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Abstract 
The interest in the design of manipulators for space operations with a light structure has grown 
meaningfully in comparison with rigid manipulators, even if these flexible manipulators are 
unavoidably characterized by a not negligible structural flexibility. This paper deals with the first 
phase of a project financed by a grant from the Italian Space Agency (ASI) which is concerned with 
the setting-up of an open-loop control for a planar manipulator with flexible linkages. In this phase, 
the project is subdivided into two parts: on one hand, different command inputs have been proposed 
for point to point operations; on the other hand, dynamic simulations have been carried out by using 
a multibody model with flexible parts, in order to evaluate the residual vibrations due to the selected 
command input at the end of the motion. These command inputs will be applied to the actual 
manipulator, which is already available, in a future phase of the project. The command inputs, 
which are described here, are based on both the convolution of special impulse inputs suitably 
chosen on the basis of the system natural frequencies and the reduction of impulsive inertia forces 
by means of a suitable algorithm proposed here and derived from cam design. The simulations are 
carried out by commercial software for the study of multibody systems and custom programs for the 
command input implementation. The results obtained for the residual vibrations are compared to 
those obtained by conventional command inputs in the simulations on the same model. 
 
 
Introduction 
The present paper describes part of a larger project concerning the analysis of the control of a 
manipulator with a couple of flexible links for spatial duties. 
Due to the aims of the present paper, which deals with the comparison of different motion inputs on 
the basis of the residual vibration at the end of the positioning, here we are taking into consideration 
an arm constituted by a single link only and we have considered all the other parts of the structure 
as being still. This has been done in order to have a better evaluation of the results and to avoid 
introducing undesirable torsional components due to the presence of several bodies linked by 
revolute joints. This latter problem could arise if all the parts of the manipulator were moved 
simultaneously. 
In particular the authors have considered the open loop control of the manipulator (Mimmi et al., 
1999), by operating on two levels. On one hand the analytical model of the manipulator has been 
setup and various command inputs have been tested on this model by means of numerical 
simulations. On the other hand, since an experimental setup was available, the same motion inputs 
have been applied to the manipulator and the results, as regards the reduction of the residual 
vibration, compared. The choice of an open loop control has been done in view of the use in space 
of the structure. Therefore the use of sensors and feed-back control devices should be avoided due 
to the necessity of reducing payloads. The description of the model used for the simulation and the 
results obtained are the main topic of this paper. First of all, the motion inputs employed are 
described, and a brief theoretical support is also given, then the system is characterized, by 
identifying the lateral modes in the operating plane. Finally the mathematical model obtained is 
presented and the results compared, by means of simulation, in order to verify the possibility of 
reducing residual vibrations at the end of the positioning. 
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Motion inputs 
An open loop control can be adopted, by considering the particular use of the manipulator. In fact 
both the maneuvers and the loading conditions during operation can be forecasted a priori. 
Moreover the use of the open loop control reduces the energy requirements to the minimum level 
required for the positioning. On the contrary, a closed loop control usually requires energy for the 
corrections too. These results appear particularly relevant to use in space. 
The problem of the open loop control of flexible structures has been considered by many authors. 
The motion input that gives the minimum positioning time with null residual vibrations, following 
the optimal control theory, is the “bang-bang” motion input, made up of a sequence of steps of 
alternate sign (Meckl and Seering, 1985a). However, if the sign inversion instants do not 
correspond with extreme precision to those required by the theory, relevant residual vibrations may 
remain. Meckl and Seering (1985a, 1985b) deal with the problem of positioning of a robotic arm, 
with lumped parameters. As an alternative to the “bang-bang” input, they suggest the control by 
means of a “ramped sinusoid” motion input, that gives a slightly higher positioning time, but with 
fewer possibilities of exciting natural modes of the system. Onsai and Akay (1991) analyze the 
implementation of a “bang-bang” control on a flexible arm by considering both the problem of 
realizing an actuator able to give the required stepping behavior for the motion torque and the 
problem of the uncontrolled modes. Jayasuriya and Choura (1991) consider the problem of the open 
loop control of a flexible arm and give an alternative solution to both the “bang-bang” and the 
“ramped sinusoids”. Bhat and Miu (1990) analyze a similar case by operating in both the time and 
frequency domains. 
Different types of motion inputs, based on different design principles, have been discussed in this 
paper. Two basic types of inputs are considered: the first motion input which is considered, mainly 
to have a benchmark for the following results, is a constant acceleration input that represents the 
simplest motion input. The performances obtained are not as good as foreseen, due to the presence 
of the impulsive variation of the acceleration that excites several natural modes of the structure. In 
order to avoid this, a motion input based on a modified trapezoid path for the acceleration has been 
adopted, as is usually done in motion input for automatic machines. The theory of the pre-shaping 
has been applied to both the previous motion inputs. In order to do this, the first natural lateral 
frequency of the system has been identified. 
 
Constant acceleration motion input. This is also defined as double step motion input, due to the 
shape of the acceleration profile. A null acceleration segment (and maximum velocity) follows a 
first segment with constant acceleration, while another segment with constant acceleration of the 
opposite sign ends the sequence (see Figure 1). Once the rotation ϕ  to be performed is established 
and the maximum speed maxϕ  and acceleration maxϕ  are imposed, it is possible to calculate the 
duration t  of the operation and the values t1 and t2, which correspond to the shift from positive to 
null acceleration and from null to negative, respectively. The details of the calculation are reported 
in appendix. 
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Figure 1 – Constant acceleration motion input. 
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Modified trapezoid motion input. The problem of the reduction of the impulsive variation of the 
inertia forces usually occurs in the design of mechanisms for “alternate” motion. The algorithm 
proposed here is based on this principle. In order to obtain this result, motion input based on a 
modified trapezoid is very effective, in which the initial ramp is formed by a sinusoid arc. As 
compared to the original algorithm for the input generation, proposed by (Magnani and Ruggieri, 
1986), which considers time and rotation as independent of each other, the algorithm proposed here 
determines the minimum possible time t  for the rotation on the basis of the physical characteristics 
of the motor. In this case the constraint is on the maximum velocity maxϕ . For further details see the 
appendix. 
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Figure 2 – Modified trapezoid motion input. 

 
Pre-shaping by means of pulse superimposition. The pre-shaping technique can be applied to 
every motion input, therefore it is used on both the previously mentioned motion inputs. The use of 
a pulse sequence superimposed on the motion input has its origin in the concept that a step of a 
certain amplitude can be split into two smaller steps, one of which delayed in time (Smith, 1958). 
By tuning the delay for a linear system with one d.o.f., the effect superimposition causes the 
deletion of the vibration. This principle presents two weak points, since it is suitable for linear 
systems only and systems whose natural frequencies and damping are known exactly. 
Improvements in this field have been achieved by Singer and Seering (1990) as regards the 
robustness, since it is shown that, by increasing the number of pulses calibrated on the natural 
frequency, the control is more robust as regards the uncertainty on both the frequencies and 
damping. Improvements have also been achieved by Singh and Heppler (1993) for applications on 
flexible structures. In the case proposed here, the first two natural frequencies and a three pulse 
sequence are considered.  
A consequence of the application of this method is the increase of the system operating time, due to 
the convolution with the original motion input. Two examples of pre-shaping are reported in Figure 
3 and Figure 4, which show the constant acceleration and the modified trapezoid motion inputs 
respectively. The corresponding motion inputs obtained by pre-shaping with two pulses calibrated 
on the first natural frequency are also reported. The increase of the operation time is comparable to 
the period of the frequency considered for each pulse. Further details are reported in the appendix. 
It is worthwhile noting the different theoretical principles between the reduction of the residual 
vibration obtained by the modified trapezoid and the pre-shaped modified trapezoid motion inputs. 
In the first case only the impulsive part of the acceleration is removed, and this can be done in 
different ways, depending on the amplitude of the steps of the sinusoidal arcs, and the fact of 
whether some natural frequencies of the system are excited is not taken into consideration. In the 
second case, the approach is totally different, since the original motion input on which the pulses 
are superimposed is not important, because the method operates directly on the first natural 
frequencies of the system. 
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Figure 3 – Constant acceleration and pre-shaped 
constant acceleration motion input. 
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Figure 4 – Modified trapezoid and pre-shaped 
modified trapezoid motion input. 

 
 
Identification of system parameters  
The use of the pre-shaping method requires the knowledge of the natural frequencies and of the 
damping of the system with a certain precision. As the theory shows, the use of several pulses 
increases robustness of the system, by accepting a 20% uncertainty on the value of the first natural 
frequency and of the damping. The determination of the first lateral frequencies of the system has 
been carried out by using three different methods. 
 
Analytical determination of the natural frequencies. The arm can be considered, with a first 
order approximation, as a clamped beam (Figure 5). Under the hypotheses of axial section A, lateral 
stiffness EJ and density ρ as constant, absence of axial loads, no shear deformation and rotary 
inertia negligible, the natural pulses of the system are given by:  
 

4
2)(

lA
JElnn

ρ
βω =  (1) 

 
By considering the constraint given by the clamped end, the first four values of βn l are given by 
(Thomson, 1993, Rao, 1995):  
 
β1 l = 1.875 
β2 l = 4.694 
β3 l = 7.855 
β4 l = 10.995 

(2) 

 
The data for the manipulator forearm are: l = 1.047 m, a = 0.033 m, b = 0.002 m; density: 
ρ = 8030 kg m-3; Young modulus: E = 20.1 1010 N m-2; section: A = a b = 6.435 10-5 m2; moment 
of inertia J = 3121 ba = 2.039 10-12 m4. By substituting the previous data and eqs. (2) in eq. (1), the 
first four natural frequencies are: 
 
f1 = 1.47 Hz 
f2 = 9.24 Hz 
f3 = 25.88 Hz 
f4 = 50.70 Hz 

(3) 

 
Determination of the natural frequencies by means of the module ADAMS/Linear. Due to its 
simple geometry, the arm considered has been easily modeled with MSC/NASTRAN f.e.m. 
software, using twenty 2D plate elements (Figure 6).  
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Figure 5 – Forearm as a clamped beam. 

 
Figure 6 – Finite element mesh of the forearm. 

 
The model has been imported into ADAMS software and an eigenvalue analysis has been 
performed by the module ADAMS/Linear that allows us to determine the first thirty-two modes, 
including the torsional and lateral modes in the plane yz also. In the present case only the first four 
lateral modes in the plane xy are considered. These have the following natural frequencies (Figure 
7): 
 
f1 = 1.63 Hz 
f2 = 10.2 Hz 
f3 = 28.1 Hz 
f4 = 54.69 Hz 

(4) 

 
1  mode 1.63  Hz                                    st nd

thrd

2  mode  10.89 Hz

3  mode 28.1  Hz 4  mode  54.69 Hz

y z
x

 
Figure 7 – Forearm lateral vibration modes. 

 
Figure 8 – FFT spectrum of forearm free end 

acceleration (lateral vibration). 
 
Experimental determination of the natural frequencies. For the experimental determination of 
the natural frequencies an accelerometer at the free end of the forearm and two strain-gages close to 
the elbow have been used. Then the structure has been excited by an impulsive force. The two 
signals obtained have been compared and the filtered FFT spectrum from the accelerometer has 
been reported in Figure 8. The values of the first four frequencies that correspond to the four peaks 
are obtained from the diagram and are equal to: 
 
f1 = 1.56 Hz 
f2 = 9.72 Hz 
f3 = 29.2 Hz 
f4 = 50.1 Hz 

(5) 

 
The comparison of the values obtained by the three methods, reported in (3), (4) and (5) shows that 
the differences are very minimal. The most important comparison is between the experimental 
values and the values obtained by the analysis by ADAMS/Linear. Since the differences are very 
minimal in this case, the values obtained by means of Linear have been adopted for use during the 
simulations. The greatest difference is observed in the fourth mode, which is less important, since 
only the first two natural frequencies are used for the pre-shaping. 
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Determination of the system damping. Based on several experimental tests with impulsive force, 
by means of the logarithmic decay, it has been possible to determine a value of the damping ratio 
equal to: 
 
ξ = 0.0458 (6) 
 
 
System response simulations  
The model of the manipulator arm has been implemented in ADAMS by means of the f.e.m. model 
described previously and of a revolute joint on which the different motion inputs have been applied. 
This choice requires a motor which can follow the imposed velocity and acceleration precisely in 
the experimental set-up and with a perfectly rigid behavior during the motion. The motion inputs 
implemented are in the following order: 
• Constant acceleration motion input. 
• Constant acceleration motion input, pre-shaping with 1 frequency and 2 pulses. 
• Constant acceleration motion input, pre-shaping with 1 frequency and 3 pulses 
• Constant acceleration motion input, pre-shaping with 2 frequency and 3 pulses. 
• Modified trapezoid motion input. 
• Modified trapezoid motion input, pre-shaping with 1 frequency and 2 pulses. 
• Modified trapezoid motion input, pre-shaping with 1 frequency and 3 pulses.  
• Modified trapezoid motion input, pre-shaping with 2 frequency and 3 pulses.  
All the simulations have been carried out for a rotation of 120° and compared to each other. The 
maximum angular velocity imposed at the revolute joint was of 0.8 rad/s and the maximum angular 
acceleration was of 0.4 rad/s2. 
Among the results obtained, such as the displacement at the end of the arm in an absolute reference 
system, the velocity and the acceleration at the free-end and at the revolute joint, only the 
comparison on the displacements at the end of the arm is reported here. For a better evaluation, the 
displacement at the end of the positioning is reported separately, since the positioning takes slightly 
different times depending on the motion input. 
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Figure 9 – Response to constant acceleration motion input (left), free motion after positioning 

(right). 
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Figure 10 – Response to pre-shaped constant acceleration motion input with two pulses on first 

natural frequency (left), free motion after positioning (right). 
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Figure 11 – Response to pre-shaped constant acceleration motion input with three pulses on first 

natural frequency (left), free motion after positioning (right). 
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Figure 12 – Response to pre-shaped constant acceleration motion input with three pulses on first 

and second natural frequencies (left), free motion after positioning (right). 
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Figure 13 – Response to modified trapezoid motion input (left), free motion after positioning 

(right). 
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Figure 14 – Response to pre-shaped modified trapezoid motion input with two pulses on first 

natural frequency (left), free motion after positioning (right). 
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Figure 15 – Response to pre-shaped modified trapezoid motion input with three pulses on first 

natural frequency (left), free motion after positioning (right). 
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Figure 16 – Response to pre-shaped modified trapezoid motion input with three pulses on first and 

second natural frequencies (left), free motion after positioning (right). 
 
The comparison of the performances obtained by different motion inputs for the reduction of the 
residual vibration at the end of positioning has to be done on the basis of a given benchmark. That is 
the response of the system to the constant acceleration motion input, shown in Figure 9. By first 
considering the comparison with the modified trapezoid motion input, it is possible to note a 
reduction of the vibration amplitude (Figure 13). A more significant reduction is obtained with the 
same pre-shaped input. Moreover, in this case, given the number of pulses and the frequencies 
considered, the different performances between the inputs obtained from the constant acceleration 
or the modified trapezoid are very minimal.  
 
 
Conclusions 
In this paper we have presented the comparison between different motion inputs in order to reduce 
the residual vibration after positioning of a flexible manipulator arm. The model of the flexible arm 
has been implemented in a multi-body program and several simulations have been carried out. From 
the simulations, it is possible to stress that: 
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• Motion inputs with pre-shaping are always better than original motion inputs. Therefore it is 
useless to apply pre-shaping to complicated motion inputs: i.e. a motion input with pre-shaping 
obtained from constant acceleration gives better results than a plain modified trapezoid. 

• Once the number of pulses and frequencies considered for the pre-shaping is given, the motion 
obtained by the modified trapezoid gives better performances than those by constant 
acceleration. The difference is very small, so the choice of applying such complicated motion 
input has to be carefully considered. 

• If the electric motor can follow complex motion inputs, the use of input with pre-shaping is 
convenient, otherwise the use of a plain modified trapezoid motion input may reduce the 
residual vibration. In this case the motion input can be further tuned, by operating on the steps δi 
of the algorithm of the input generation. 
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Appendix 
Constant acceleration motion input. Given the maximum value available for the angular velocity 

maxϕ , that of the maximum imposed angular acceleration maxϕ  and the required rotation ϕ , it is 
possible to determine the time t  needed for the operation. This can be done by means of the 
following algorithm: 
1. Let the time necessary for the rotation be supposed equal to t . It is divided into three parts δ1, δ 2 

and δ 3 (Figure 1) with the following constraint between the values of ti and δi: 
 

∑
=

=
3

1i
i tδ , ∑

=
=

k

i
ikt

1
δ  (7) 

 
2. At the end of the first step δ1 the maximum velocity will be reached maxϕ ; moreover, since the 

system has arrived at the instant t1 with constant acceleration, it results that: 
 

max
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ϕδδϕϕϕ



 =→==  (8) 

 
3. By considering that the system has to arrive at ϕ  with null velocity at the final instant t , it is 

possible to impose this constraint by evaluating the corresponding expression of 3ϕ  and 3ϕ :  
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4. If we make a system with eq. (8) and eqs. (9), the duration of the intervals δi are determined, and 

thus also t  with the first of eq. (7): 
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For instance the time histories of ϕϕϕ ,,   are shown in Figure 1, as regards a rotation of 1.57 rad, 
where the maximum angular velocity and acceleration are, respectively, 0.5 rad/s and 1 rad/s2. 
 
Modified trapezoid motion input. Let the time necessary for the rotation equal to angle ϕϕ =tot  be 
supposed equal to t . The algorithm follows these steps:  
1. the time interval t  is divided into seven parts δ1, δ 2, δ 3, δ 4, δ 5, δ 6 and δ 7, which can be equal 

to zero if that is the case (Figure 2), with the following constraint between the values of ti and δi: 
 

∑
=

=
7

1i
i tδ , ∑

=
=

k

i
ikt

1
δ  (11) 

 
2. if sinusoid arcs connect the constant acceleration intervals, the inertia force variation is not 

impulsive. Therefore, if the initial conditions are ϕ0 = 0 and 00 =ϕ , the corresponding command 
input for angular acceleration and angular velocity are of the type reported in Figure 2. The 
analytical expression of the different arcs is reported in (Magnani and Ruggieri, 1986); 

3. now the constraint on the maximum available motor velocity is introduced by observing that the 
maximum velocity maxϕ , is reached at the end of interval δ3, where the velocity value is: 

 

π
δϕϕ 3

23
2A+=   (12) 

 
For the determination of 3ϕ  it is necessary to go back to the instant t = 0, by also determining the 
velocities 2ϕ  and 1ϕ  at the end of intervals δ2 and δ1: 

 

212 δϕϕ A+=  , 
π
δϕ 1

1
2A=  (13) 

 
The constant A can be determined by imposing the rotation  ϕ7 equal to ϕ  and the velocity 7ϕ  of 
null value, i.e. the point-to-point operation is concluded with null final velocity: 
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Eq. (14) leads to: 
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(15) 

 
Therefore, once given the δi sequence, the minimum time t  satisfies the following equation: 
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max
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4. At this point both the rotation ϕ  and the actual time t  for the operation are known and the 

algorithm loops back to point 1 to define the actual command inputs. 
Note that the described algorithm presents an arbitrary choice for the intervals δi and that the 
calculation of the time t  depends on this choice. In fact, the more the interval at maxϕ  constant 
velocity is extended, the more the operation time is reduced.   
 
Pre-shaping method. In this part of the appendix the calculations for determining the pulse 
amplitude and their temporal sequence are reported. This allows the pre-shaping method to be 
applied to the motion input. The starting point is the response of a system to a general succession of 
n pulses. In particular the response to the pulse applied at time tj is: 
 






 −−

−
= −− )(1sin

1
)( 2

0
)(

2
0 0

j
tt

jj tteAty j ξω
ξ

ω ξω
 (17) 

 
By doing the following substitutions: 
 

jj
ttj

j te
A

B jf 2
0

2
0

)(
2

0 1,1,
1

0 ξωφξωα
ξ

ω ξω −−=−=
−

= −−
 (18) 

 
and using them in eq. (17), the response to the jth pulse becomes:  
 

)sin()( jjj tBty φα +=  (19) 
 
If we consider a case with two pulses and the system is linear, the responses can be superimposed:  
 

)sin()sin()sin( 2211 ψαφαφα +=+++ tAtBtB amp  (20) 
 
where: 
 

( ) ( ) 







+
+

=+++= −

2211

221112
2211

2
2211 sinsin

coscostan,sinsincoscos
φφ
φφψφφφφ

BB
BBBBBBAamp

 

(21) 

 
The condition of having no residual vibration at the end of the pulse sequence is given by the null 
amplitude Aamp, which is equivalent to: 
 









=




 −+





 −

=




 −+





 −

−−−−

−−−−

01cos1cos

01sin1sin

2
02

)(
2

2
01

)(
1

2
02

)(
2

2
01

)(
1

2010

2010

ξωξω

ξωξω

ξωξω

ξωξω

teAteA

teAteA

tttt

tttt

ff

ff

 (22) 

 
There are four unknowns in system (22), A1, A2, t1 and t2, with only two equations. Due to the 
arbitrariness in the application of the pulses, it is possible to apply the first at time t1 = 0. The 
further condition can be obtained by the normalization of the pulse amplitude, whose sum has to be 
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equal to the unitary pulse, in order to guarantee that the signal is not amplified. Therefore the 
system becomes: 
 














=+
=

=




 −+





 −

=




 −+





 −

−−−−

−−−−

1
0

01cos1cos

01sin1sin

21

1

2
02

)(
2

2
01

)(
1

2
02

)(
2

2
01

)(
1

2010

2010

AA
t

teAteA

teAteA

tttt

tttt

ff

ff

ξωξω

ξωξω

ξωξω

ξωξω

 
(23) 

 
From the first equation of system (23) it follows that: 
 

0)1sin( 2
02

)(
2

20 =−−− ξωξω teA tt f  (24) 

 
In order for eq. (24) to be satisfied, by excluding the trivial solution A2 = 0, the argument of sinus 
function has to be null. This condition allows the value t2 to be calculated: 
 

πξω nt ±=− 2
02 1  (25) 

 
with Nn ∈ ; since t2>0, from eq. (25), by considering the first time step acceptable, it follows that: 
 

2
0

2
1 ξω

π

−
=t  (26) 

 
By using eq. (26) in the second equation of system (23) and with suitable transformations, we have: 
 

0cos
21

21 =+ − πξ

ξπ

eAA   →  0
21

21 =− −ξ

ξπ

eAA  
(27) 

 
and finally, by considering the third equation of system (23): 
 

2
1

2211
1

,with
1

,,
1

1,0
2

ξω

πξ

ξπ

−
=∆=

+
=∆=

+
== −

−

TeK
K

KATt
K

At  
(28) 

 
If three pulses are taken into account, two further unknowns have to be calculated: the time t3 and 
the amplitude of the third pulse A3. The new constraints can be obtained on the condition that also 
the derivative of eqs. (22) have to be equal to zero. This is equivalent to considering that the system, 
at the end of the third pulse, has null amplitude and velocity of vibration. The remaining conditions 
of applying the first pulse at the initial time and the condition on the sum of the amplitudes are the 
same of the two pulse case, therefore the system becomes: 
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 (29) 

 
Similarly to the case of two pulses from the first and the third equation of system (29), by 
considering the argument of sinus functions as null, we have:  
 

2
0

32
0

2
1

2,
1 ξω

π

ξω

π

−
=

−
= tt  (30) 

 
By substituting the values of eqs. (30) in the second and fourth equation of system (29) and by 
solving the latter with the sixth equation we finally have: 
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33222211 21
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