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ABSTRACT

Inertial actuators are widely used device in active vibration
control applications. The aim of the paper is to analyze
the limits on the use of such devices in terms of stabil-
ity when fully active skyhook damping control is imple-
mented. Different control strategies are investigated and
numerical simulation are led considering different vibrat-
ing mechanical systems.

1. INTRODUCTION

Undesirable vibrations can induce noise, bad performance
or even severe damage. Passive damping materials have
been used effectively for a very long time, but especially
for micro-amplitude and low frequency vibration, passive
damping materials are inadequate and not effective. Hence
active vibration control (AVC) techniques with feedback
control feature have begun to be used to meet stringent
accuracy and performance requirements. Direct velocity
feedback control is one of the most commonly used strat-
egy. It consists on a secondary force, which is designed
to be proportional to the absolute structure velocity, which
acts on the structure with the effect of increasing the damp-
ing of the structure itself. As it is known [7], the system is
unconditionally stable for any positive real feedback gain.

A common way to generate the control force is by us-
ing inertial actuators. An inertial actuator consists on a
suspended mass on a fixed base through an elastic element
which is put in vibration by an internal force. This force
can be generated through different physical principles, for
example, electromagnetically. When the base is bound to
the structure to be controlled, the force exerted by the actu-
ator to the structure is equal to the force of inertia resulting
from the acceleration of the suspended mass. Knowing the
dynamics of the actuator, it is possible to control the ex-
erted force acting on the internal force. The advantage of
inertial actuators is they are mounted directly on the vi-
brating structure and do not need a fixed external base to
react. On the other side, the dynamics of these actuators is
strongly coupled with the one of the structure. Moreover,
control techniques that are unconditionally stable in the
case of ideal actuators (as the Skyhook logic), can become
unstable when the force is generated by inertial actuators.
For this reason, the dynamics of the actuators must nec-
essarily be considered in the design of an active vibration

controller.
Many controllers have been developed for the use of

inertial actuators in AVC applications: an overview of lin-
ear controllers is described in [2]. Some nonlinear controls
considering the saturation of the devices are described in
[5], while a deep study on the stability can be found in
[3], [6]. Benassi, Elliott and Gardonio have done several
numerical and experimental studies on the stability and on
the performance of inertial actuators used to control vibra-
tions of a thin plate [9], [8], also considering the opportu-
nity to use the feedback of the transmitted force [1] or the
relative displacement of the inertial mass [4], in order to
increase the stability margin.

The aim of this paper is to analyze the opportunity of
using inertial actuators for the practical arrangement of
a fully active skyhook control, highlighting its limits in
terms of stability. After a brief description of the prob-
lem, the paper introduces the use of a compensator filter
to delete the causes of instability in order to make the con-
trolled system unconditionally stable.

The paper is structured as follows.
Section 2 recalls the basis of the functioning principle of
inertial actuators. Section 3 shows the traditional approach
in control design highlighting the limits on the use of in-
ertial actuators in terms of system stability. The use of
a compensating filter to consider the dynamic of the ac-
tuator is investigated showing the improvements obtained
in terms of vibration reduction. Finally conclusions are
drawn in Section 4.

2. FUNCTIONING PRINCIPLE OF INERTIAL
ACTUATORS

An inertial actuator consists on a mass, free to move, con-
nected to a fixed base through a spring-damper element.
The base is connected to the vibrating structure and a force,
whose origin can be different depending on the type of ac-
tuator, acts respectively on the inertial mass and on the
structure itself. The type of actuators to be used depends
on the maximum force to be transmitted and, above all, on
the operating range of frequencies. Most commonly used
actuators are electromagnetic shaker or magnetostrictive
devices.

Considering the actuator as an inertial mass mounted
on a vibrating structure through a spring-damper element



(Fig.1), its equation of motion is:

maz̈a + ra (ża − że) + ka (za − ze) = −fa (1)

where:

- ża is the suspended mass velocity;

- że is the velocity of the vibrating structure;

- fa is the force generated by the actuator;

- ft is the force transmitted to the structure.
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Figure 1: Mechanical scheme of an inertial actuator
mounted on a single d.o.f. vibrating structure.

The force transmitted to the structure is equal to the
force of inertia related to the actuator suspended mass:

ft = Ta fa − Zaa że = −maz̈a (2)

where:

• Ta =
ft
fa

is the actuator blocked response transfer

function between the internal force generated by the
actuator and the force transmitted to the structure,
when the structure is still;

• Zaa =
ft
że

is the actuator mechanical impedance

that is the transfer function between the structure ve-
locity and the force transmitted when the actuator is
not powered.

The two transfer functions can be obtained from the
equations of motion (1). In the Laplace domain it results:

Ta(s) =
Ft(s)

Fa(s)
=

mas
2

mas2 + ras+ ka
=

=
s2

s2 + 2haωas+ ω2
a

(3)

where ha and ωa are respectively the system adimen-
sional dumping and natural frequency.
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Figure 2: Actuator blocked response

Similarly, the mechanical impedance can be obtained
from eq.(2), neglecting the term related to the internal force
fa (s):

Zaa(s) =
Ft(s)

ve(s)
= mas · ras+ ka

mas2 + ras+ ka
=

= mas · 2haωas+ ω2
a

s2 + 2haωas+ ω2
a

(4)
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Figure 3: Actuator mechanical impedance

For frequencies higher than the actuator resonance, (Fig.
2, 3), both the two functions Ta, Zaa tend to have a con-
stant magnitude and no phase shift. In this condition the
actuator can be suitably considered as an ideal generator



of force. Vice versa, for lower frequencies, function Ta

shows a +180o phase shift, while its magnitude signif-
icantly changes with frequency. In the same range, the
mechanical impedance has a 90o phase shift.

3. DIRECT VELOCITY FEEDBACK
CONTROL

In AVC applications, the amplitude of vibration of a struc-
ture van be reduced designing the control force to be pro-
portional and in phase with the structure velocity and thus
to increase the damping of the structure itself.

The skyhook control is always unconditionally stable if
the actuator can be considered as ideal [7]. This condition
is not verified when the control force is generated through
an inertial actuator linked to the structure [3], [6], [9], [8].

This limit is essentially due to the hypothesis, done by
many researchers. They are:

1. to damp vibrations only in structures whose natural
frequencies are higher than the one of the actuator,

2. to neglect the dynamic of the actuator and to con-
sider the internal force generated by the actuator equal
to the force actually transmitted to the structure.

Due to these assumptions the system can not be uncondi-
tionally stable. In the following the limits of this approach
are shown. The paper introduces a compensator filter that,
considering the dynamics of the actuator, allows to design
the control force in order to be proportional to the struc-
ture velocity and exactly in phase with it. The problem of
stability is analyzed in detail, firstly considering a single
degree of freedom structure and, subsequently, extending
the results to n d.o.f. vibrating systems.

Single d.o.f. vibrating structure - Traditional ap-
proach

Consider a single d.o.f. vibrating structure whose natural
frequency (ωs) is higher than the one (ω0) of the inertial
actuator used to suppress vibrations.

Considering the system as shown in Fig.1, the equa-
tions of motion can be written as:

[
m1 0
0 ma

]{
z̈1
z̈a

}
+

[
r1 + ra −ra
−ra ra

]{
ż1
ża

}
+

+

[
k1 + ka −ka
−ka ka

]{
z1
za

}
=

{
1
−1

}
fa

(5)

[M ] z̈ + [R] ż + [K] z = [ΛC ] fa (6)

To increase the damping of the structure the control
force is designed to be proportional and in phase with the
structure absolute velocity:

fa = −gv ż1 (7)

Substituting eq. (7) in eq. (5) the effect of the control
can be summarized considering the damping matrix of the
controlled system.

([R] + [RC ]) =

[
r1 + ra + gv −ra
−ra − gv ra

]
(8)

Since the resulting matrix is non symmetric, the con-
trolled system has a stability limit as a function of the con-
trol gain gv:

The frequency response of the system to a disturbing
force is shown in Fig. 4. The solid line represents the be-
havior of the uncontrolled system, while the dashed line
represents the behavior of the controlled one. It is noted
that the control is able to effectively increase the damping
of the structure, while it acts as a disturbance on the actu-
ator inertial mass. The same conclusion can be drawn by
observing the root locus of the coupled system.
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Figure 4: System frequency response: solid line - uncon-
trolled system; dashed line - controlled system

Same results can be achieved applying the criterion of
Nyquist to the open loop transfer function:

L1 (s) = gv · ż1
fa

=

= gv · mas
3

(s− p1) (s+ p1) (s− p2) (s+ p2)

(9)

The shape of the open loop transfer function shows
the controlled system is only conditionally stable. The
Nyquist diagram presents a ring in the left-half plane (due
to the dynamics of the inertial actuator), which tends to
enclose the point (- 1, 0j) when the gain of the control is
increased.
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Figure 5: Root locus of the controlled system
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Figure 6: Open loop transfer function

If the vibrating structure were characterized by a nat-
ural frequency lower than the one of the inertial actuator
(ωs < ω0) the problem remains unchanged. Since in the
range of frequencies lower than ω0 the force transmitted
has a 180o phase shift with respect to internal force gener-
ated by the actuator, the equation (7) becomes:

fa = +gv ż1 (10)

Single d.o.f. vibrating structure - Implementation of
a compensator filter

Limits on stability can be theoretically overcame by using
a compensator filter that takes into account the dynamics
of the actuator. The simplest filter can be designed as:

K(s) = T−1
a (s) (11)

Figure 7: Nyquist plot of L1(s)

Internal force generated by the actuator is:

fa = −gv · 1

Ta
ż1 = −kpz1 − kdż1 − ki

∫
z1dt (12)

where:




kp = gv · 2haω0

kd = gv

ki = gv · ω2
0

(13)

To write the equation of motion of the controlled sys-
tem in the time domain, the state of the variable integrated
with respect to time has to be considered:

xI =

∫
z1dt → z1 = ẋI (14)

It results:

{
ẋ
ẋI

}
=

[
[A] [0][
C̃
]

[0]

]{
x
xI

}
+

[
[B]
0

]
fa (15)

fa = −gT [C]

{
x
xI

}
(16)

where: [
C̃
]
=

[
0 0 1 0

]

[C] =




0 0 1 0 0
1 0 0 0 0
0 0 0 0 1


 (17)

are suitable matrix to extract corresponding quantities from
the state and:

gT =
[
kp kd ki

]



collects the gains of the controller.
The frequency response of the coupled system (actu-

ator + structure) is shown in Fig. 8. The solid line rep-
resents the case of uncontrolled system, while the dashed
line represents the behavior of the controlled system using
the filter compensator described in (11) to cancel the dy-
namics of the actuator. It is noted that the control force
is able to effectively increase the damping of the struc-
ture, without significantly changing the amplitude of os-
cillations of the vibrating mass.
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Figure 8: System frequency response: solid line - uncon-
trolled system; dashed line - controlled system

The stability of the controlled system can be assessed
by the eigenvalues of the matrix of state equation (15), or
by applying the Nyquist criterion to the open loop transfer
function:

L2 (s) =

=
gv ·mas

3

(s− p1) (s+ p1) (s− p2) (s+ p2)
· (s− pa) (s+ pa)

s2

(18)

Differently to the previous case, the control results to
be always stable. Analyzing the open loop transfer func-
tion it is evident that the zeros of the filter should compen-
sate the poles associated with the inertial actuator reso-
nance. At the same time the two poles in the origin require
that the phase at zero frequency is +90o. For this reason
the Nyquist diagram has no loops in the left-half plane,
ensuring the unconditional stability.

Extension to n d.o.f. structures

Vibration control of a n degrees of freedom structure sum-
marizes the cases previously seen. The need to consider
the dynamics of the suspended mass of the inertial actua-
tor still remains, while adding the problem concerning the
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Figure 9: Root locus of the controlled system
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Figure 10: Open loop transfer function

possibility that the vibrating structure may have modes of
vibration at frequencies even lower the resonance of the
actuator.

Due to the transition of 180o in the phase of the re-
sponse blocked inertial actuator it is evident that it is not
possible to have a control force in phase with the struc-
ture velocity simply designing the internal force to be pro-
portional to it. In particular, while the traditional control
increases the damping of structural modes whose frequen-
cies are higher than the natural frequency of the actuator, at
the same time it decreases the damping of structural modes
with lower frequencies (Fig.12).

On the contrary, properly filtering the control signal
using a compensator filter, the controlled system becomes
unconditionally stable. All the structural modes can be ef-
fectively damped (Fig.13) and the oscillations of the sus-
pended mass are not increasing.
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Figure 11: Nyquist plot of L2(s)
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Figure 12: Root locus of a controlled n d.o.f. structure
with traditional approach

4. CONCLUSION

The use of inertial actuators in AVC application, using
techniques known in the literature, implies a stability limit
of the controlled system. It is due to the assumptions of
neglecting the dynamics of the actuator considering it as
ideal. The use of a compensator filter, describing the actu-
ator dynamics, allows to overcome this limit and to make
the controlled system unconditionally stable.
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