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ABSTRACT 
Many contributions regarding internal gear theory exist in literature. They mainly consider the 
problem of undercutting by means of analytical methods applied to specific and limited cases. The 
present paper deals with a general method showing the analytical condition for avoiding 
undercutting by the use of the concept of the limit curve. In particular the analytical determination 
of the limit curve allows the designer to obtain significant graphical representations of the design 
limits.  
 
1. INTRODUCTION 
The internal gears presented here are sometimes also called internal gears with circular profile, to 
differentiate them from those with an involute profile. They are employed as rotors in positive 
displacement machines, both as motors (hydraulic and pneumatic, micro-motors) and pumps. 
As stated by eminent researchers in this field, among whom only [1] will be cited, one of the most 
important problems in the gear theory is the study of the conjugate profiles and of the conditions 
needed in order to avoid interference between the profiles. In fact, the conjugate profile concept 
represents a local condition, which applies only to the contact point, while it does not guarantee 
anything other than this point. Therefore, the profiles can mesh elsewhere too, causing undercutting 
and interference between the profiles. 
The traditional method for the determination of the conditions of non-undercutting in circular 
profile internal gears is presented in some of Colbourne’s studies. This method is based on 
geometrical considerations relative to the particular case examined [2, 3]. However, this fact is 
common to all the traditional methods for studying the conditions of non-undercutting. In fact it is 
enough to consider the methods developed for involute gears, which are sometimes based on 
graphical methods too [4, 5, 6]. The latter have the advantage of being easily interpretable, but are 
not very useful, especially in parametrical design. On the contrary, the method presented in this 
paper, which is based on Litvin’s theory [7], on one hand is exact, due to its analytical formulation, 
on the other hand, it can be represented in an expressive graphical way. Moreover, since this method 
is easily integrable with design software, it allows for the parametric design of the profiles and for 
their verification.  
The study presented here requires us to trace the profiles of the outer and the inner gears by means 
of their analytical expression, as presented in the first part of the paper. Then it is shown in detail 
how to determine the analytical expression of the limit curve. Finally a representation of the 
geometrical meaning of this curve is given and its efficacy as a design tool is stressed. 
 
2. PROFILE TRACING 
The kinematic pair analyzed is characterized by two circular pitch curves Γp1 and Γp2, internally 
tangent to each other (Figure 1). Practically speaking, they are a special type of gear in which the 
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outer gear has few teeth, or rather lobes in this case, with a circular profile [8, 9, 10] while the inner 
gear has one lobe less than the outer one. The index 1 is relative to the inner gear, the index 2 to the 
outer one. 
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Figure 1. Kinematic pair, pitch circles, reference systems and pitch point 

It is possible to propose a modular design for the gears considered and to reduce the number of the 
design parameters: if e indicates the distance between the centers O1 and O2 of the two gears, the 
pitch radii are equal to the product of the lobe number and the distance between the centers, that is: 

r n e
r n e
1 1

2 2

=
=

 (1) 

The other two design parameters  are the distance d (Figure 1) between the center O2 of the outer 
gear and the center C of the circumference whose arc defines the profile of the lobe and the radius 
rl2 of the same circumference. This can be expressed as a function of the distance e between the 
centers: 

d he
r k el

=
=2

 (2) 

Therefore the number of the design parameters is reduced to five, four of which are dimensionless: 
the number of lobes n1 and n2, the ratios h and k, and the distance e between the centers.  
Nevertheless, from the point of view of the kinematic analysis presented here, the dimensionless 
parameters will not be used and the explicit values of the distance and of the radii will be adopted in 
order to simplify the calculations. 
 

2.1. Reference systems adopted 
Three reference systems will be used (Figure 1): a fixed reference system Sf, that can be considered 
as rigidly connected to the frame of the pair with its origin in the center of the inner gear, and two 
mobile reference systems S1 and S2, rigidly connected to the two gears, whose origins coincide with 
the center of the respective gears. The position and the orientation of the reference systems S1 and S2 
are defined by the rotation angles φ1 and φ2, between which exists the constant gear ratio given by: 
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For the coordinate transformation from one reference system to another, the following 
transformation matrixes in homogeneous coordinates are defined:  
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The outer gear is composed of n2 equal circular lobes with a suitable fillet; each lobe can be 
represented in a parametric form in the system S2, by means of a regular line Γ2:  
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The notation x2
2( )  indicates the cartesian component x of the curve Γ2 in the reference system S2. 

The reference system index will be omitted when unnecessary. The lobe profile can be conveniently 
represented in vector notation by vector r2 as well. In the following, both the cartesian notation and 
the homogeneous coordinate matrix notation will be indifferently adopted, therefore: 
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In order to obtain the profiles of the other lobes of the outer gear, the curve Γ2 will be repeated for 
n2 times with a rotation of 22 nπ . However, for the analysis it is sufficient to consider only the lobe 
given by equation (8). So, the effective profile for tracing the inner gear is given in the reference 
system Sf by: 

r M r2 2 2
2( ) ( )f

f=  (9) 
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2.2. Equation of meshing 
With reference to the general theory of the planar conjugate profiles, as reported in [7], the 
determination of the profile conjugate to Γ2 is obtained by the equation of meshing, which 
represents the necessary condition for the existence of the conjugate profile. Starting from equation 
(8), it is easy to note that the normal to the profile represented by r2 can always be defined, in fact, 
the relation: 

∂
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2
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2
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0

0
≠ →
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r

l

l

sin

cos
 (10) 

is true since the two partial derivatives are never simultaneously equal to zero. Therefore the normal 
vector N2

2( )  to Γ2 is equal to: 

N
r

k

i j k

i j2
2 2 2 2

2 20

0 0 1

( ) sin cos= × = = − +
∂
∂θ

∂
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∂
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θ θ
x y

r rl l  (11) 

The equation of meshing results as: 

f ( , ) ( )θ φ
∂
∂θ2

2
2
21 0= ×







 ⋅ =

r
k v  (12) 

In this form the equation of meshing represents the condition of orthogonality between the normal 
to the profile Γ2 and the direction of the relative velocity between two general points M′ and M′′ of 
the profiles when they are going to coincide with the contact point M. 
The equation of meshing also has a meaningful geometrical interpretation. It represents the 
condition necessary for the normal N2 - in the contact point M between the two conjugate profiles - 
to pass through the pitch point P of the motion (Figure 2). With reference to Figure 1, the pitch 
point P(f) has coordinates (r1, 0, 0, 1), in the reference system Sf, while in the system S2 it results as: 

( )P P( ) ( )2
2 2 1 2 2 1 2 0 1= = + − −M f

f e r e rcos cos , sin sin , ,φ φ φ φ  (13) 
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Figure 2. Geometrical interpretation of the equation of meshing. 

Therefore the equation of meshing can be written as follows: 
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(14) 

Note in (14) that the equation of meshing is not a function of rl2, that is, of the lobe radius. This can 
be explained by considering the peculiarity of the circular profile where the normals in 
corresponding points of similar circles are radial anyhow [9] and independent from the circle radius. 
This observation also permits profile tracing by means of a simplified method described in [9]. 
The equation of meshing (14) expresses a relationship between the rotation angle φ2 of the profile 
and the parameter θ, by defining in this way the coordinates of the contact point between the tracing 
profile Γ2 and the conjugated profile Γ1. So the trajectory of the contact point in the system S1 is 
given by the following equations:  

r i j M r1 1 1 12 2 2 0= + = =x y f, ( , )θ φ  (15) 

which allow us to envelop and trace the profile (Figure 1 and Figure 2). 

3. LIMIT CURVE DEFINITION 
The method for determining and tracing the limit curve is presented in this paragraph. The concept 
of limit curve, introduced by [7], allows us to verify not only the presence of interference between 
the conjugate profiles, but also to exactly determine the points of the lobe of the outer gear that will 
cause undercutting on the internal gear. 

3.1. General considerations on undercutting 
Let us consider the velocity in the contact point of the profiles. The motion of this point can be 
regarded as composed of a transfer motion with the gear i, whose velocity is indicated by )(i

trv , and a 
relative motion along profile Γi, whose velocity is )(i

rv . Inasmuch as the considered profiles are 
always in contact, the resulting velocity of the contact point is equal for both gears. Therefore: 
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v v v v v= + = +tr r tr r
( ) ( ) ( ) ( )1 1 2 2  (16) 

From the previous equation, the relative velocity )1(
rv  can be expressed as: 

v v v v v vr tr tr r r
( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 2 21= − + = +  (17) 

where v ( )21  is the sliding velocity. 
The presence of undercutting on the profile Γ1 of the inner gear is determined by the presence of 
singular points. From a kinematic point of view, the identification of these points can be made by 
considering that in these points the relative velocity )1(

rv  of the point along the profile becomes zero 
[7], due to the presence of angular points or loops, i.e. for equation (17): 

v vr
( ) ( )2 21 0+ =  (18) 

By considering the equation (8) of vector r2, which represents profile Γ2, equation (18) can be 
rewritten, by calculating )2(

rv , as: 

∂
∂θ

θr
v2 21d

d t
= − ( )  (19) 

It is now necessary to calculate the sliding velocity v ( )21  of equation (19). First of all, the angular 
velocity vectors of the two gears are: 

ω
ω

1 1

2 2

=
=
ω
ω

k
k  (20) 

and the position vector R 2
2( )  of the origin Of of the fixed reference system Sf in respect to the origin 

O2 of system S2, is: 

R i j2
2

2 2
( ) cos sin= −e eφ φ  (21) 

By considering that the relation of the gear ratio (3) for the rotations is valid also for the angular 
velocity, the two transfer velocity, in the reference system S2, can be expressed as follows: 
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(23) 

The sliding velocity v ( )21  results as: 
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Now, all the elements which are needed to evaluate equation (19) are available but it is also 
necessary to consider the derivative of the equation of meshing (14) to evaluate the time dependence 
between the motion parameter φ2 and the parameter θ [7]. Finally system (25) is obtained: 
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System (25) is a linear system of three equations which have the only unknown dtdθ . For a 
solution to exist, the rank of coefficient matrix A of system (25), given by:  
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has to be equal to 1. Therefore, all the minors of rank 2 extracted from matrix (26) must have their 
determinants ∆1, ∆2 and ∆3 equal to zero: 
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Equation (27) is immediately verified since it again represents the equation of meshing in the form 
reported in equation (12), in fact: 
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The expansions of the other two equations give: 
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Note that the previous equations (31) and (32) are not functions of the angular velocity ω1, as can be 
predicted since the limit has to be related only to the design parameter and to the kinematic pair 
configuration.  
Equations (31) and (32) have to be solved as functions of rl2 for each value of φ2 and θ, by taking 
into account that these two parameters are not independent because they are related by equation 
(14). It is possible to verify that the values of ),( 22 φθlr  obtained from equation (31), also satisfy 
equation (32). The limit curve Γl can be defined as:  





=
+=Γ

θφθ
θφθ

sin),(
cos),(:

22
)2(

2

22
)2(

2)2(

ll

ll
l ry

drx  (33) 

and plotted with the profile of the outer gear. 

3.2. Geometrical interpretation 
As follows from what has been stated in the previous paragraph, the limit curve is the locus of the 
points that may cause interference on the conjugated gear. Note that the limit curve is not a function 
of the radius of curvature of the lobe of the outer gear, but depends on the other design parameters. 
Therefore, once the limit curve is determined and plotted, if Γl does not intersect Γ2, then the 
obtained profile Γ1 does not present undercutting (Figure 3). 
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Figure 3. The limit curve does not intersect the outer gear profile that correctly envelops the inner 
gear. 

This fact explains the definition of Γl as limit curve, since if the lobe is inside the curve itself, the 
conjugate gear does not have undercut. Otherwise the conjugate profile is undercut (Figure 4) when 
intersection is present. 
Note that the same design parameters (r1 = 4, r2 = 5, d = 6) have been used in Figure 3 and Figure 4, 
with the exception of rl2 (equal to 2 in the first case and to 3 in the second case), so the limit curve is 
the same. 

Limit curve Outer rotor

Undercut
profile

Profile part
which determines
undercut

Inner rotor

OO 12

Γl

 

Figure 4.  The limit curve intersects the outer gear profile. The inner gear presents undercut. The 
outer gear profile section that determines undercut is shown in dark gray. 

Moreover, note that the part of the profile Γ2 which lies outside the limit curve, corresponds to the 
undercut part (Figure 4) and that the starting point of undercutting exactly corresponds to the 
intersection point. This fact can be observed by means of a suitable rotation of the gears, which 
permits the intersection point between Γ2 and Γl to coincide with the contact point between Γ2 and 
Γ1 (Figure 5). 
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Figure 5. The outer gear profile section that determines undercut is external to the intersection 
with the limit curve. 

These considerations allow us to evaluate the maximum value of the lobe radius rl2, which does not 
produce undercutting on profile Γ1 in the design phase. In particular, this value is the minimum 
value of the solutions of equations (31) and (32): 

),(min 22,2
2

φθ
φθ llimitl rr =  (34) 

A special case with the lobe radius of the outer gear equal to the limit value given by equation (34) 
is shown in Figure 6. Note that the intersection between the limit curve and the lobe profile is 
exactly at the limit of the effective profile for the lobe envelopement. At this point there are two 
possible options depending on the design limitations. If it is possible to freely choose the value of 
rl2, in that case a value less than the limit given by equation (34) has to be chosen. Otherwise, if the 
radius of the outer gear is stated and is greater than the value given by equation (34), the part of the 
lobe outside the limit curve has to be eliminated. However, this would cause incomplete enveloping 
of the inner gear profile and therefore it would be necessary to modify the outer gear profile, not by 
using a plain circular profile but rather a profile composed of different arcs. 

Limit curve Outer rotor

Inner rotor Fillet

OO 12

Γl

 

Figure 6. Outer gear lobe with radius equal to the limit radius. 
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4. CONCLUSIONS 
The present paper gives a contribution to the internal gear theory by analytically determining the 
limits on the design parameters for avoiding undercutting by using the limit curve concept. The 
following topics will be covered in detail: (i) analytical model of the gears, (ii) analytical 
determination of the limit curve and (iii) geometrical interpretation of the obtained results, by also 
including some examples of the technique employed. 
 
 
References 
[1] Litvin, F.L. (1995) Applied theory of Gearing: State of the Art. ASME Journal of 

Mechanical Design, Vol.117, No.2, June 1995, pp. 128-134. 
[2] Colbourne, J.R. (1975) Gear Shape and Theoretical Flow Rate in Internal Gear Pumps. 

Transaction of the Canadian Society for Mechanical Engineering CSME, Vol.3, No.4, 
pp.215-223. 

[3] Colbourne, J.R. (1976) Reduction of Contact Stress in Internal Pumps. ASME Journal of 
Engineering for Industry, Vol.98, series B, No.4, pp.1296-1300. 

[4] Buckingham, E. (1963) Analytical Mechanics of Gears. Dover, New York. 
[5] Henriot, G. (1993) Manuale Pratico degli Ingranaggi. Tecniche Nuove, Milano. 
[6] Ruggeri, G. (1986) Problemi Speciali di Meccanica. Spiegel, Milano. 
[7] Litvin, F.L. (1994) Gear Geometry and Applied Theory. Prentice Hall, Englewood Cliffs. 
[8] Mimmi G. and Pennacchi P. (1997a) Involute Gear Pumps versus Lobe Pumps: a 

Comparison. ASME Journal of Mechanical Design, Vol.119, No.4, December 1997, pp. 458-
465. 

[9] Mimmi G. and Pennacchi P. (1997b) Internal Lobe Pump Design. Transactions of the 
Canadian Society for Mechanical Engineering CSME, Vol.21, No.2, pp. 109-122. 

[10] Mimmi G. and Pennacchi P. (1997c) Rotor Design and Optimization in Internal Lobe 
Pumps. Applied Mechanics Reviews, Vol.50, No.11, part 2, November 1997, pp. S133-S141. 

 
Nomenclature 
A - system coefficient matrix; 
d - distance between the center of the outer gear 

and the center of the circle whose arc is the 
profile of the lobe; 

e - distance between the centers; 
f - equation of meshing; 
h - ratio d/e; 
k - ratio rl2/e; 
M - coordinate transformation matrix; 
N - normal vector to a profile; 
n - number of lobes; 
P - pitch point; 
R - position vector; 
 

r - profile vector; 
r - pitch radius; 
rl2 - radius of the lobe; 
S - reference system; 
vtr - transfer velocity; 
vr - relative velocity; 
v(21) - sliding velocity; 
Γ - curve; 
∆ - determinant; 
φ - rotation angle; 
θ - parameter; 
ω - angular velocity. 
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