
TRANSLATING BPMN TO E-GSM:
PROOF OF CORRECTNESS

Giovanni Meroni, Marco Montali, Luciano Baresi, Pierluigi Plebani

Politecnico di Milano

Dipartimento di Elettronica Informazione e Bioingegneria

Piazza Leonardo da Vinci 32

20133 Milano - Italy

http://www.deib.polimi.it

May. 20, 2016

Technical Report

cba

Unless otherwise indicated, the content is available under the terms of the Creative
Commons Attribution-ShareAlike license (CC-BY-SA) v3.0 or any later version.

Acknowledgments

This work has been partially funded by the Italian Project ITS Italy 2020
under the Technological National Clusters program.

Giovanni Meroni, Luciano Baresi, Pierluigi Plebani are affiliated to the
Dipartimento di Elettronica ed Informazione of Politecnico di Milano,
Milan, Italy.

Marco Montali is affiliated to the Free University of Bolzano-Bozen,
Bolzano, Italy.

ii

Translating BPMN to E-GSM: proof of correctness 1

Contents

1 Introduction 1

2 Process Model 2
2.1 Data Component . 2
2.2 Blocks . 2
2.3 Event Block . 2
2.4 Task Block . 3
2.5 Process Block . 3
2.6 Activity Block . 3
2.7 Sequence Block . 3
2.8 Parallel Blocks . 4
2.9 Decision Blocks . 4
2.10 Loop Blocks . 4
2.11 Process Model . 4

3 Trace Conformance 5

4 Conformance Preservation of the BPMN to E-GSM Translation 10

Abstract

In this technical report, we prove the correctness of the BPMN to E-GSM
translator described in [2].

1 Introduction

This report completes the discussion of our approach on how to translate a BPMN
process, which is easy to conceive, into an equivalent model in E-GSM, an extension
to the Guard-Stage-Milestone (GSM) artifact-centric modeling notation [3].

The specification and the main rules of the BPMN to E-GSM translator are defined
in [2]. The goal of this paper is to prove that the translator operates correctly.

Section 2 introduces the formalism adopted along the paper. Section 3 formally
defines the concept of conformance among traces of processes. Finally, Section 4
focuses on proving how translating a process model expressed using BPMN into an
E-GSM model, according to the rules expressed in [2] does not affect the conformance.

2 Giovanni Meroni, Marco Montali, Luciano Baresi, Pierluigi Plebani

2 Process Model

We provide a formal definition of (block-structured) BPMN process models manipu-
lating artifact states. For simplicity, we consider only activities/tasks equipped with
at most one boundary event.

2.1 Data Component

In our setting, the data component of a business process is constituted by a set of
artifacts and their states. In particular, a data component is a set of pairs 〈A,Σ〉,
where A is the name of an artifact, and Σ is the set of states in which that artifact
can be. How an artifact moves from one state to another is implicitly determined by
the process control-flow, and how atomic tasks operate over artifacts.

2.2 Blocks

Blocks account for the different units of work in the process, together with their
control-flow dependencies. We therefore start by defining a generic notion of block,
which then specializes depending on its type.

Definition 2.1 (Block). A block is a triple 〈BName,BType,BAttr〉, where:
• BName is the block name, used to uniquely identify the block.
• BType ∈ {event, proc, task, activity, seq, par, choice, or, loop} is the block

name, where: (i) event denotes event blocks; (ii) task denotes task blocks;
(iii) activity denotes non-atomic activities specified in terms of a subprocess;
(iv) seq denotes sequence blocks (indicating the acceptable ordering of execu-
tion for other blocks); (v) par denotes parallel blocks (whose multiple branches
are executed concurrently); (vi) choice denotes choice blocks (whose multiple
branches are mutually exclusive); (vii) or denotes inclusive or blocks (whose
multiple branches are selectively executed in parallel); (viii) loop denotes loop
blocks (where the flow may execute a block multiple times); (ix) proc denotes
process blocks, which begin with a start event and finish with a termination
event, provided that the process flow proceeds without exceptions in between.
• BAttr is a tuple of type-dependent attributes.

In the following, we detail how BAttr is defined depending on the block type. If
BAttr contains another block B′, we say that B′ is a direct sub-block of B.

2.3 Event Block

An event block represents a BPMN start, intermediate, or termination event. In the
context of this paper, the specific kind of event is not important, nor it is whether it
is an event triggered by the process itself, or caught by the process. Hence, we simply
consider BAttr = 〈〉.

Translating BPMN to E-GSM: proof of correctness 3

2.4 Task Block

A task block represents an atomic unit of work within the process. In the context
of this work, we keep track of how a task relates to the state of relevant artifacts.
Specifically, BAttr = 〈IS ,OS 〉, where IS and SO are two sets respectively expressing
the precondition and effect of the task in terms artifact states required by the task
to start, and new states in which artifacts are moved when the task completes. Each
entry in IS ∪OS , in turn, is a pair 〈A, S 〉, where A is an artifact and S is a state.

2.5 Process Block

A process block represents a BPMN process, triggered by a start event, consisting of a
main block, and finally ending with a termination event. Hence, BAttr = 〈Es ,B ,Et〉,
where:
• Es is an event block, accounting for the start event;
• B is a generic block, accounting for the main execution block of the process;
• Et is an event block, accounting for the termination event.

2.6 Activity Block

An activity is a generic unit of work within the process. While it is executed, it
may spawn interrupting or non-interrupting exceptional flows, in the case where it is
equipped with boundary events catching external events, together with corresponding
handlers. For simplicity, and without loss of generality, we consider here the case
where each activity block is equipped with at most one boundary event.

In this light, we have BAttr = 〈B , [EH]〉, where:
• B is either a task or a process block, respectively representing the case where

the activity is an atomic unit of work, or a non-atomic unit of work captured
by a (sub)process.
• EH is an optional triple 〈E,H, f〉, where E is a (boundary) event block, H is a

generic block modeling the handler of the event, and f is a flag indicating how
the exception handler is managed. We have in particular three cases:

– (f = nonint) the exception is managed in a non-interrupting way, i.e., H
is run in parallel with the current block, synchronizing their termination;

– (f = intfw) the exception is managed by interrupting the normal execu-
tion, then continuing the execution in a forward way;

– (f = intbw) the exception is managed by interrupting the normal execu-
tion, then going back to re-execute the normal block again.

2.7 Sequence Block

Sequence blocks are made of 2 or more sub-blocks executed one after the other. We
consequently have BAttr = 〈B1 , . . . ,Bn〉, where each Bi is a generic block, and n ≥ 2.
The ordering within BAttr reflects the nature of the sequence. It is worth noting that

4 Giovanni Meroni, Marco Montali, Luciano Baresi, Pierluigi Plebani

a process block can be seen as a sequence block constituted by three sub-blocks, the
first being the start event of the process, the second being the main execution block,
and the third being the termination event block.

2.8 Parallel Blocks

Parallel blocks are constituted by 2 or more sub-blocks running concurrently. In this
case, we then have that BAttr = 〈B1 , . . . ,Bn〉, where each Bi is a generic block, and
n ≥ 2.

2.9 Decision Blocks

Decision blocks are those in which one or more sub-blocks are executed depending on
the result of some decision. In particular, each sub-block is conditional, in the sense
that it is associated to a guard, and it is executed if the guard evaluates to true. A
conditional block is a pair 〈ϕ,B〉, where ϕ is a condition, and B is a generic block. In
the case of a decision block, BAttr = 〈C1 , . . . ,Cn〉, where n ≥ 2, each Ci = 〈ϕi, Bi〉
is a conditional block, and the guards are such that

∨
i∈{1,...,n} ϕi = true (i.e., at least

one condition evaluates to true). We have two types of decision block:
• choice, representing an exclusive choice block. In this case, we have that

guards are pairwise disjoint, i.e., for every i, j ∈ {1, . . . , n} with i 6= j, ϕi∧ϕj =
false. Combined with the assumption above, this means that exactly one guard
evaluates to true.
• or, representing an inclusive or block. In this case, multiple guards may hold,

leading to execute all the corresponding sub-blocks.

2.10 Loop Blocks

Loop blocks represent units of work that can be repeated multiple times. In this case,
BAttr = 〈FB ,CB〉, where FB is the block executed at least once when traversing
the loop block, and CB = 〈ϕin, B

′〉 is a conditional block executed when the loop
condition ϕin evaluates to true. In this case, after executing CB the control-flow
reiterates the execution of FB . If ϕin evaluates to false, then the loop is terminated.

2.11 Process Model

We are now in the position of defining what a process model is:

Definition 2.2 (Process Model). A process model B is a pair 〈D,P 〉, where D is a
data component (cf. Section 2.1), and P is a process block (defined in Section 2.5)
that represents the top-level, end-to-end BPMN process of interest. We assume that
P obeys to the following assumptions:
• P is constituted by finitely many (direct and indirect) sub-blocks;
• no two sub-blocks of P have the same name.

Translating BPMN to E-GSM: proof of correctness 5

The first requirement guarantees that the process model is finite. The second
requirement simultaneously implies two properties: on the one hand, it makes the
process model unambiguous; on the other hand, it makes the process model well-
defined, in the sense that no block directly or indirectly embeds itself as a sub-
block. Thanks to such assumptions, we get that the sub-block relation induces a tree-
structure, rooted in the top-level, end-to-end process, and whose leaves are atomic
tasks and events. More specifically, the sub-block relation forms a tree where P
is the root, each other block has a unique parent block, and the leaves of the tree
correspond to task or event blocks. We call this tree the process tree of B (or of P).
Given a block B different than P , we use notation B.Parent to identify its parent
block. Furthermore, we respectively denote by P.Blocks , P.Tasks and P.Events the
blocks present in the sub-tree rooted in P , the names of task blocks in P.Tasks , and
the names of event blocks in P.Tasks .

The notion of parenthood is formally defined next.

Definition 2.3 (Block Parenthood). Let 〈D,P 〉 be a process model, and Bp, Bc two
blocks in P.Blocks different than P itself. We say that Bp is the parent block of Bc,
written Bp = Bc.Parent, if one of the following conditions holds:
• Bp = 〈np, activity, 〈B ,EH 〉〉, with B = Bc, or with EH containing either a

triple of the form 〈Bc, H, f〉 or of the form 〈E,Bc, f〉.
• Bp = 〈np,Type, 〈B1, . . . , Bn〉〉, with Type ∈ {seq, par} and some Bi = Bc.
• Bp = 〈np,Type, 〈CB1, . . . ,CBn〉〉, with Type ∈ {choice, or} and some CB i =
〈ϕi, Bc〉.
• Bp = 〈np, loop, 〈B,CB〉〉, with either B = Bc, or CB = 〈ϕ,Bc〉.

Specularly, given a block Bp we define the set of children blocks of Bp, written Bp.Children,
as the set {Bc | Bc.Parent = Bp}.

3 Trace Conformance

In this section, we formally characterize when a trace over B conforms to B, consid-
ering the control-flow semantics of the blocks contained in the process tree of B.

Definition 3.1 (Trace). A trace over a process model B = 〈D,P 〉 is a finite sequence
〈t1 · · · tn〉 of steps, where each step ti has one of the following forms:
• (event execution) ti = E, where E ∈ P.Events.
• (task start) ti = 〈start, n〉, where n is the name of a task in P.Tasks.
• (task end) ti = 〈end, n〉, where n is the name of a task in P.Tasks.

In addition, t1 = Es, where Es is the start event of P .

To define conformance, we first introduce a suitable notion of execution state,
which in turn provides the basis for defining when an execution step is accepted, and
what is the resulting execution state.

Definition 3.2 (Execution state). An execution state over B is a pair 〈Curr ,Next〉,
where Curr is the set of enacted blocks in B, and Next is the set of enactable blocks
in B.

6 Giovanni Meroni, Marco Montali, Luciano Baresi, Pierluigi Plebani

Intuitively:
• Block B is enacted whenever there is an execution thread currently flowing

through B.
• Block B is enactable if B becomes enacted in response to some execution step

done in the current state of affairs.

Definition 3.3 (Initial execution state). Let B = 〈D,P 〉 be a process model, with
P = 〈E,A, F 〉. The initial execution state of B is 〈∅, {P,E}〉.

The initial execution state reflects the intuition that, at the beginning, no block
is enacted, and the only enactable blocks are P itself together with its start event E.

Definition 3.4 (Executable step). Given an execution state s = 〈Curr ,Next〉 over
process model B, we say that step t is executable in s if one of the following conditions
holds:

1. t = e and E ∈ Next, where E is the event block named e;
2. t = 〈start, n〉 and T ∈ Next, where T is the task block named n;
3. t = 〈end, n〉 and T ∈ Curr, where T is the task block named n.

Obviously, the actual execution of an executable step leads to update the state of
its corresponding block. However, depending on where that block is located in the
process model, this update could recursively trigger state updates for other blocks.
We classify such updates in three categories:
• disablement of a block, resulting in the removal of the block from the set of

enacted/enactable blocks;
• enactability of a block, resulting in the insertion of the block in the set of

enactable blocks;
• enactment of a block, leading to move the block from the set of enactable blocks

to that of enacted blocks.

Definition 3.5 (Block disablement). Let s = 〈Curr ,Next〉 be an execution state over
B, t a step executable in s, and B a block of B. We say that B is disabled by t in s,
or alternatively that t disables B in s, if one of the following conditions holds:

1. Task end execution step - base case:
a. (i) t = 〈end, n〉, (ii) B = 〈n, task, 〈IS ,OS 〉〉, and (iii) B ∈ Curr. (A task

end step disables its corresponding task block if such a block is currently in
execution).

2. Event execution step - base cases:
a. (i) t = e, (ii) B = 〈e, event, 〈〉〉, and (iii) B ∈ Next. (An event step disables

its corresponding event block if it is enactable).
b. (i) t = f, (ii) B = 〈n, proc, 〈Es, B

′, Et〉〉 with Et = 〈f, event, 〈〉〉, and
(iii) Et ∈ Next. (An event step disables a process block if it corresponds to
its termination event, and such termination event is enactable).

c. (i) t = e, (ii) B is a descendant of, or corresponds to, block B′, where B′ is
the inner block of an activity block that in turn has an interrupting boundary
event named e, and (iii) B′ ∈ Curr.

Translating BPMN to E-GSM: proof of correctness 7

(An event step disables all inner blocks of an enabled activity block having
that event as interrupting exception).

3. Activity block - inductive cases:
a. (i) B = 〈n, activity, 〈B′〉〉 (ii) B′ is disabled by t. (An activity block without

boundary events is disabled if its inner block is disabled by the given execution
step).

b. (i) B = 〈n, activity, 〈B′, 〈E,B′′, nonint〉〉〉 (ii) B′ is disabled by t; (iii) B′′ 6∈
Curr. (An activity block with non-interrupting boundary event is disabled if
its inner block is disabled and its event handler is not in execution).

c. (i) B = 〈n, activity, 〈B′, 〈E,B′′, nonint〉〉〉 (ii) B′′ is disabled by t; (iii) B′ 6∈
Curr. (An activity block with non-interupting boundary event is disabled if
its event handler is disabled and its inner block is not in execution).

d. (i) B = 〈n, activity, 〈B′, 〈E,B′′, f〉〉〉, with f ∈ {intfw, intbw}; (ii) B′

is disabled by t. (An activity block with interupting boundary event is dis-
abled if its inner block is disabled - this guarantees that its handler is not in
execution).

e. (i) B = 〈n, activity, 〈B′, 〈E,B′′, f〉〉〉, with f ∈ {intfw, intbw}; (ii) B′′ is
disabled by t. (An activity block with interupting boundary event is disabled
if its event handler is disabled - this guarantees that its inner block is not in
execution).

4. Sequence block - inductive case: (i) B = 〈n, seq, 〈B1, . . . , Bn〉〉 (ii) Bn is
disabled by t. (A sequence block is disabled if its last inner block is disabled).

5. Parallel/or block - inductive case: (i) B = 〈n, type, 〈B1, . . . , Bn〉〉, with type ∈
{par, or} (ii) there exists i ∈ {1, . . . , n} such that Bi is disabled by t and for
each j ∈ {1, . . . , n} with j 6= i, Bj 6∈ Curr. (A parallel/or block is disabled
as soon as one of its inner block is disabled, and there is no other inner blocks
currently enacted).

6. Choice block - inductive case: (i) B = 〈n, choice, 〈B1, . . . , Bn〉〉, with type ∈
{par, or} (ii) there exists i ∈ {1, . . . , n} such that Bi is disabled by t. (A choice
block is disabled when one of its inner blocks is disabled - that block is the one
that was selected when taking the choice).

7. Loop block - inductive case: (i) B = 〈n, loop, 〈Bfw, 〈ϕ,Bbw〉〉〉, (ii) Bfw is
disabled by t, (iii) ϕ is false in s. (A loop block is disabled when its forward
inner block is disabled, and the loop condition evaluates to false).

We denote by Dt
s the set of blocks in B that are disabled by t in s.

Definition 3.6 (Block enactment). Let s = 〈Curr ,Next〉 be an execution state over
process model B, t a step executable in s, and B a block of B. We say that B is
enacted by t in s, or alternatively that t enacts B in s, if B ∈ Next and one of the
following conditions holds:

1. Task execution step - base case (i) t = 〈start, n〉; (ii) B = 〈n, task, 〈〉〉. (An
enactable task is enacted when it gets started).

2. Event execution step - base case: (i) t = e (ii) B is the top process block,
and its start event is e. (The top process block is enacted when its start event

8 Giovanni Meroni, Marco Montali, Luciano Baresi, Pierluigi Plebani

occurs - this only applies to the top block, since for subprocesses the start event
implicitly occurs whenever the flow reaches them).

3. Activity block - inductive case: (i) B is an activity block of the form 〈n, activity, 〈B′, [EH]〉〉;
(ii) B′ is enacted by t in s. (An activity block is enacted when its inner
task/process block is enacted).

4. Sequence block - inductive case: (i) B is a sequence block of the form 〈n, seq, 〈B1, . . . , Bn〉〉;
(ii) B1 is enacted by t in s. (A sequence block is enacted when its first inner
block is enacted).

5. Gateway blocks - inductive case: (i) B is a gateway block of the form 〈n, type, 〈B1, . . . , Bn〉〉
with type ∈ {par, choice, or}; (ii) there exists i ∈ {1, . . . , n} such that Bi is
enacted by t in s. (A gateway block is enacted as soon as one of its inner, en-
actable blocks is actually enacted - for decision blocks, inner blocks are enactable
only if their guard condition is true, see below).

6. Choice blocks - inductive case: (i) B is a loop block of the form 〈n, loop, 〈B′, CB〉〉;
(ii) B′ is enacted by t in s. (A loop block is enacted when its inner forward
block is enacted).

We denote by Ets the set of blocks in B that are enacted by t in s.

Definition 3.7 (Block enactability). Let s = 〈Curr ,Next〉 be an execution state over
process model B, t a step executable in s, and B a block of B. We say that B is made
enactable by t in s, or alternatively that t makes B enactable in s, if B 6∈ Next∪Curr
and one of the following conditions holds:

1. Event execution step - base cases:
a. (i) t = e; (ii) the (top) process block of B is P = 〈n, proc, 〈Es ,B ,Et〉〉, with
Es = 〈e, event, 〈〉〉; (iii) P ∈ Next. (The occurrence of the start event of the
top process block makes its inner block enactable).

b. (i) t = e; (ii) there exists block Bp = 〈n, activity, 〈B′,EH 〉〉 ∈ Curr, where
EH is of the form 〈〈e, event, 〈〉〉, B, f〉. (The occurence of the boundary
event of an enacted activity makes the corresponding handler enactable).

2. Activity block - base case: (i) B is an event block; (ii) B.Parent is an activity
block having B as boundary event, i.e., it has the form 〈n, activity, 〈Bc, 〈B,H, f〉〉〉
(iii) B.Parent is enacted by t in s. (The enactment of an activity block makes
its boundary event enactable).

3. Parent activity block - inductive case: (i) B.Parent is an activity block having B
as inner block, i.e., it has the form 〈n, activity, 〈B, 〈E,H, f〉〉〉; (ii) B.Parent
is made enactable by t in s. (As soon as an activity block becomes enactable,
its inner block becomes enactable as well).

4. Parent sequence block - inductive cases:
a. (i) B.Parent is a sequence block having B as first inner block, i.e., it has the

form 〈n, seq, 〈B, . . .〉〉; (ii) B.Parent is made enactable by t in s. (As soon
as a sequence block becomes enactable, its first inner block becomes enactable
as well).

b. (i) B.Parent is a sequence block having B as non-first inner block, i.e., it has
the form 〈n, seq, 〈. . . , Bp, B, . . .〉〉; (ii) B.Parent ∈ Curr; (iii) Bp is disabled

Translating BPMN to E-GSM: proof of correctness 9

by t in s. (The disablement of an inner block inside an enacted sequence
makes the next inner block enactable).

5. Parent parallel block - inductive case: (i) B.Parent is a parallel block hav-
ing B as one of its inner blocks, i.e., it has the form 〈n, par, 〈. . . , B, . . .〉〉;
(ii) B.Parent is made enactable by t in s. (As soon as a parallel block becomes
enactable, its inner blocks becomes all enactable as well).

6. Parent decision block - inductive case: (i) B.Parent is a decision block having
B as one of its inner blocks, i.e., it has the form 〈n, type, 〈. . . , CB, . . .〉〉, with
type ∈ {choice, or} and CB = 〈ϕ,B〉; (ii) B.Parent is made enactable by t

in s; (iii) ϕ is true in s. (As soon as a decision block becomes enactable, its
inner block(s) whose corresponding condition evaluates to true in the current
state become(s) enactable as well).

7. Parent loop block - inductive cases:
a. (i) B.Parent is a loop block having B as its forward inner block, i.e., B.Parent

is of the form 〈n, loop, 〈B,CB〉〉; (ii) B.Parent is made enactable by t in s.
(As soon as a loop block becomes enactable, its forward inner block becomes
enactable as well).

b. (i) B.Parent is a loop block having B as its backward inner block, i.e.,
B.Parent is of the form 〈n, loop, 〈FB , 〈ϕ,B〉〉〉; (ii) the forward block FB
of the loop is disabled by t in s; (iii) ϕ is true in s. (The backward inner
block of a loop becomes enactable when the forward block of that loop gets
disabled, provided that the loop condition evaluates to true in the current
state).

c. (i) B.Parent is a loop block having B as its forward inner block, i.e., B.Parent
is of the form 〈n, loop, 〈B, 〈ϕ,B′〉〉〉; (ii) the backward block B′ of the loop is
disabled by t in s. (The forward inner block of a loop becomes enactable when
the backward block of that loop gets disabled - this captures a new iteration
of the loop).

We denote by N t
s the set of blocks in B that are made enactable by t in s.

With the three notions of block disablement, enactment and enactability at hand,
we are now able to define the key notions of state update and, in turn, conformance.

Definition 3.8 (State update). Let s = 〈Curr ,Next〉 and s′ = 〈Curr ′,Next ′〉 be two
execution states over process model B, t a step executable in s, and B a block of B.
We say that t updates s into s′, or alternatively that s is updated by t into s′, if:

1. Curr ′ = (Curr ∪ Ets) \ Dt
s ;

2. Next = (Next ∪N t
s) \ Dt

s ;

Definition 3.9 (Conformance). Given a process model B, an execution trace τ =
〈t1, . . . , tn〉 over B conforms to B if there exists a sequence 〈s0, . . . , sn〉 of execution
states such that:

1. s0 is the initial execution state of B;
2. for every i ∈ {1, . . . , n}, step ti is executable in si−1;
3. for every i ∈ {1, . . . , n}, step ti updates si−1 into si.

10 Giovanni Meroni, Marco Montali, Luciano Baresi, Pierluigi Plebani

We remark that this definition of conformance faithfully reconstructs the classical
notion of control-flow conformance defined by translating the process model of interest
into a workflow net. In particular, enactability corresponds to the enablement of
transitions, enactment to the firing of a transition, and state update to the calculation
of the marking resulting from executing a transition in a previous marking.

As an example, consider the BPMN well-structured process model in Figure 2
of the paper. At the beginning, no active block exists. The only block that can be
activated is Seq1 that, being a sequence, can be activated when the first element in
the sequence is activated, which is Start. Therefore, the only acceptable execution
step is Start. Suppose that it happens. This leads to activate the block Seq1 and,
in turn, the block Start, which is immediately deactivated. At the same time, block
ProvideContainer can be activated next, since it directly follows Start. When task
ProvideContainer is started, the corresponding block is activated and the only ac-
cepted execution step becomes the completion of that task. When ProvideContainer

is completed, this causes the homonimous block to be deactivated, and the subse-
quent block PickUpContainer can be activated next. Once tasks ProvideContainer,
PickUpContainer, GoToProducer and VerifyId are first started then terminated
with no overlapping, the next block becomes EExc. Since it is a forward exception
handling block, EExc is activated either when PickUpFailure is activated and the
exception Unauthorized was risen, or when the exception was not risen and Seq2

is activated, i.e., when tasks LoadGoods is started. Suppose that the exception was
risen and PickUpFailure happens. This causes block PickUpFailure to be activated
and immediately deactivated, which in turn deactivates EExc and makes End, which
directly follows EExc, the only acceptable execution step. Once End happens, the
homonimous block is activated, then deactivated, then Seq1, being End the last block
in the sequence, is deactivated too and the process terminates.

4 Conformance Preservation of the BPMN to E-

GSM Translation

We are now in the position of proving the main result of the paper. Recall that a
process model B is transformed into a corresponding E-GSM model GPB according to
the transformation rules exhaustively defined in [1].1 From now on, we formulate all
our definitions and results using B to denote the BPMN process model of interest,
and GPB to refer to its corresponding E-GSM model.

As for E-GSM, we adopt the standard GSM execution semantics, with the ex-
tended lifecycle discussed in [1]. This gives raise to the following definition of confor-
mance in the E-GSM sense.

Definition 4.1 (E-GSM conformance). Given an E-GSM model M, an execution

1See also the technical report available at https://re.public.polimi.it/handle/11311/

976678.

Translating BPMN to E-GSM: proof of correctness 11

trace τ over M conforms to M if the state resulting from the execution of τ over M
is such that no stage of M is out-of-order.

We show that the transformation is correct, in the following precise sense.

Theorem 1. Given a process model B and an execution trace τ = 〈t1, . . . , tn〉 over
B, the following two conditions hold:

1. If τ conforms to B, then τ conforms to GPB .
2. If τ does not conform to B, let τp = 〈t1, . . . , tk〉 (with k ≤ n) be the minimum

prefix of τ such that τp does not conform to B; then τp does not conform to GPB
either.

Notice that the theorem expresses that τ conforms to B if and only if it conforms
to GPB , with the additional property that in the case of non-conformance, then GPB is
able to detect a deviation as soon as it occurs.

To prove Theorem 1, we show a stronger result. To formulate such a result, we
first need to connect the execution state of a BPMN process model to that of the
corresponding E-GSM model.

Definition 4.2 (Corresponding state). Let s = 〈Curr ,Next〉 be an execution state
over B, and σ be an execution state over GPB . We say that σ corresponds to s if the
following conditions hold:

1. a process block B of B belongs to Curr if and only if the corresponding stage SB

in GPB is regular and open in σ;
2. a process block B of B belongs to Next if and only if the corresponding stage SB

is regular and closed, and becomes regular and open upon the execution of a
single execution step in σ.

With this notion at hand, we prove the following core result.

Lemma 1. Let s be an execution state over B, σ be its corresponding state over GPB ,
and t be an execution step over B. Then:

1. t is executable for B in s if and only if the execution of t in σ does not lead
any stage of GPB to become out-of-order.

2. if t is executable for B in s, then the actual execution of t over B in s leads to
a state s′ that corresponds to the state σ′ obtained by executing t over GPB in σ.

It is straightforward to prove that Lemma 1 implies Theorem 1 (through its in-
ductive application over the input trace τ).

To prove Lemma 1, we proceed by induction on the execution state evolution,
considering all the possible effects over the enacted and enactable blocks, depending
on which blocks are affected by the current execution step. This, in turn, is captured
by Definitions 3.4, 3.5, 3.6, and 3.7.

The base case is the initial state s0. By definition, in this state there is no
enacted block, and the only enactable blocks are the top process block together with
its start event. Let P = 〈n, proc, 〈E,A, F 〉〉 be the top process block of B, and

12 Giovanni Meroni, Marco Montali, Luciano Baresi, Pierluigi Plebani

E = 〈e, event, 〈〉〉 be its start event block. Then s0 = 〈∅, 〈P,E〉〉. By construction,
the initial state σ0 of GPB is such that there is no open stage, and the only stage
that can be regularly opened is the main stage SP corresponding to the main process
block P , together with its first sub-stage SE, corresponding to E. Consequently, our
induction hypothesis applies, since σ0 corresponds to s0.

In this initial state, the only executable step for B is e, and the effect of its
execution over s0 is to obtain s1 = 〈{P}, {A}〉. By considering Figure 7 of [1], this is
also true for GPB . Assume that t = e. Then, t is executable in σ0 according to GPB .
In fact:

• t regularly opens stage SP , because it makes true the data flow guard DFG1 of
SP , and no process-flow guard is present in SP .
• t regularly opens and immediately closes the first inner stage SE of SP .

In addition, after executing t, the sub-stage SA of SP that corresponds to A is the
only stage that can be open upon the execution of an additional step. In fact, it is the
only sub-stage of SP whose process-flow guard PFG1 is actually true (due to the fact
that SE has been closed). This shows that the execution state obtained by applying
t over σ0 for GPB indeed corresponds to s1.

Now assume that t 6= e, which is not executable in s0 according to B. We show
that also GPB forbids the execution of t. Since t 6= e, two cases may arise. Either t

corresponds to the termination event of block F , or it corresponds to another task
start/complete or event. We separately analyze the two cases.

If t corresponds to the termination event captured by F , then stage SP regularly
opens (since DFG3 becomes true), and SF opens out-of-order, since its data-flow
guard DFG1 is true, but its process flow guard PFG1 is false (due to the fact that
stage SA has not yet been opened, and hence has not yet achieved its milestone).

If t corresponds to the start/termination of a task, or to an event different from
the start and termination events of P , t must trigger some sub-stage of SA, In fact,
SA is the main stage of GPB , and hence directly or indirectly contains all events/tasks
but the start and termination events of the top process. By the recursive definition of
the transformation of B into GPB , this also means that the data-flow guard DFG1 of
SA becomes true. However, since the start event of P has not yet occurred, mileston
M1 of stage SE has not yet been achieved, and hence the process-flow guard PFG1
of SA evaluates to false. This, in turn, means that SA opens out-of-order.

This concludes the proof of the base case. As for the inductive case, let us consider
an execution state s = 〈Curr ,Next〉 over B, the execution state σ over GPB that
corresponds to s, and an execution step t. We show that t is executable in s over
B if and only if its execution in σ over GPB does not cause any stage to become out-
of-order. Then, we show that every executable step over B in s leads to a state s′

that corresponds to the state σ′ obtained after executing that step over GPB in σ. To
exhaustively prove this, we have to consider all the three possible types of execution
steps, and all possible transitions a block may be subject to when moving from state
s to s′, which depend in turn on two factors: the type of the block, and the kind of
transition the block is subject to. There are four possibilities for this latter dimension.

Translating BPMN to E-GSM: proof of correctness 13

Consider a block B. The four possibilites are: (i) the block is enactable in s and
becomes enacted in s′ (this is captured by Definition 3.6); (ii) the block is enactable
or enacted in s and is disabled in s′ - hence, it is not enacted nor enactable in s′ (this
is captured by Definition 3.5); (iii) the block is not enacted nor enactable in s, and
it becomes enactable in s′ (this is captured by Definition 3.7); (iv) the block is not
affected by the transition.

We discuss one such combinations, the others can be proven similarly. Consider
as execution step the start of a task, i.e., t = 〈start, a〉, where a is the name of a
task in B, in turn identified as block A = 〈a, task, 〈〉〉 in B. We use SA to denote the
stage of GPB that correponds to A.

We prove that t is executable in s over B if and only if its execution in σ over GPB
does not lead any stage to become out-of-order.

(⇒) According to Definition 3.4, t is executable in s over B if and only if A is
enactable in s. By Definition 4.2, this implies that SA can be regularly opened by
means of a single execution step. By considering the transformation rule for tasks
(cf. Figure 3 in [1]), such an execution step is indeed t.

(⇐) We prove the contrapositive, i.e., we show that if t is not executable in s
over B, then executing t in σ over GPB causes at least one stage to open out-of-order.
According to Definition 3.4, t is not executable in s over B if and only if A is not
enactable in s. By Definition 4.2, this implies that SA cannot be (regularly) opened
by means of a single execution step. By inspecting the transformation rules in [1],
one can immediately notice that the translation of every type of non-leaf block leads
to a corresponding stage that reports, as data-flow guard, all the data-flow guards
of its inner blocks. This, in turn, implies that there must be a stage SP such that:
(i) SP has a data-flow guard that corresponds to the start of A, i.e., that matches
with t; (ii) the parent stage of SP is already open (in the extreme case, the parent
is the top stage of GPB). By considering all possible structures for SP , and the fact
that SA cannot be opened by t, one can show that there is always a sub-stage of SP

whose data-flow guard matches with t, and that has a process-flow guard evaluating
to false. This, in turn, implies that, upon the execution of t, that stage will open
out-of-order.

We now prove that, when t is executable in s, the actual execution of t in s and
σ leads to consequent states s′ and σ′ that correspond to each other.

By inspecting Definition 3.5, we notive that Dt
s = ∅ (no block is disabled by the

start of a task). Hence, we do not have to discuss the case of block disablement.

By inspecting Definition 3.6, we have to discuss the following cases:

• (Definition 3.6, Case 1) From the executability of t, we get that A ∈ Next , hence
the task block A is enacted by t in s. Since σ corresponds to s, SA can be open
by a single execution step. By considering Figure 3 in [1], such step is actually
t, since t matches the unique data-flow guard of SA. Upon the execution of t,
SA becomes open in σ′. Hence, as far as A and SA are concerned, σ′ indeed
corresponds to s′.
• An enactable ancestor block B in B (which actually corresponds to a stage SB

14 Giovanni Meroni, Marco Montali, Luciano Baresi, Pierluigi Plebani

in GPB containing the start of task a as one of its data-flow guards, hence opening
when executing t) is enacted by t in s. We have to show, case-by-case, that for
stage SB all its process-flow guards evaluate to true, which in turn implies that
SB opens regularly.

– (Definition 3.6, Case 3) B is an activity block enacted by t. This case is
trivial, since SB in this case does not have any process-flow guard (cf. Fig-
ure 6 in [1]).

– (Definition 3.6, Case 4) B is an enactable sequence block whose first inner
block B′ is enacted by t. This case is tackled by Rule 5 in [1]. Such
a rule guarantees that SB is opened regularly, since it does not have any
process-flow guard. At the same time, it also guarantees that SB′ is opened
regularly. In fact, being SB′ the first substage of SB, its process-flow
guards only checks that SB′ is not opened twice while its parent stage SB

is open. This is indeed true in this case, since SB and SB′ are being opened
simultaneously.

– (Definition 3.6, Case 5) B is an enactable gateway block with one of its
inner blocks B′ enacted by t. By considering the rules in [1] that tackle the
different gateway blocks, it is immediate to see that SB is regularly enacted
by t since it does not have any process-flow guard, whereas S ′B presents the
same situation as the case discussed in the point above. The only subtle
case is the one of choice. To show that this case is also properly handled,
recall that, for a choice block, the fact that B′ is enactable implies that
the corresponding condition evaluated to true, and such a condition is also
mentioned in the process-flow guard of S ′B.

– (Definition 3.6, Case 6) B is an enactable loop block whose inner forward
block B′ is enacted by t. This case is handled by Rule 9 in [1]. Again,
also in this case SB does not have any process-flow guard, and its substage
SB′ has a process-flow guard that simply checks that SB′ has not yet been
concluded.

By inspecting Definition 3.7, the only case that must be discussed given the fact
that t corresponds to the start of a task, is that of an activity block B that is enacted
by t. In this situation, Case 2 of Definition 3.7 applies, indicating that the boundary
event of B becomes enactable. This situation is properly reconstructed by Rules 3
and 4 of [1]. Indeed, they guarantee that upon the opening of SB, special (fault
logging) milestones corresponding to the boundary event are indeed achievable.

This concludes the proof for the case where the considered execution step is the
start of a task. Task termination and event occurrence are proven similarly.

Translating BPMN to E-GSM: proof of correctness 15

References

[1] L. Baresi, G. Meroni, and P. Plebani, “A GSM-based Approach for Monitoring
Cross-Organization Business Processes using Smart Objects.” Accepted for publ.,
2015.

[2] G. Meroni, L. Baresi, and P. Plebani, “Translating BPMN to E-GSM: specifica-
tions and rules,” tech. rep., Politecnico di Milano, 2016.

