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Abstract—Understanding complex biological phenomena involves answering complex biomedical questions on multiple
biomolecular information simultaneously, which are expressed through multiple genomic and proteomic semantic annotations
scattered in many distributed and heterogeneous data sources; such heterogeneity and dispersion hamper the biologists’ ability
of asking global queries and performing global evaluations. To overcome this problem, we developed a software architecture to
create and maintain a Genomic and Proteomic Knowledge Base (GPKB), which integrates several of the most relevant sources
of such dispersed information (including Entrez Gene, UniProt, IntAct, Expasy Enzyme, GO, GOA, BioCyc, KEGG, Reactome
and OMIM). Our solution is general, as it uses a flexible, modular and multilevel global data schema based on abstraction and
generalization of integrated data features, and a set of automatic procedures for easing data integration and maintenance, also
when the integrated data sources evolve in data content, structure and number. These procedures also assure consistency,
quality and provenance tracking of all integrated data, and perform the semantic closure of the hierarchical relationships of the

integrated biomedical ontologies. At http://www.bioinformatics.deib.polimi.it/GPKB/, a Web interface allows graphical easy

composition of queries, although complex, on the knowledge base, supporting also semantic query expansion and
comprehensive explorative search of the integrated data to better sustain biomedical knowledge extraction.

Index Terms—Management and integration of heterogeneous and distributed biological data, Biological ontologies, Querying
and retrieval of semantic biological annotations, Mining of semantically annotated biological data

1 INTRODUCTION

Increasingly large amounts of valuable, but heterogene-
ous and sparse, biomolecular data and information are
characterizing life sciences [1]. In particular, semantic
controlled annotations of biomolecular entities, i.e. the
associations between biomolecular entities (mainly genes
and their protein products) and controlled terms that de-
scribe the biomolecular entity features or functions, are of
great value; they support scientists with several terminol-
ogies and ontologies describing structural, functional and
phenotypic biological features of such entities (e.g. their
sequence polymorphisms, expression in different tissues,
or involvement in biological processes, biochemical
pathways and genetic disorders).

These semantic annotations can effectively support the
interpretation of genomics and proteomics test results
and the extraction of biomolecular information, which can
be used to formulate and validate biological hypotheses
and possibly discover new biomedical knowledge. A
comprehensive approach to such data integration, query-
ing and analysis can help understanding complex bio-
logical processes and their pathological alterations, by
answering related complex biomedical questions. Yet, the
scattering of genomic and proteomic annotation data in
many complementary but also overlapping sources is an
important and not yet completely solved challenge. Spe-
cifically, data source heterogeneity in data representation
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and format, their fast evolution in number, data content
and structure, the high variety of available data types,
and also the great amount of data produced over time, are
the facets of a very hard data integration problem [2]-[4].

Taking advantage of our previous experience with the
GFINDer system [5], [6], we developed a software archi-
tecture to create and maintain an updated and publicly
available integrative data warehouse of genomic and pro-
teomic semantic annotations. It adopts a modular and
multilevel global schema that we propose for integrated
data management. This data schema supports integration
of data sources, possibly overlapping, which are fast
evolving in data content, structure and number, and as-
sures provenance tracking of all the integrated data.

From an engineering perspective, our solution is based
on several innovative principles: (i) modular and multi-
level, domain-independent flexible schema for data inte-
gration, (ii) clear separation of source-specific data import
from source-independent data integration, (iii) use of re-
flection in Java programming language to implement self-
configuring parsers, (iv) usage of historical information to
deal with changes in the data sources and with differ-
ences in the updating time of each data item, and (v) on-
tological processing, based upon semantic closure and
search of lowest common ancestor between ontology
terms, to support efficient semantic queries and evalua-
tions. We also developed a user-friendly Web interface
that supports the easy composition of complex multi-
topic queries and their semantic expansion upon the inte-
grated data; such interface fully enables users to compre-
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hensively select, extract and display all data of their inter-
est that match, syntactically or semantically, the per-
formed query and to take advantage of them for biomedi-
cal hypotheses formulation and knowledge discovery.

The outline of this paper is as follows. Section 2 dis-
cusses the related work in data integration, focusing on
the biomedical domain. Section 3 describes our integrated
data schema. Section 4 illustrates the developed software
architecture for data integration, which ensures consis-
tency, quality and provenance tracking of all the inte-
grated data, eases their updating and extension and per-
form semantic closure of the integrated ontology hierar-
chical relationships. Section 5 presents the Genomic and
Proteomic Knowledge Base (GPKB), which benefits from
our integrated data schema and software architecture and
provides Web interfaces to easily compose queries, al-
though complex, on the integrated semantic data. Section
6 illustrates a relevant example of GPKB use for discover-
ing common biological aspects in apparently unrelated
genetic disorders. Section 7 discusses significant aspects
of our work and concludes.

2 RELATED WORK

Several approaches and systems have been proposed to
integrate data from multiple heterogeneous data sources.
They include information linkage (e.g. SRS [7], NCBI Entrez
[8]), multi-databases (e.g. TAMBIS [9], BACIIS [10]), feder-
ated databases (e.g. BioKleisli [11], BioMart [12]), mediator
based (e.g. BioDataServer [13], Biomediator [14]) or work-
flow based (e.g. Taverna [15], Galaxy [16]) solutions and data
warehousing (e.g. BioWarehouse [17], Biozon [18]).

The last approach is well-known to have maintenance
overhead, both in keeping the integrated data up-to-date
with the original selected sources and in expanding the
warehouse with additional data and data types from new
sources [19]. Yet, the data warehousing approach is supe-
rior in supporting applications that require off-line data
processing in order to efficiently organize the integrated
data and comprehensively use them for knowledge dis-
covery, which is our goal. Furthermore, it allows thor-
oughly checking data quality and consistency, within a
single or across multiple data sources, in order to inte-
grate and use only high quality consistent data. It also
easily allows reconciling unsynchronized data, e.g. from
distinct data sources with different updating times, by
taking advantage of available historical evolution data
during warehouse construction. For all these reasons, we
adopted the data warehousing approach.

Other data integration solutions can easily offer up-
dated data with a more limited maintenance overhead;
among them, federated and mediator or workflow based
approaches capitalize available Web services to directly
access data in their original data sources. Yet, they too
require maintenance, since available Web services may
change their data structure overtime. Moreover, such ap-
proaches require performing all data transfer and proc-
essing online at the time of the user request; thus, they
make it difficult and slow, if not impossible, performing
thorough data quality and consistency checking and rec-

onciliation of unsynchronized data.

On the other hand, warehousing drawbacks of mainte-
nance overhead can be specifically tackled and drastically
reduced by using automatic procedures to regularly up-
date easily the data in the warehouse [19]. Such automatic
procedures are particularly important when the data
warehouse integrates data from biomolecular databases,
since usually such databases are updated frequently.

Furthermore, difficulties in expanding the data ware-
house with additional data sources mainly arise from the
integrated data schema adopted. The data models pro-
posed for biological data [5], [20], [21] are generally very
expressive and complex, as they embody a lot of domain
knowledge, but expressive descriptions carry a cost, mak-
ing it difficult to face the integration challenges of evolv-
ing data'. Furthermore, the integrated biological data
models proposed usually do not provide good support
for data provenance and version tracking, as well as for
integration of different and overlapping sources provid-
ing the same data type [2]-[4].

To overcome these issues, we developed and adopted a
modular and multilevel feature-based integrated data
schema, which is described in Section 3. It not only eases
data warehousing updates and extensions, but also en-
sures provenance tracking of all the integrated data.

Data warehousing is a well-known approach also for
data analytics though multidimensional data aggregation;
however, as previous warehousing proposals, e.g. [17], in
our approach we did not take advantage of this aspect,
since the biomolecular semantic annotation data on which
we focused rarely include additive attributes.

Recently, a lot of emphasis has been placed on the use
of linked data for biological information [23]; yet, linked
data provide only binary connections between pairs of
source items and querying them still remains difficult due
to the lack of uniformity in the representation of linked
data datasets [24]. Furthermore, intuitive interfaces for
querying biological linked data and using extracted re-
sults are still very limited. Conversely, although focused
on some selected sources, our approach integrates and
mediates data items extracted from multiple sources, with
overall greater data quality and seamless querying and
result usage support.

3 INTEGRATED DATA SCHEMA

In this Section we illustrate and discuss the global data
schema that we defined to integrate numerous, heteroge-
neous, controlled annotation data, i.e. data regarding dif-
ferent features or topics represented through multiple
controlled vocabularies and ontologies, as well as their
associations.

3.1 Feature Modules

Our integrated data schema is composed of multiple in-
terconnected modules; each module represents a single
feature, whose data are provided by one or more of the

1 Yet, integration of additional data sources can improve integrated
data coverage and quality, through identification of mismatching infor-
mation by cross-verification of overlapping data [22].
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Fig. 1. Multilevel feature module of the defined integrated data schema. White shapes represent import tier data, while darker shapes repre-
sent aggregation tier data. FEATURE X, and FEATURE X; are different subtypes of FEATURE X; DATA SOURCE 1 and DATA SOURCE 2
are distinct sources that provide data of the same subtype of FEATURE X, the former provides ontology data and their relationships.

integrated data sources, and contains provenance infor-
mation for each single feature instance entry (Figure 1).
As we focus on controlled biomedical-molecular annota-
tion data, a feature can be a biomolecular entity (i.e. DNA
sequence, gene, transcript, protein) or a biomedical fea-
ture (e.g. pathway, genetic disorder, etc.), a feature in-
stance can be, for example, a specific gene, protein, path-
way or genetic disorder, and a feature entry is a specific
representation of a feature instance (e.g. the data of a spe-
cific gene in a particular data source such as the Entrez
Gene database). Each feature entry is identified by the
value of its Source ID and Source name attributes (since
each feature instance can have multiple IDs from different
sources), and contains the Reference attribute, representing
the source that provided the data, i.e. their provenance
(which can be different from their ID source); for exam-
ple, Table 1 shows two Gene feature entries, from distinct
sources, that represent the Gene feature instance of the
human BRCA1 gene.

TABLE 1
EXAMPLE OF GENE FEATURE ENTRIES AND MAIN ATTRIBUTES
Source Source : Taxonomy
D name Reference  Symbol Name D
672 Entrez Entrez BRCAI Breast Homo
Gene Gene cancer 1. sapiens
early onset
113705  OMIM  OMIM BRCAI Breast Homo
cancer 1 saplens
gene

More detailed additional provenance aspects are rep-
resented by specific attributes, depending on the informa-
tion provided by the original data source. The Inferred
attribute describes if and how a feature entry has been
inferred from other data. The Reference and Inferred attrib-
utes, together with other specific attributes in each source
entity, allow provenance transparent tracking of each
data. This is a fundamental aspect to enable users to as-
sess their confidence in the data. Furthermore, every bio-
molecular entity instance is characterized by its Symbol
and the Taxonomy ID of the organism to which it belongs.
Similarly, every biomedical feature instance is character-
ized by its Name and Definition.

Each feature module of our general schema can also
include History and/or Similarity data. The former ones
represent obsolete discontinued source IDs and, if they
have been propagated, the current ID that replaced each
of them. The latter ones describe equivalence of different
feature entries (from the same or different sources)
through their ID pairings, which link the different feature
entries that the IDs identify (e.g. gene feature entries iden-
tified by different IDs from distinct sources, but repre-
senting the same gene; see Table 1 for an example). These
similarity data can be imported from one or more sources,
or inserted by expert curators, or inferred automatically
by a computational process (e.g. based on Natural Lan-
guage Processing of textual descriptions available within
some data attributes, or based on semantic analysis of
ontological data). Both history and similarity data are
paramount to reconcile unsynchronized data and identify
multiple feature instance entries, from single or multiple
data sources, as representing the same feature instance
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(e.g. data regarding different gene IDs which actually
represent the same single gene; for example, in the case of
history data, this can occur when the gene ID changes and
the gene data are provided by different sources, among
the integrated ones, with different updating time, so that
in some of them the gene ID has not yet been updated).
Thus, history and similarity data directly enable the accu-
rate mapping and integration of different feature data.

Finally, our data schema can represent controlled de-
scriptions of feature instances expressed through either a
flat terminology or an ontology (e.g. pathways described
through the BioCyc Pathway controlled vocabulary, or
biological function features described through Gene On-
tology terms). In the latter case, ontological relationships
among hierarchically related feature data from the same
data source are represented in the schema by a Relation-
ship auto-association of the data source entity (Figure 1),
where the Type attribute represents the different types of
semantic relationships that the source data describe.

In order to ease maintenance and extension of the inte-
grated data schema defined, each feature module is inter-
nally organized in two levels: an import tier and an aggre-
gation tier. The import tier allows structuring and locating
together originally distributed data, while thoroughly
checking their consistency and quality [22], as well as
identifying the feature they refer to and their main attrib-
utes, and associating each feature entry with a unique
OID. The import tier is composed of separated sub-
schemas, each one for every single data source considered
which provides data for that feature, individually struc-
tured as in the original data source, i.e. in a global-as-
view (GAV) data integration fashion. This solution eases
the maintenance and expansion of the global data
schema. In fact, if data schema variations occur in the
original data sources, they can be easily managed since
they affect only the source-specific part of the global
schema. Similarly, the integration of an additional data
source only requires adding a sub-schema for the new
source (according to its original data schema) in the mod-
ule of the feature whose data are provided by the new
source, without affecting other parts of the global schema.
As an example, Figure 2 shows the main tables of the rela-
tional instantiation of the conceptual feature module in
Figure 1 for the Gene feature, with the main attributes of
the gene data form the Entrez Gene and OMIM sources
integrated in GPKB.

The automatic aggregation of the main attribute data
of each feature source occurs in the aggregation tier,
where replicated entries are identified and merged (e.g.
multiple feature entries regarding the same gene ID that
contain data of distinct attributes of the gene). These op-
erations, which are necessary to ensure correct integration
of redundant data from different sources, are automati-
cally performed by the software framework described in
Section 4.

3.2 Feature Module Associations

Data feature modules are pairwise associated (through
association/annotation data); also these associations are
organized in an import and an aggregation tier. In the
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Fig. 2. Main tables of the relational instantiation of the feature mod-
ule in Figure 1 for the Gene feature, which in GPKB is mapped to
the data sources Entrez Gene and OMIM, showing their main attrib-
utes. PK: primary key; FK: foreign key; U: unique index; I|: index;
bold attribute names: required attribute value.

latter one, the association data, which are contained in the
import tier as pairs of feature entry IDs, are automatically
translated into pairs of unique OIDs and matched to the
feature entry OIDs of the two associated features. By tak-
ing advantage of available ID history and similarity data,
this translation also allows reconciling discontinued IDs
to their current ones, and identifying as such different IDs
that represent the same feature instance.

Finally, a third, higher and more general integration tier
(not shown in Figure 1 and Figure 2) completes the inte-
grated data schema by representing all the unique feature
instances, or concepts, (e.g. all distinct genes, proteins,
pathways, genetic disorders, etc.) and their associations
described by the integrated data, regardless of the
source(s) that provide(s) them (e.g. all the integrated dis-
tinct genes and their annotated features, regardless of the
multiple IDs of each of them and their providing source).
Yet, each of these unique concepts (e.g. each gene) is re-
lated to all its entries from distinct data sources in the
lower schema levels (e.g. all the gene data associated with
each gene ID from each integrated source that provides
them), thus keeping all its provenance information.

3.3 Configuration for Automatic Creation

The specific implementation of our general integrated
data schema depends on the particular features and con-
cepts to be represented (in the concept-integration upper
tier) and on the data sources being imported (in the
source-import lower tier) and integrated. To automate its
dynamic creation, we designed a XML file where register-
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ing the data sources and their provided data to be im-
ported and integrated. In this file, metadata are specified
for each source, defining the location from where retriev-
ing the source data, as well as their type (i.e. main, his-
tory, similarity, or association data) and the feature that
each of them describes. General data import templates are
associated with each data type, matched to the source
provided data and, if needed, extended to include specific
attribute data that the particular source may provide. This
allows both standardizing the identification and import of
the main data attributes, and their automatic aggregation
in the data schema aggregation tier; on the other hand, it
also lets full flexibility in the management of any source
data, as well as eases and quickens the filling of the con-
figuration XML file.

Therefore, our general data schema can be iteratively
extended (both tier and feature wise) in a seamless, scal-
able and modular way (just by registering in the XML file
new sources and their represented feature(s), if the latter
one(s) is(are) not already present in the file), in order to
include many different biomolecular entities, biomedical
features and their annotations and associations from sev-
eral different sources, virtually without limitations.

Thus, differently from previously proposed global
schemas and architectures for biomolecular data (e.g.
BioMart [12], or BioWarehouse [17]), this general schema
supports complete automation of the integration process, as
illustrated and discussed in Section 4. Furthermore, our
proposed global data schema and architecture allow ac-
cessing the integrated data at different levels in order to
efficiently perform different types of queries. It can be
physically implemented with an object-oriented or rela-
tional style; since the latter one results most efficient with
large data collections, we opted for a relational imple-
mentation.

4 SOFTWARE ARCHITECTURE FOR SEMANTIC DATA
INTEGRATION

Benefitting from abstraction, modularity and configura-
bility of our integrated data schema, in Java programming
language we created a generalized and parametric soft-
ware architecture, which supports the customized auto-
mated creation of a data warehouse adopting our data
schema, and makes updating the data warehouse and
extending it with new data sources easy. Our approach
for the integration of distributed multi-source heteroge-
neous data is divided in two macro steps (Figure 3), per-
formed according to the defined configuration metadata:
1) Importing data from their diverse sources in the
source-import tier of our integrated data schema,
2) Integrating them in the instance-aggregation and con-
cept-integration tiers of the data schema.

4.1 Data Import

The data import procedure is guided by an import man-
ager that instantiates, configures and executes an importer
for each considered data source. Each source specific im-
porter coordinates a set of loaders (a loader for each data
file, group of homogeneous data files, or data access API

Integrated Table Manager
Importer

ID Matcher

‘ Semantic Closer

Parser

Loader

History Translator

Similarity Translator
Association
Translator

Fig. 3. Main components of the two parts (for data import and
data integration, respectively) of our software architecture.

Import Manager
Integration Manager

Translation
Manager

‘ LCA Calculator

provided by the source) and a set of parsers (a parser for
each data format). Each parser extracts the data from its
associated input file(s) or API(s) and produces data to-
kens usable by a loader. Each loader is responsible for
associating a semantic meaning to the tokens produced
by the associated parser and inserting them into the
warehouse.

When the imported data describe an ontology, the im-
port manager also executes the semantic closure of such
ontology along its IS_A relationships, i.e. an unfolding
processing of the ontology hierarchical structure which
inserts into the data warehouse an explicit relationship
between each term (node) of the ontology and each of its
ancestors related through IS_A hierarchical relationships.
The aim of this semantic closure is to speed up subse-
quent semantic queries and computational analyses on
such semantic data and their annotations. In addition, the
import manager computes also the Lowest Common Ances-
tor (LCA) [25] for each pair of nodes in the ontology; this
is a fundamental step for subsequent evaluations of the
similarity between two terms of an ontology, and then
between genes or proteins based on their semantic anno-
tations to such terms, according to various metrics com-
monly used [26]-[29].

In the import process, each actor is independent: the
import manager administers the importers via a standard
interface based on Java reflection API. The parser is aware
of data format, but agnostic of data semantics; the loader
receives data in a standard format and inserts them in the
proper data warehouse table(s). To guarantee flexibility
and easy addition of new sources, the process is guided
by several configuration metadata, describing the character-
istics of all the registered data sources to be imported, all
the features (biomolecular entities and biomedical fea-
tures) represented by the data to be imported and their
bindings. Such metadata are used to map each data
source and feature to one or more data warehouse tables
and their bindings are used to populate such tables.

The importing framework assigns to each imported
“data record” an OID, which is unique across the data
warehouse. It is used as the primary identification of the
data entries, since there is no guarantee that the IDs pro-
vided by the different sources do not conflict with each
other. In order to ensure correctness of imported data, a
set of regular expressions has been defined to check and
identify IDs [22]. They are used by the ID matcher, an ad-
ditional component of our architecture that acts as a me-
diator between the loaders and the data warehouse. The
main role of this mediator is to check ID syntactic correct-
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ness and identify the semantic type of each ID, in order to
insert the correct information in the appropriate data
warehouse tables. During this process, each inserted tuple
is also enriched with provenance data to track its source.
Correct ID identification is paramount since data from
multiple sources are then linked together thanks to asso-
ciation data provided by the integrated sources as pairs of
IDs in different data sources.

Since input data may contain errors and their structure
is subject to modifications in subsequent data versions,
checking of input data is strictly enforced. Verification is
done in three steps: during parsing, during data loading
and at the end of the import process when index, unique,
primary and foreign key integrity constraints are defined
and enforced upon the data warehouse tables.

4.2 Data Integration

The data integration step consists of two automatic tasks:
aggqregation and integration. In the former task, data from
the different sources, imported in the previous data im-
port step, are gathered and normalized into a single rep-
resentation in the instance-aggregation tier of our global
data schema. In the latter task, data are organized into
informative clusters in the concept-integration tier of the
integrated data schema.

During the aggregation phase, based on the metadata
included in the configuration file, tables of the features
described by the imported data are automatically created
and populated. Then, similar IDs (e.g. aliases of feature
IDs) and historical IDs, which are sometimes provided by
the data sources, are translated to our internal OIDs and
respectively stored in the similarity and history tables of
the feature to which they refer (see Figure 1). Unfolding
of historical IDs is performed before OID translation, so
as to associate repeatedly superseded and discontinued
IDs with the translated OID of their latest ID. Entries de-
rived from this processing are marked as inferred through
historical data, in order to keep full track of their genera-
tion process. Both similarity and historical ID data are
extremely valuable for subsequent data integration tasks.
Translation tables for biomolecular entity and biomedical
feature IDs are also created by using translated similarity
data and unfolded historical ID data. These serve as main
entry points to query and explore the data warehouse;
they allow the conversion from a number of user-
provided identifiers (also obsolete or alias of those in the
warehouse feature tables) to a set of current OIDs, which
are usable to navigate the warehouse.

Then, associations between pairs of feature entries are
created by performing OID translation of the imported
association (annotations) data expressed through the fea-
ture entry IDs. In doing so, association data are coupled
with the related feature entries. Depending on the im-
ported data sources and their mutual synchronization,
association data may refer to feature entries, or even fea-
tures, that have not yet been imported in the data ware-
house. In this case, missing integrated feature entries are
synthesized and marked as inferred through synthesis from
association data. When a missing entry has an obsolete ID
and its most current ID can be obtained through unfolded

historical ID data, the association is transferred to the lat-
est ID and marked as inferred through historical data. This
association translation policy preserves, after integration,
all the associations expressed by the imported association
data from different sources. Thus, it allows subsequently
using such associations for biomedical knowledge dis-
covery (e.g. by transitive relationship inference [30], op-
tionally involving also the synthesized entries).

During the final integration phase, through a “similar-
ity analysis”, it is checked whether single feature entries
from different sources represent the same feature concept
(e.g. different gene entries identified by different IDs of
the same gene from distinct sources). In this case, they are
associated with a new single concept OID (e.g. a gene
concept OID). Furthermore, new entries can be inferred
from the integrated data [30]. The Inferred attribute in the
integrated tables is used to keep track of the inference
method employed, if any, to derive an entry.

5 GENomic AND PROTEOMIC KNOWLEDGE BASE

To demonstrate the relevance and effectiveness of the de-
scribed general software architecture and the integrated
data schema, which we implemented in a PostgreSQL
RDBMS, we used them to create, maintain updated and
progressively extend a multi-organism integrative Ge-
nomic and Proteomic Data Warehouse (GPDW). It consti-
tutes a high quality and consistent integration of numer-
ous biomolecular interaction and semantic annotation
data describing several biomedical-molecular features of
many biomolecular entities, particularly genes and pro-
teins. Such data are imported from several distributed
data sources, carefully selected for their renewed rele-
vance, which include Entrez Gene, UniProt, IntAct, Ex-
pasy Enzyme, GO, GOA, BioCyc, KEGG, Reactome and
OMIM. At the time of writing, the GPDW contains more
than 236 billion data tuples; in the multi-level data
schema used, they amount to a total of about 737 GB of
disk space (including their indexing). They include about
17,535,404 genes of 14,995 different organisms, 19,544,576
proteins of 23,368 species and a total of 16,772,399 gene
annotations and 30,440,619 protein annotations expressed
though 10 biomedical controlled terminologies or ontolo-
gies. The latter ones included 41,829 Gene Ontology terms
and their 42,057,775 semantic annotations, 359,511 bio-
chemical pathways from BioCyc (321,832), KEGG (469) or
Reactome (37,210) and 1,733,389 pathway annotations, as
well as 7,936 human genetic disorders from OMIM and
their 12,473 gene annotations, together with 34,177 pheno-
types (signs and symptoms). We extracted phenotypes
from the OMIM clinical synopsis semi-structured descrip-
tions as illustrated in [5]; at the time of writing, to our
knowledge, they are not included in structured, easy
queryable form in any other integrative database publicly
available. Furthermore, the GPDW integrates 626,516
valuable interaction data from IntAct between different
biomolecular entities, including 609,864 protein-protein
interactions. In addition, the GPDW contains 3,616,108
semantic annotations of 988,899 genes which we recently
detected by transitive relationship from the integrated
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annotations of the proteins that these genes encode; the
semantic processing that we used to this purpose is thor-
oughly illustrated and discussed in [30].

The GPDW constitutes the backend of a Genomic and
Proteomic Knowledge Base (GPKB) publicly available at
http://www.bioinformatics.deib.polimi.it/GPKB/. A Web
interface provides different functionalities that enable the
scientific community to access and comprehensively
query all the data integrated in the GPDW and take full
advantage of them.

The Basic search functionality is available for searches
aimed at retrieving all information directly associated
with a single feature instance, either imported from ex-
ternal sources or inferred based on the integrated data;
for example, all annotations and interactions of a specific
gene or protein (e.g. the human insulin-like growth factor 2
(somatomedin A) (IGF2) gene, Entrez Gene ID 3481), or all
genes and proteins annotated to a particular biomedical
feature instance, such as a specific pathway or genetic
disorder (e.g. the Alzheimer disease, OMIM ID 104300). Full
provenance information for each retrieved association
(annotation or interaction) is provided. When annotations
are inferred by transitive relationships [30], an additional
window provides the available annotations on which
each inferred annotation is based. All extracted data can
be downloaded in text format for their easy further use.

We also implemented an enhanced functionality and
graphical interface for multi-feature search, named Easy
search. It supports the simple graphical composition of
complex queries on multiple features just by orderly se-
lecting the required features, e.g. gene, pathway, enzyme,
biological function feature, genetic disorder, clinical syn-
opsis, etc. (Figure 4); if needed, display and filtering con-
strains can be defined for any attribute of each selected
feature just by specifying them in the feature window
(Figure 5). For example, let us suppose the GPKB user
wants to search for genes whose variants are known to be
associated with genetic diseases and find the clinical as-
pects of such diseases and all the biological functions in
which those genes are known to be involved, in order to
check if common gene functions and clinical aspects exist
in different but related pathologies (e.g. in Muscular dys-
trophy, Duchenne type and in Amyotrophic lateral sclerosis 1).
Using the Easy search functionality, the user can orderly
selects the gene feature, then the gene associated biological
function feature and genetic disorder features, and then the
genetic disorder associated clinical synopsis feature; fi-
nally, before submitting the query, if the user wants to

pathway: 't

genects

enzyme:’ts ———— biological_function_feature<'td

genetic_disorder: ki — clinical_synopsis:'td

Fig. 4. Easy graphical composition of queries on multiple integrated
features through the GPKB Easy search user interface. A query
involving genes, pathways, enzymes and their biological function
features (e.g. cellular components), genetic disorders and their
clinical synopses is being composed. Clicking on the pencil icon of
a feature opens the feature window (Figure 5).
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4

Fig. 5. Feature window of the genetic disorder feature where
display and filtering constrains can be defined for any attribute of
the feature.

investigate only some related pathologies, he/she can
specify them as value of the name attribute in the genetic
disorder feature window (Figure 5). To our knowledge,
these complex multi-topic queries cannot be performed in
such an easy way in any other available system. Further-
more, despite the high amount of data contained, the
GPKB also provides good query performances: the re-
sponse time of the described complex query is 7 seconds.

Query results are shown in a table view, whose col-
umns can be freely composed by the user for best and
easy exploration of the results (Figure 6). Additionally,
the user can select all or a subset of the query results (and
of their attributes) and expand the initial performed
query in order to refine or augment them, according to
the liquid query principle [31]; this supports very useful
explorative searches of the numerous and heterogeneous
data integrated in the GPDW and eases biomedical
knowledge extraction, particularly when the search query
full specification and data filtering values are not known
a priori, but can be determined by observing partial query
results. For example, a GPKB user can start searching for
the genes known to be involved in a given pathway (e.g.
Apoptosis, or RNA transport). Then, he/she can refine the
initial query results by selecting only some of the found
genes (e.g. the ones he/she is more interested in), and by
extracting only those of them that encode for enzymes (by
selecting the gene associated enzyme feature and adding it
in the query). Finally, the user can expand the obtained
results to find in which cellular components, if any, each
of such enzymes is known to be expressed (see upper and
central part of Figure 4).

Furthermore, by taking advantage of the biomolecular
ontologies integrated in the GPDW and their semantic
closure performed by the GPDW software architecture,
the GPKB also supports semantic expansion of the user
query; this functionality is not available through the Web
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Fig. 6. Gene biological functions (e.g. actin binding) and clinical aspects (e.g. central nervous system) found with the GPKB in common in
Muscular dystrophy, Duchenne type and in Amyotrophic lateral sclerosis 1 genetic disorders; pointing the mouse on an attribute value, high-

lights all query results with that attribute value.

interfaces of the original sources from where the semantic
annotations integrated in the GPDW have been taken. All
biomolecular databases store only the most specific onto-
logical annotations of a biomolecular entity, whereas all
the many less specific, indirect annotations are left im-
plicit for space reasons. This semantic expansion allows
retrieving also all such indirect, less specific ontological
annotations of a biomolecular entity in the GPDW, e.g. of
a gene, easing the understanding of all the biomolecular
entity characteristics and the use also of such annotations,
e.g., for gene enrichment analysis [6], [32] or semantic
annotation prediction [33]-[35].

6 EXAMPLE USeE CASE

In order to show potential and relevance of the GPKB, in
this Section we illustrate and discuss a complete example
of its use in order to answer significant biological ques-
tions about complex disorders and unveil common bio-
logical aspects in apparently unrelated genetic disorders.
Complex disease mechanisms can be explained by mo-
lecular pathways, involving subgroups of genes and their
interactions, where phenotypic complexity results from
interactions among genomic variants in different loci. In
particular, polygenic traits are due to the synergetic activ-
ity of multiple genes, which in turn can be pleiotropic
genes, i.e. involved in more pathological phenotypes.
Thus, the complex relationships among gene variants and
diseases can be better understood by pointing out the
genes and metabolic pathways involved in pathological
phenomena. Comprehensive search of integrated bio-
medical information and knowledge from multiple
sources can help clarifying which genes and pathways
(processes among genes) may be the causal candidates of
a disease. In fact, some genes may be hubs connecting

different complex disease modules (e.g. different cancer
types) and so they may have a key role in the disease de-
velopment (e.g. in carcinogenesis). This approach can also
be the basis for some new discovery, or at least clarifica-
tion, of broader phenomena.

As an example, suppose we want to highlight possible
molecular mechanisms at the basis of distinct types of
cancer, e.g. Breast cancer and Prostate cancer which are very
different and complex diseases involving different gen-
ders. To do so, we want to detect all those genes that are
involved in both cancer forms, and the pathways in which
those genes are known to be involved. In the GPKB, just
by simply selecting the gene and genetic disorder features
and specifying Breast cancer and Prostate cancer as values
of the name attribute of the genetic disorder feature, we can
discover that six genes (i.e. AR, ARL11, BRCA2, CASPS,
CDH1, and CHEK?) are involved in both diseases. Then,
we can augment such initial query result and expand the
gene feature, just by selecting its associated pathway fea-
ture, to search also for pathways in which those genes are
known to be involved. By doing so, we found the 19
pathways shown in Table 2.

Such findings may help uncovering common molecu-
lar causes of the diseases, despite their phenotypic vari-
ability. For example, the found Homologous recombination
and Meiosis pathways specifically point out that possible
disease causing variations may occur during cell division
of the germ line, where meiosis is at the base of variability
and inheritance through genetic recombination. Further-
more, using the GPKB we found that variations of one of
the genes found involved in both breast and prostate can-
cers, the cadherin 1, type 1, E-cadherin (epithelial) (CDHI)
human gene, are known to be involved also in other can-
cer forms, i.e. Colorectal cancer, Endometrial cancer, Gastric
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TABLE 2
KNOWN PATHWAYS OF GENES INVOLVED IN BOTH
BREAST CANCER (BC) AND PROSTATE CANCER (PC) DISEASES

Gene Gene Genetic Patlway Patlvay

D symbol  disease Patlsvay 1D sonrce
990 CDHI gg Adherens junction 4510 KEGG
BC
el CDHI1 pe Apoptosis 578 Reactome
0og CDH1 25 Bacterial invasion of epithelial cells 5100 KEGG
990 CDH1 25 Bladder cancer 5219 KEGG
009 CDHI ig Cell adhesion molecules (CAMs) 4514 KEGG
BC 4110 KEGG
11200 CHEK2 P Cell cycle 115566 Eeactome
099 CDHI1 gg Cell-Cell cotnrmunication 111155  Reactome
675 BRCAZ 25 DNA repair 216 Reactome
990 CDH1 25 Endormetrial cancer 5213 KEGG
675 BRCAZ 25 Homologoue recombination 3440 KEGG
009 CDHI ig [tnmune Sysiem 6900 Feactome
675 BRECAZ 25 Meiosis 111183 Reactome
999 CcDHI 20 Melanoma 5218 KEGG
11200 CHEK2 25 153 signaling pathway 4115 KEGG
675 BRCAZ 12((;: Panicreatic cancer 5212 KEGG
el CDHI gg Pathogenic Escherichia coli infection 5130 KEGG
675 BRCAZ 25
Be Pathwways in cancer 5220 KEGG
999 CDH1 pe
BC
0og CDHI1 Pe Signal transduction 111102 Feactome
BC )
999 CDH1 Thyroid cancer 5218 KEGG

cancer, and Ovarian cancer. This shows that this gene may
play a central role in regulating different biological proc-
esses, and so different cancer disease modules.

7 DiscussION AND CONCLUSIONS

Relevant progresses in biotechnology and system biology
are creating a remarkable amount of biomolecular data
and semantic annotations; they increase in number and
quality, but are dispersed and only partially connected.
Integration and mining of these distributed and evolving
data and information have the high potential of discover-
ing hidden biomedical knowledge useful in understand-
ing complex biological phenomena, normal or pathologi-
cal, and ultimately of enhancing diagnosis, prognosis and
treatment; but such integration poses huge challenges.
Our work has tackled them by developing a novel and
generalized way to define and easily maintain updated
and extend an integration of many evolving and heteroge-
neous data sources; our approach proved useful to extract
biomedical knowledge about complex biological processes
and diseases.

The multilevel integrated data schema developed al-
lows data warehouse integrations based on the features
described by the imported data sources. Differently from
previous warehousing work (e.g. BioWarehouse [17], or
Biozon [18]), our data schema and software architecture

are generic; thus, they have the potential for overcoming
the maintenance and extension issues posed by the ware-
housing technique. Our approach is particularly suited
for life science data, which often evolve both in content
and, although less frequently, in structure and number;
we guarantee data consistency, reconcile unsynchronized
data, and identify equivalence of data from different
sources. Furthermore, we take advantage of and process
the integrated semantic data to make them ready for effi-
cient semantic querying and further evaluations. These
remarkable assets, which increase data integration and
quality significantly and enable complex biological que-
ries, to the best of our knowledge are not all together pre-
sent in other biomedical integrative systems.

Our proposed data schema and architecture enable us
to easily create, keep updated and progressively extend
the GPKB, a publicly available collection of numerous,
semantic biomolecular annotation data expressed through
multiple ontologies and originally available separately in
many different sources. Our system supports comprehen-
sive semantic queries with adequate performance, even if
running on big data [36]. Furthermore, by recording data
provenance and modeling associations among the inte-
grated data, GPKB supports comprehensive reliable data
analyses and mining. This helps answering complex
multi-topic biomedical questions, which cannot be
equally managed by other available systems such as Bio-
Mart [12]. As our example use case shown, the GPKB is
mostly useful to unveil hidden biomolecular and bio-
medical associations; these can be crucial to better under-
stand the molecular mechanisms of complex diseases and
foster relevant biomedical knowledge discoveries. The
developed GPKB Web interface well enables users to eas-
ily compose queries, although complex, on multiple fea-
tures/topics and to extract valuable biological insights,
including hidden associations, which may answer signifi-
cant biomedical questions.

Relevance of the GPKB is also proved by the about
47,000 accesses received by more than 1,280 visitors since
when it opened on the Web about 30 months ago, and by
its use within multiple projects, including our frame-
works for detection and prediction of semantic bio-
molecular annotations [30], [35], [37], and the Bio-SeCo
system [38] for the ranking aware composition of search
results in support of distributed bio-data explorative
search to answer complex biomedical questions.

In the near future, we plan to open to the public also a
programmatic access to the GPDW through a collection of
Web services that we are developing for this pur-
pose. Public availability of a service interface will enable
the access to the GPDW data by other computational sys-
tems, with possible inclusion in scientific workflows and
new foreseen applications, e.g. in drug repurposing [39];
we are carrying on a project on this topic in collaboration
with the US National Library of Medicine.
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