better inventory could be
calculated (see Figure 2). The joint approach searches among all combinations to obtain better
solutions. This is possible since, we could have many similar cost car sequences, replenish-
ment routes and inventory levels. If we play with the combination, we could obtain better so-
lution.

Traditional approach Joint approach
BABAA wh12wh wh 12wh
wh 345 wh wh 345 wh
=>| ABABA
wh 2 3wh = Vs. wh 2 3 wh
BAABA wh145wh wh145wh
wh 4 5wh wh 45 wh
\ﬁH \ o\ J \ ‘
f [ Y
Step1 Step 2 Step 3 Step1

Figure 2. Comparison of Traditional (model single problems) vs Joint approach

This (the picture above) was to be explained BEFORE presenting results in table 10. other-
wise the reader will NOT understand how you obtained the values in columns a, b, c.!!!

According to our expectations, the integration of the decision has resulted in the achievement
of better results: the fact that one part of the organization achieves the best possible perfor-
mance might not be beneficial for the entire organization. The decision making process
should be done in conjunction with the other stakeholders of the process. Unfortunately, this
is not always possible since real-life problems are far more complicated than this model.
However, as can be seen in Table 4, the goal of the decision maker of the scheduling, routing
and inventory should be to reduce the total cost, not only the cost associated with the process
he/she is responsible of, and this cannot be achieved without a compound approach.

Comparing the Afshin et al. (2012) review of the paper that deals with more than one part of
the supply chain against the number of papers for each echelon of the supply chain there is a
lack of compound approaches from the researchers. On the other hand, the industry is using
decision systems such as Oracle E-Business SCM, SAP SCM, i2, IBM, or LogicTools which,
despite their inability to give the global optimal (why? Do they use simplified heuristics?),
pursue an integrated optimization.

This last few lines are not clear and not connected with the previous paragraphs. Explain bet-
terThe stock level decreases until it reaches the level of the safety stock before the replenish-
ment; this opens the opportunity to manage the risk to work without safety stock in order to
realize the possible saving, and also the possibility to incur in cost if there is any delay in the
transportation.

7. Conclusions

The advantage (this part in my opinion should still be part of section 6) of joint decision mak-
ing becomes more important when the cost of the space is higher than in a low-cost facility.
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The production space is a limited resource; the space has to be used in an activity that adds
value to the product and decreases the holding space. This becomes a key factor in factories
where the inventory is limited and there is no possibility to store more than one or two hours’
inventory.

Ok from now on these are actually “Conclusions”.

The first contribution of this paper is the development of a mixed integer programming model
for solving an inventory routing problem to satisfy the sequence requirements. This kind of
model is not reported in the literature and the authors believe that this could be an interesting
research area.

This paper uses the natural cooperative behavior of the ants to obtain a solution to combined
problems. The second contribution of this work consists in the development of a collaborative
ant colony optimization system to obtain a high-quality solution for problems that cannot be
solved to optimality, and the joint solution to the problem using ACO, to the best of the au-
thors’ knowledge, has not been described throughout the literature.

The results yield savings of around 7% on all costs in the instance tested with respect to the
solution obtained.... It is expected that in larger instances the same performances (or better) in
terms of savings will be maintained, since the decisions are taken independently (of any feed-
back) (this “on any feedback” is not clear to me. Shall we remove it?). Factories with a re-
duced production space could be more interested in this kind of approach. This would justify
the investment in more computational power or the design of other solution methods.

We believe that the results tested in the small and medium-sized cases are promising. The
decrease in the number and use of transportation vehicles, reduction in inventory next to the
assembly line, and minimization of the number of utility workers to handle violation of the
sequencing rules could be interesting for future research. Therefore, making an industry-sized
model could be justified.

For a future research as this is an NP hard problem and since the sub problem of routing is NP
hard, the overall problem is NP hard. From this point, many research directions could be fol-
lowed. The first one is to try to add cutting planes or decomposition methods to handle real-
life problems. The other option is to implement other metaheuristics that could provide a good
solution in a short period of time with an average computational power. In the ACO line, the
focus could be placed on larger problems, combining different techniques like additional types
of pheromones, ranking methods, different construction strategies for the route, such as the
local exchange, or candidate list. For the modeling part, we could also add some “ad-hoc”
features to customize the model to represent better the client reality, with discounts for excess
of use, or non linear holding cost.

The final section should contain: benefits; limits; further developments. Make sure you clearly
discussed the limits of our approach also.
Limits could be:

- instances too small

- not correct balance between costs (?) — could depend on the specific real case

- inability to suggest structural changes in management policies (eg outsourcing MH)
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10.  Appendix

Algorithm 1
Initialize pheromones
Repeat
n«—empty {Start to sequence the cars}
while ||<|C| do let C—n denote the set of cars of C that are not sequenced
cand«—the minimum cost generated by {ck€C—n}|Vc;€C—n, cost(n<ci>)<cost(n<c;>)
if Vci€cand, cost(n<ci>)<cost(n<c{>) then
for every car class cc €{classOf(ci)} € C —n do
Ta(cc) «Ta(cc)+ cost(n<c; >) — cost(m)
end for
end if
Choose c; € cand with the probability p(c;, candCar, )
T «—<C; >
end while
keep the best sequence
calculates the instant demand for the best sequence
repeat
R« empty {Routes for transportation vehicles}
for v, = maxVehicles to v, =1 do
while |R|<[S| do
let (R—S) denote the set of non-attended stations
duplicate the depot a number=V,
the ants select a candS«—the min cost generated by {sk € R — S} with p(s;, candS, R)
end while
if stock at station < safety stock then
break
end if
decrease one replenishment vehicle v, = v, — 1
keep the best route for the transportation vehicles
end for
until stop criteria
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calculate the cost
keep the best solution and update the pheromones
until stop criteria
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