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ABSTRACT 

Model based techniques are often employed in diagnostics of rotating machines to locate and 

to evaluate the severity of the malfunction. The use of a reliable model can increase the 

accuracy of the identification. Rigid supports or lumped mass pedestals are not always enough 

to account for the foundation dynamics; a modal representation of the supports can improve 

the identification results. The method, discussed in the first part is here validated using 

experimental data of a 320 MW steam turbogenerator. At the authors’ knowledge, this is the 

first case of fault identification on real data from a large machine, where the supporting 

structure is accounted for by means of a modal model.  
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1 INTRODUCTION 

Among the many different topics of concern in the rotordynamics, the prompt identification of 

faulty conditions is for sure a prominent one. Early diagnosis reduces off-line times of 

unexpected outages, allows the implementation of predictive maintenance policies, makes it 

possible to predict residual life and it prevents dangerous accidents and break-downs. 

In the rotordynamics field different techniques are used for identification purposes [1-8]. 

Anyhow, when the identification task is to locate the fault along the rotor train and to evaluate 

the severity of the malfunction, model based techniques, both in frequency and in time 

domain, are often preferred [9-10]. 

The fault identification technique proposed by the authors [11, 12], based on a least square 

algorithm in frequency domain, has proven to be quite robust in general, even if the whole 

system model was not necessarily fine tuned, in large rotating machines where the foundation 

was modelled by means of pedestals. Of course, the use of a reliable model can increase the 

accuracy of the identification. In case of machines in which foundation resonances span over a 

large range of rotating speeds, an equivalent modal model is the easiest and most immediate 

way to account for the foundation dynamics and the relevant theory has been introduced in the 

first part of the paper. 

Modal identification techniques applied to the rotating machinery foundations and exploiting 

data collected during the normal operation of the machine, rather than data obtained by 

cumbersome and costly modal tests, are proposed by several authors [13-16]. As it has been 

discussed in the first part of the paper, a modal model of the foundation provides in any case 

some more degrees of freedom for improving the tuning of the complete system model and the 

subsequent least-squares identification quality. 

In this second part of the paper, the effectiveness of the method is proven using experimental 

results obtained by processing real data obtained from an in-situ trim balancing test on a 320 

MW steam turbogenerator set. 

2 MODEL OF A 320MW STEAM TURBOGENERATOR SET 

The application of the concepts introduced in paragraph 3.1 and 3.2 is presented by means of 

an experimental case of 320MW steam turbogenerator. This machine started its operations 
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more than 10 years ago in a plant where three similar machines were already installed, at that 

time operated by a primary Italian utility.  

The rotor train was supported on seven journal bearings (see figure 1). The rotating machine 

was composed of an high-intermediate-pressure (HP-IP) turbine, a low-pressure (LP) turbine 

and a generator, coupled by rigid joints. It had the gross mass of approximately of 111 t and 

the length of 28.4 m. The turbogenerator was supported on a concrete top plate supported on 

eight pilasters which were connected to a base plate supported on the sub-soil. Spring 

elements were mounted between the top-plate and the pilasters. They significantly affected the 

dynamic behaviour of the foundation. The concrete top plate showed some large holes in order 

to allow the link between the turbogenerator and some machine components located under the 

plate. 

Brg.#1

HP-IP turbine LP turbine
Balancing

plane Generator

Brg.#2 Brg.#3 Brg.#4 Brg.#5 Brg.#6 Brg.#7 

Figure 1 320MW steam turbogenerator model. 

At each lubricated journal bearing the shaft vibrations relative to the bearing housing were 

measured with a couple of X-Y proximity probes while the absolute vibrations of the supports 

were measured with a couple of X-Y velocimeters. A condition monitoring system collected 

the vibration data associated to these measurement points (overall amplitude, 1x rev., 2x rev. 

and 3x rev. harmonic components) both in running state and in transient state (runups and 

rundowns). 

The vibration data collected during several run-ups and run-downs were available. During the 

monitoring period that has been considered, a trim balancing operation was carried out: a 

balancing mass was positioned at the rigid coupling located between the low-pressure turbine 

and the generator in order to reduce the levels of the relative vibrations measured at the 

generator bearing #5. Since our purpose is to identify a faulty condition and a real 

turbogenerator is not a test-rig in which an unbalance is simply made by inserting some 

screws in holes of disks, without loosing of generality, the actual operating conditions are 

reversed. The run-down before the balancing is considered as the reference condition and the 

run-down after the balancing as the faulty condition. This way, under the hypothesis of 
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linearity of the system, which is rather true for this specific type of machines as discussed in 

[11,12,17], it is possible to evaluate additional vibrations due to an unbalance of known 

location and amount. Since the fault considered is the unbalance, only 1x rev. additional 

vibration are considered. 

2.1 Machine model definition 

2.1.1 Rotor model 

The rotor train model, shown in figure 1, has 162 finite beam elements, of which 70 for the 

HP-IP turbine, 60 for the LP turbine and 32 for the generator. The model of the rotor itself is 

in general quite reliable and the sensitivity analysis performed by rotordynamics codes [17] 

shows that, at least for this kind of machines, the uncertainties in the shaft and mass diameters 

of the rotor have a secondary effect on the critical speed and modal damping values with 

respect to bearing and support characteristics. The rotor model is considered to be reliable 

since the other machines of the same type are installed in the same plant and in other plants 

and a rather intense tuning on these machines was performed. In regards to the measuring 

planes, in this case they are not located in the same nodes of the bearing, but in the nodes 

immediately close, as shown in figure 1 and table 1. 

Table 1 Measuring planes offsets from bearings. 
 Measuring 

plane #1 
Measuring 
plane #2 

Measuring 
plane #3 

Measuring 
plane #4 

Measuring 
plane #5 

Measuring 
plane #6 

Measuring 
plane #7 

Offset from 
bearing [mm] −241 +229 −286 +286 −195 +195 −80 

 

2.1.2 Bearing models 

As for the stiffness and damping linearized coefficients of the seven bearings, of which #1, #2 

are equal and of tilting pad type, #3 and #4 equal and elliptical, #5 and #6 equal and elliptical 

and the last #7 of tilting pad type, the values taken from tables in the published literature [18] 

were first assigned. These starting values were then modified in the attempt to tune the whole 

system model to the experimental data and are shown from Errore. L'origine riferimento 

non è stata trovata. to Errore. L'origine riferimento non è stata trovata..  

Since the actual alignment conditions of the specific machine can strongly influence the 

oil-film forces, they could not be actually equal two by two. The estimation of the actual 
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linearized coefficient of the machine analyzed would require a more fine tuning, therefore 

they must be considered as fair.  

 

Table 2 Linearized dynamic coefficents for bearing #1 & #2. 

Rotating speed kxx kxy kyx kyy rxx rxy ryx ryy 
300 2.00e9 0 0 2.00e9 2.00e8 0 0 2.00e8 

1000 1.20e9 0 0 1.20e9 2.00e8 0 0 2.00e8 
1500 9.00e8 0 0 8.50e8 2.00e8 0 0 2.00e8 
2000 9.00e8 0 0 8.50e8 1.00e7 0 0 1.00e7 
2500 1.00e9 0 0 1.00e9 1.00e7 0 0 1.00e7 
3000 1.00e9 0 0 1.00e9 1.00e7 0 0 1.00e7 
3500 1.00e9 0 0 1.00e9 1.00e7 0 0 1.00e7 

 

Table 3 Linearized dynamic coefficents for bearing #3 & #4. 

Rotating speed kxx kxy kyx kyy rxx rxy ryx ryy 
300 4.00e9 −2.01e9 −2.78e7 2.00e9 5.00e7 −1.25e7 −2.00e7 2.00e7 

1000 4.00e9 −2.01e9 −2.78e7 9.50e8 5.00e7 −1.25e7 −2.00e7 2.00e7 
1500 4.00e9 −2.01e9 −2.78e7 8.00e8 5.00e7 −1.25e7 −2.00e7 2.00e7 
2000 3.50e9 −2.01e9 −2.78e7 6.50e8 1.50e7 −7.50e6 −7.50e6 7.50e6 
2500 9.00e8 −5.00e8 2.70e8 6.00e8 1.50e7 −7.50e6 −7.50e6 7.50e6 
3000 7.00e8 −5.00e8 2.70e8 5.00e8 1.50e7 −7.50e6 −7.50e6 7.50e6 
3500 7.00e8 −5.00e8 2.70e8 5.00e8 1.50e7 −7.50e6 −7.50e6 7.50e6 

 

Table 4 Linearized dynamic coefficents for bearing #5 & #6. 

Rotating speed kxx kxy kyx kyy rxx rxy ryx ryy 
300 3.00e9 −2.23e9 −1.05e8 7.00e8 6.00e7 −1.25e7 −1.25e7 2.50e7 

1000 3.00e9 −2.23e9 −1.05e8 7.00e8 6.00e7 −1.25e7 −1.25e7 2.50e7 
1500 3.00e9 −2.23e9 −1.05e8 7.00e8 6.00e7 −1.25e7 −1.25e7 2.50e7 
2000 1.00e9 −7.00e8 1.20e8 6.00e8 2.00e7 −1.00e7 −1.00e7 2.00e7 
2500 1.00e9 −7.00e8 1.20e8 6.00e8 2.00e7 −1.00e7 −1.00e7 2.00e7 
3000 1.00e9 −7.00e8 1.20e8 6.00e8 2.00e7 −1.00e7 −1.00e7 2.00e7 
3500 1.00e9 −7.00e8 1.20e8 6.00e8 2.00e7 −1.00e7 −1.00e7 2.00e7 

 

Table 5 Linearized dynamic coefficents for bearing #7. 

Rotating speed kxx kxy kyx kyy rxx rxy ryx ryy 
300 1.50e8 0 0 1.50e8 4.00e6 0 0 4.00e6 

1000 1.50e8 0 0 1.50e8 4.00e6 0 0 4.00e6 
1500 1.50e8 0 0 1.50e8 4.00e6 0 0 4.00e6 
2000 8.00e7 0 0 8.00e7 2.00e6 0 0 2.00e6 
2500 8.00e7 0 0 8.00e7 2.00e6 0 0 2.00e6 
3000 8.00e7 0 0 8.00e7 2.00e6 0 0 2.00e6 
3500 8.00e7 0 0 8.00e7 2.00e6 0 0 2.00e6 
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2.1.3 Modal foundation model 

No previous common modal testing had been carried out on the supporting structure of this 

turbogenerator unit nor this task is normally performed on this type of machines, whose 

standard model for the foundation is made by means of pedestals. However, due to the 

physical characteristics of this specific foundation this approach is not satisfactory in 

reproducing the dynamic behaviour of the machine, which resulted rather complex in the 

machine speed operating range. Therefore, no reference values for the modal parameters were 

available.  

The modal parameters of the turbogenerator foundation have been estimated using an 

identification technique based on the Extended Kalman Filter (EKF) described in [19,20]. At 

this aim the support 1x rev. vibrations measured during a run-down occurred before balancing 

the machine have been analysed. Moreover, the 1x rev. forces transmitted from the shaft to the 

foundation during the same rundown have been considered. The number of normal modes to 

be identified and the initial values of the natural frequencies have been defined with a 

preliminary analysis, of the support vibrations, in which the effects of the flexural critical 

speeds of the shafts have been taken into account. The complete discussion about the 

calculation and the reliability of the results obtained is presented in [16]. The natural 

frequencies and the damping ratios that have been identified are shown in table 6. 

Table 6 Foundation natural frequencies and damping ratios. 
 Mode n.1 Mode n.2 Mode n.3 Mode n.4 Mode n.5 Mode n.6 
Natural frequency [Hz] 7.74 16.27 22.23 35.49 43.29 79.58 
Damping ratio 0.02700 0.03560 0.04323 0.01760 0.03485 0.0100 

 

Since the main interest of the study is the rotor behaviour, it is sufficient to identify the modes 

in the connecting nodes between the foundation and the rotor. The normal modes ψr have 

been normalised by assigning a unity value to the r-th generalised mass. Table 7 shows the 

foundation normal modes identified with the EKF technique; they are associated to the natural 

frequencies reported in table 6. Note that modes from 1 to 4 are only vertical, as shown also in 

figure 2, in which horizontal and vertical displacement are dimensionless since they are 

normalized. 
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Table 7 Foundation normal modes identified with the EKF technique. 
Bearing Direction Mode n.1 Mode n.2 Mode n.3 Mode n.4 Mode n.5 Mode n.6 

1 Vertical 0.0000 0.0000 −0.10622 0.0000 0.0000 6.2321 
Horizontal 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

2 Vertical 0.0000 0.0000 8.6808 0.0000 0.0000 8.6788 
Horizontal 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

3 Vertical −0.1200 0.3305 −450.117 0.0000 0.2992 9.0155 
Horizontal 0.0000 0.0000 0.0000 0.0000 0.0000 10.8902 

4 Vertical −0.2700 −0.4002 −183.733 0.0000 −1.3000 8.7000 
Horizontal 0.0000 0.0000 0.0000 0.0000 0.0000 5.3331 

5 Vertical 0.0000 0.9136 −8.2269 0.9136 2.0063 1.9000 
Horizontal 0.0000 0.0000 0.0000 0.0000 3.5117 15.6372 

6 Vertical 0.0000 −1.1977 −0.2491 −1.1977 −0.9338 −4.9300 
Horizontal 0.0000 0.0000 0.0000 0.0000 0.0000 8.9195 

7 
Vertical 0.0000 0.0000 0.0000 0.0000 0.0000 −11.7113 
Horizontal 0.0000 0.0000 0.0000 0.0000 0.0000 −19.9892 
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Figure 2. Foundation normal modes. 
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3 EXPERIMENTAL DATA 

As previous mentioned, the experimental data used to obtain the additional vibrations are 

related to a run-down before and a run-down after a balancing on the machine. Care was taken 

in order to choose two run-downs in similar thermal conditions. The balancing mass was on 

the first balancing plane of the generator, see figure 1, that corresponds to the coupling face 

between the LP turbine and the generator towards the last one. The corresponding node of the 

model is 132. The overall amplitude of the balancing was of 0.256 kgm with a phase of 

−22.5° respect to the key-phasor. Due to the big inertia of the machine, the speed transients 

last about an hour and half and an order analysis was made, since the transient operating 

condition could be considered as a succession of steady-states.  
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Figure 3. Run-down speed transients. 

Before considering the additional vibrations that will be employed in the unbalance 

identification, it is interesting to evaluate the effect of the unbalance on the supporting 

structure vibrations measured by the velocimeters. Figure 4 shows the comparison between 

the support vibration in measuring plane #4 in vertical direction before and after balancing. In 

this case, foundation modes n. 2 (16.27 Hz, 976 rpm, see table 7) and 3 (22.23 Hz, 1334 rpm) 

are practically excited in the same way, while some differences are present in the higher 

modes. 
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Figure 4. 1x rev. support vibrations in measuring plane #4, vertical direction. Thin line: 

before balancing; thick line: after balancing. 

Figure 5 shows the comparison between the support vibration in measuring plane #5 in 

horizontal direction before and after balancing. The first mode in this direction is n. 5 

(43.29 Hz, 2597 rpm, see table 7) and the unbalance effect can be appreciated. 
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Figure 5. 1x rev. support vibrations in measuring plane #5, horizontal direction. Thin 

line: before balancing; thick line: after balancing. 

 
The relative vibrations of the shaft-line measured by the proximity probes were added to the 

support vibrations measured by the velocimeters, obviously integrated, in order to obtain the 

absolute vibrations of the machine during each run-down. Finally the measures of the first 

run-down, that was considered as a reference case, were subtracted from those of the second 

run-down. The 1x rev. vibrational behaviour is shown from figure 6 to figure 12. 
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Figure 6. 1x rev. vibrations in measuring plane #1. Thin line: absolute vibrations before 

balancing; dashed line: absolute vibrations after balancing; thick line: additional 
vibrations. 
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Figure 7. 1x rev. vibrations in measuring plane #2. Thin line: absolute vibrations before 

balancing; dashed line: absolute vibrations after balancing; thick line: additional 
vibrations. 
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Figure 8. 1x rev. vibrations in measuring plane #3. Thin line: absolute vibrations before 

balancing; dashed line: absolute vibrations after balancing; thick line: additional 
vibrations. 
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Figure 9. 1x rev. vibrations in measuring plane #4. Thin line: absolute vibrations before 

balancing; dashed line: absolute vibrations after balancing; thick line: additional 
vibrations. 
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Figure 10. 1x rev. vibrations in measuring plane #5. Thin line: absolute vibrations before 

balancing; dashed line: absolute vibrations after balancing; thick line: additional 
vibrations. 
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Figure 11. 1x rev. vibrations in measuring plane #6. Thin line: absolute vibrations before 

balancing; dashed line: absolute vibrations after balancing; thick line: additional 
vibrations. 
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Figure 12. 1x rev. vibrations in measuring plane #7. Thin line: absolute vibrations before 

balancing; dashed line: absolute vibrations after balancing; thick line: additional 
vibrations. 

The 1x rev. vibrational behaviour measured in correspondence of HP-IP turbine (figure 6 and 

figure 7) show that the effect of the balancing is restricted to this part of the rotor train, since 

the additional vibration level at high rotating speeds is low. A residual excitation of the first 

critical speed of the HP/IP turbine at 1560-1580 rpm, was a clear indication that a perfect 

thermal repeatability was not achieved among the two run-downs. These remarks are of some 

guidance in the set-up of the identification procedure and in the interpretation of the 

consequent results. 

As can be expected, the effect of the balancing is more evident on the additional vibrations 

measured on the balancing planes of the LP turbine and of the generator (from figure 8 to 

figure 11), in which the parabolic trend of the vibration level is show. Also the second critical 

speeds in vertical direction of the LP turbine (at about 2650 rpm) and of the generator (at 

about 2650 rpm) are quite evident. Finally, on the measuring plane of the exciter (figure 12) 

the effect of the balancing is reduced, since only horizontal vibrations show a slightly 

increasing trend with the rotating speed. 

Finally, a short discussion is made about the vibration levels at low rotating speed. Even if the 

measures are shown also for rotating speeds below 300 rpm, these data are not reliable at all, 

due to possible errors in the key-phasor signal. Therefore these experimental values will not 

be used for fault identification purposes and this is related also to the fact that the linarized 

dynamic coefficients of the bearings are not defined below 300 rpm.  

The low vibration amplitude of the experimental run-downs and of the additional vibrations at 

low rotating speeds, in the range of 300÷700 rpm, indicates that the rotor train does not show 
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any permanent bow. This aspect and the previous mentioned vibration trends let the 1x rev. 

symptoms corresponding to those of the unbalance. 

In order to evaluate the presence of non-linear effects and the fact that the condition of the 

speed transients are quite similar, also the 2x rev. vibrational behaviour are taken into 

consideration and are shown from figure 13 to figure 19. The very good repeatability of the 

two speed transients, which results also in the practically constant and very small additional 

2x rev. vibrations in all the considered speed range, indicates the absence of non-linear effects 

and that there are not symptoms of faults with 2x rev. characteristic such as cracks, journal 

bearing ovalization or stiffness asymmetry, being the last not very uncommon in two poles 

generators, as the considered in this rotor train, due to their construction. 
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Figure 13. 2x rev. vibrations in measuring plane #1. Thin line: absolute vibrations before 

balancing; dashed line: absolute vibrations after balancing; thick line: additional 
vibrations. 
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Figure 14. 2x rev. vibrations in measuring plane #2. Thin line: absolute vibrations before 

balancing; dashed line: absolute vibrations after balancing; thick line: additional 
vibrations. 
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Figure 15. 2x rev. vibrations in measuring plane #3. Thin line: absolute vibrations before 

balancing; dashed line: absolute vibrations after balancing; thick line: additional 
vibrations. 
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Figure 16. 2x rev. vibrations in measuring plane #4. Thin line: absolute vibrations before 

balancing; dashed line: absolute vibrations after balancing; thick line: additional 
vibrations. 
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Figure 17. 2x rev. vibrations in measuring plane #5. Thin line: absolute vibrations before 

balancing; dashed line: absolute vibrations after balancing; thick line: additional 
vibrations. 
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Figure 18. 2x rev. vibrations in measuring plane #6. Thin line: absolute vibrations before 

balancing; dashed line: absolute vibrations after balancing; thick line: additional 
vibrations. 
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Figure 19. 2x rev. vibrations in measuring plane #7. Thin line: absolute vibrations before 

balancing; dashed line: absolute vibrations after balancing; thick line: additional 
vibrations. 

4 UNBALANCE IDENTIFICATION 

As it follows from the identification technique described in detail in the first part of the paper, 

the results obtained depend on the selected subset of the rotating speeds at which the 

additional vibration are considered and on the weights assigned to each measure. Both these 

aspects are now taken into consideration. In regards to the subset of the rotating speeds three 

different sets are used:  
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• the first set, 1V  considers the additional vibrations corresponding to the rotating speeds of 

2000, 2250, 2500, 2750 and 3000 rpm; this set is that normally chosen by people of the 

control room of the power plant. It reflects their opinion, not necessarily shared by the 

authors, that the model and the measured vibrations are reliable only over 2000 rpm. The 

advantage of this set is its reduced order, but due to this fact it can miss important 

information about the vibrational behaviour of the machine; 

• the second set, 2V , considers the entire all the data and extracts the additional vibration 

corresponding to each 10 measures. The corresponding rotating speeds are approximately 

equally spaced of 100 rpm in the range from 0 to 3000 rpm. This way, the complete 

vibrational behaviour of the machine is sampled and the order of the least square problem 

is not huge, but in certain ranges neither the model nor the measures (typically in resonance 

or at low rotating speed) could be reliable; 

• the third set, 3V , considers all the data. The order of the problem is huge and the 

computational time is large, but the effect of the presence of biased measures or outliers is 

minimized. 

The criteria used to select the weights of the weighted last squares identification method 

reflect the analysis of the vibration data presented in this chapter:  

• the first set of weights 1W  assign unitary weight to each measure. This way the fault acts 

on the entire machine even if on such large machine the effects are normally more local 

and are more evident in the measuring planes close to the fault position. Anyway this 

choice, in which the least squares is actually not weighted, reflects a not identification 

expert attitude; 

• the second set of weights 2W  assign unitary weight to the measures corresponding to the 

measuring planes of the LP turbine and of the generator, while the weight of the measuring 

planes of HP-IP turbine are equal to 0.1. This set reflects the observations made about the 

1x rev. additional vibrations at the beginning of this chapter; 

• the third set of weights 3W  endow the measuring planes close to bearings #4 and #5 by 

assigning unitary weight to their measures, assign weight equal to 0.5 to measuring planes 

#3 and #6 and equal to 0.1 to the others. This way the effect of the fault is considered as 

local. 
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The use of the presented technique allows the relative residuals to be calculated and, in case of 

a fault, to obtain a graphical representation such as that shown in figure 20 in case of sets 2V  

and 1W .  
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Figure 20. Calculation of the relative residual for all the nodes of the shaft line, 
localization of the fault. 

The minimum of the relative residual curve indicates the node s-th in which the fault, the 

unbalance, is most probably localised, while the corresponding values of the amplitude and 

phase of:  

( ) [ ]
1T T( )

B B B B
ˆ ˆ ˆs

mn n n n

−

     =      A X X X W X  (1) 

give the estimate of the fault severity. It can be observed that the minimum of the relative 

residual curve in correspondence of the fault position is very clearly defined with respect to 

the values in any other position along the shaft-line. In the case shown the position of the 

unbalance is correctly identified (see figure 1), the module is slightly overestimated (0.318 vs. 

0.256 kgm) and the phase has a very good fitting (−28.7° vs. −22.5°). The minimum value of 

the relative residual is 0.646 can be deemed as good taking into consideration that the data are 

actually experimental, i.e. the identified unbalance gives a rather good explanation of the 

additional vibrations. This fact can be verified if the experimental additional vibration are 

compared with the simulated vibration calculated by means of the fully assembled model of 

the machine and the identified unbalance as shown in figure 21 and figure 22 for the generator 

measuring planes #5 and #6 only for conciseness. 
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Figure 21. Comparison between experimental and calculated vibrations, #5 measuring 

plane. 
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Figure 22. Comparison between experimental and calculated vibrations, #6 measuring 

plane. 

The complete results, using the selected sets of additional vibrations and weights are reported 

in table 8, table 9 and table 10, in which also the percentage errors are reported. For the phase 

only, a ±100% error indicates a phase error of ±180°, while the error on the position, is 

calculated with respect of the rotor length. 

The results are always remarkable in regards to the unbalance position. This is a most 

important piece of information from an engineering viewpoint, because it also addresses the 

possible source of the fault. The phase angle identification is also remarkably good in all cases 

and of sure interest for the vibration specialist. Larger errors, up to 40%, are found in the 

amplitude identification, with an average error of 27.3% among all the tests, but it is worth 

saying that also this result is certainly more than acceptable. 
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The use of set 3W , independently of the speed set, determines the lowest values of the 

residual, but not necessarily the most precise estimation of the unbalance position and module. 

A better selection of the weights can be determined by means of the regression diagnostics or 

residual analysis techniques discussed in [21,22], in order to increase the accuracy of the fault 

parameter estimate. 

Due to the good quality of the experimental data, the results obtained with the different speed 

sets are very similar. Finally, it is worth to remember that these good results are obtained 

despite the fact that the bearing models are not fine tuned and the rotor model is the standard 

one, common to all the machines of this type. 

Table 8. Unbalance identification results using data corresponding to speed set V1. 

Speed set 1V  Residual Node Error on 
location 

Module 
[kgm] 

Error on 
module 

Phase 
[°] 

Error on 
phase 

Weight set 1W  0.646 132 0% 0.317 24% −36.8 −8% 
Weight set 2W  0.646 132 0% 0.321 25% −36.0 −8% 
Weight set 3W  0.558 133 0.35% 0.359 40% −35.7 −7% 

 

Table 9. Unbalance identification results using data corresponding to speed set V2. 

Speed set 2V  Residual Node Error on 
location 

Module 
[kgm] 

Error on 
module 

Phase 
[°] 

Error on 
phase 

Weight set 1W  0.646 132 0% 0.318 24% −28.7 −3% 
Weight set 2W  0.641 132 0% 0.318 24% −28.8 −4% 
Weight set 3W  0.546 133 0.35% 0.354 38% −27.9 −3% 

 

Table 10. Unbalance identification results using data corresponding to speed set V3. 

Speed set 3V  Residual Node Error on 
location 

Module 
[kgm] 

Error on 
module 

Phase 
[°] 

Error on 
phase 

Weight set 1W  0.715 134 1.40% 0.186 −27% −18.6 2% 
Weight set 2W  0.711 134 1.40% 0.186 −27% −18.5 2% 
Weight set 3W  0.649 134 1.40% 0.213 −17% −16.5 3% 

 

4.1 Robustness of the unbalance identification in regards to faults with similar 

symptoms 

The last check on the robustness of the identification is performed by considering other 

possible faults that have similar symptoms and verifying that the unbalance is the most likely 

fault, i.e. it has the lowest value of the relative residual. Therefore other faults that present a 

1x rev. symptom are considered, whose models are described in detail in [12]: 
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• the “local” bow, that can represent for instance the effect of a rub, which determines an 

asymmetric local thermal distribution. In this case the local bow is intended as affecting an 

element of the rotor only. 

• the “extended” bow, which is the actual shaft bow, that is considered as affecting a rotor 

part limited by two bearings. 

• the rigid coupling misalignment, both in angular and radial (also known as parallel, see 

[23-25]) direction; obviously in the considered machine, this fault has two possible 

location only. 

The results are shown in table 11, table 12 and table 13 using the same sets of speeds and 

weights of the unbalance identification. Since in this case the task is to check that the 

unbalance is the most likely fault, there is not interest in reporting also the eventual position or 

magnitude of the other fault types, even if they are also obtained by means of the 

identification technique.  

Table 11. Residual values of identified faults having 1x rev. symptom, corresponding to 
speed set V1. 

Speed set 1V  Unbalance Local bow Extended bow Coupling 
misalignment 

Weight set 1W  0.646 0.665 0.780 0.671 
Weight set 2W  0.646 0.679 0.777 0.678 
Weight set 3W  0.558 0.593 0.643 0.584 

 

Table 12. Residual values of identified faults having 1x rev. symptom, corresponding to 
speed set V2. 

Speed set 2V  Unbalance Local bow Extended bow Coupling 
misalignment 

Weight set 1W  0.646 0.749 0.848 0.729 
Weight set 2W  0.641 0.743 0.843 0.723 
Weight set 3W  0.546 0.640 0.758 0.622 

 

Table 13. Residual values of identified faults having 1x rev. symptom, corresponding to 
speed set V3. 

Speed set 3V  Unbalance Local bow Extended bow Coupling 
misalignment 

Weight set 1W  0.715 0.799 0.802 0.755 
Weight set 2W  0.711 0.793 0.789 0.748 
Weight set 3W  0.649 0.799 0.716 0.691 

 



 - 24 - 

Of course, also in consideration of the peculiar location of the unbalance next to the 

LP/generator coupling, dramatic differences in the residual values between unbalance, local 

bow and coupling errors could not be expected in this particular case. 

In all the considered cases, the relative residual of the unbalance is the lowest, confirming that 

the identified fault is the most likely one and that the method is robust in regards to of the 

symptoms. Moreover, if the difference between the residual values can be assumed as an 

approximate measure of uncertainty in the identification of the type of the fault, the use of 

small set of experimental values (set 1V ) gives the most uncertain results, while the 

uncertainty tends to reduce and to settle down with large sets ( 2V  and 3V ). 

5 CONCLUSIONS 

The theoretical developments, presented in first part of the paper about the use of a modal 

foundation in a model based identification technique in frequency domain, were validated by 

means of data coming from trim balancing tests on a large steam turbogenerator rotor 

operating in a power plant. The experimental data are presented and discussed. The results 

demonstrate not only a high precision and robustness of the proposed approach in the 

localization of the fault position along the shaft-line, but also a good approximation in the 

identification of amplitude and phase of the fault. Moreover the ability of the method to single 

out the correct type of fault among others with similar symptoms is proven. 

REFERENCES 

[1] Isermann R. and Ballé P., “Trends in the Application of Model-based Fault Detection 
and Diagnosis of Technical Process”, Control Engineering Practice (1997) 5(5), 709-
719.  

[2] Hellmann D-H., “Early fault detection – an overview –”, ISROMAC-9 Conference, 
February 2002, Honolulu, Hawaii, 1-5.  

[3] White M.F. and Jecmenica M., “Fault diagnosis using a fault matrix incorporating fuzzy 
logic”, 12th International Congress on Condition Monitoring and Diagnostic 
Engineering Management-COMADEM 99, July 1999, Sunderland, 441-450. 

[4] Kirk G.R. and Guo Z., “Expert system source identification of excessive vibration”, 
International Journal of Rotating Machinery (2003) 9(2), 63-79. 

[5] Arnaiz A. and Arzamendi J., “Adaptive diagnostics systems by means of Bayesian 
network”, Condition Monitoring and Diagnostic Engineering Management-COMADEM 
2003, August 2003, Växjö, 155-164.  

[6] Vyas N.S. and Satishkumar D., “Artificial neural network design for fault identification 
in a rotor-bearing system”, Mechanism and Machine Theory (2001) 36, 157-175. 



 - 25 - 

[7] Lucifredi A., Magnetto A. and Silvestri P., “Experimental validation of an original 
software package based on chaos theory for monitoring and diagnostics of rotating 
machinery”, IFToMM-6th International Conference on Rotor Dynamics, September - 
October 2002, Sydney, Australia, 257-266. 

[8] Mayes I. and Penny J.E.T., “Model based diagnostics of fault in rotating machines”, 
12th International Congress on Condition Monitoring and Diagnostic Engineering 
Management-COMADEM 99, July 1999, Sunderland, 431-440. 

[9] Platz R., Markert R. and Seidler M., “Validation of online diagnostics of malfunctions 
in rotor systems”, IMechE paper C576-025, 7th Int. Conf. on Vibrations in Rotating 
Machinery, September 2000, University of Nottingham, 581-590. 

[10] Kiciński J., “Model-based diagnostics in 200MW turbosets” Survelliance 4 – Acoustical 
and Vibratory Surveillance Methods and Diagnostic Techniques, October 2001, 
Compiègne, France, 365-377.  

[11] Bachschmid N., Pennacchi P., Vania A., Zanetta G.A. and Gregori L., “Case Studies of 
Fault Identification in Power Plant Large Rotating Machinery”, IFToMM-6th 
International Conference on Rotor Dynamics, September - October 2002, Sydney, 
Australia, 191-200.  

[12] Bachschmid N., Pennacchi P. and Vania A., “Identification of multiple faults in rotor 
systems”, Journal of Sound and Vibration (2002) 254(2), 327-366.  

[13] Konishi T., Allaire P. and Untaroiu C., “Modal analysis of a large turbine-generator 
system with foundation effects”, IFToMM-6th International Conference on Rotor 
Dynamics, September - October 2002, Sydney, Australia, 846-853. 

[14] Feng N. and Hahn E.J., “Numerical evaluation of an identification technique for flexibly   
supported rigid turbomachinery foundations”, IFToMM-6th International Conference on 
Rotor Dynamics, September - October 2002, Sydney, Australia, 854-861. 

[15] Smart M., Friswell M.I., Lees A.W. and Prells U. “Estimating turbogenerator foundation 
parameters”, Proc Instn Mech Engrs (1998) 212 part C, 635-665. 

[16] Vania A., “On the identification of the foundation of a large turbogenerator unit by the 
analysis of transient vibrations”, IMechE paper C576-076, 7th Int. Conf. on Vibrations in 
Rotating Machinery, September 2000, University of Nottingham, UK, 571-580. 

[17] Provasi R. and Zanetta G.A., “DYNARO-Dynamic analysis of rotors-User Manual”, 
ENEL-SRI-PDM-DIM 98-11 01.09.1998. 

[18] Someya T., Journal-Bearing Databook, Springer-Verlag, 1989. 
[19] Vania A., Bachschmid N., Zanetta G.A. and Provasi R., “Task 2 - Model the rotor – 

bearing – foundation system, Subtask 2.3.3 – Identify turbogenerator foundation”, Brite 
EuRam Project BE95-2015 (1999), 1-64. 

[20] Provasi R., Zanetta G.A. and Vania A., “The extended Kalman filter in the frequency 
domain for the identification of mechanical structures excited by sinusoidal multiple 
inputs”, Mechanical Systems and Signal Processing (2000) 14(3), 327-341. 

[21] Vania A. and Pennacchi P., “Experimental and theoretical application of fault 
identification measures of accuracy in rotating machine diagnostics”, Mechanical 
Systems and Signal Processing, (2004) 18(2), 329-352.  

[22] Zhang Z., “Parameter estimation techniques: a tutorial with application to conic fitting”, 
Image and Vision Computing (1997) 15, 59-76. 

[23] Rao J.S. and Chawla A., “Analytical and experimental investigation on misaligned 
rotors”, ISROMAC-9 Conference, February 2002, Honolulu, Hawaii, 1-8.  

[24] Sekhar A.S. and Prabhu B.S., “Effects of Coupling Misalignment on Vibrations of 
Rotating Machinery”, Journal of Sound and Vibration, 1995, 185(4), 655-671. 



 - 26 - 

[25] Prabhakar S., Sekhar A.S. and Mohanty A.R., “Vibration Analysis of a Misaligned 
Rotor-Coupling-Bearing system passing through the critical speed”, Proc Instn Mech 
Engrs (2001) 215 part C, 1417-1428. 

 
 
 


	USE OF MODAL REPRESENTATION FOR THE SUPPORTING STRUCTURE IN MODEL BASED FAULT IDENTIFICATION OF LARGE ROTATING MACHINERY:  PART 2 – APPLICATION TO A REAL MACHINE
	ABSTRACT
	1 INTRODUCTION
	2 MODEL OF A 320MW STEAM TURBOGENERATOR SET
	3 EXPERIMENTAL DATA
	4 UNBALANCE IDENTIFICATION
	5 CONCLUSIONS
	REFERENCES


