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Abstract

Motivation: Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) detects genome-

wide DNA–protein interactions and chromatin modifications, returning enriched regions (ERs), usu-

ally associated with a significance score. Moderately significant interactions can correspond to true,

weak interactions, or to false positives; replicates of a ChIP-seq experiment can provide co-localised

evidence to decide between the two cases. We designed a general methodological framework to

rigorously combine the evidence of ERs in ChIP-seq replicates, with the option to set a significance

threshold on the repeated evidence and a minimum number of samples bearing this evidence.

Results: We applied our method to Myc transcription factor ChIP-seq datasets in K562 cells avail-

able in the ENCODE project. Using replicates, we could extend up to 3 times the ER number with re-

spect to single-sample analysis with equivalent significance threshold. We validated the ‘rescued’

ERs by checking for the overlap with open chromatin regions and for the enrichment of the motif

that Myc binds with strongest affinity; we compared our results with alternative methods (IDR and

jMOSAiCS), obtaining more validated peaks than the former and less peaks than latter, but with a

better validation.

Availability and implementation: An implementation of the proposed method and its source code

under GPLv3 license are freely available at http://www.bioinformatics.deib.polimi.it/MSPC/ and

http://mspc.codeplex.com/, respectively.

Contact: marco.morelli@iit.it

Supplementary information: Supplementary Material are available at Bioinformatics online.

1 Introduction

Chromatin immunoprecipitation followed by next-generation

sequencing (ChIP-seq) is the most commonly used method to study

genome-wide chromatin modifications or protein–DNA interactions.

Computational tools like MACS (Zhang et al., 2008) or ZINBA

(Rashid et al., 2011) are applied on aligned ChIP-seq reads to detect

enriched regions (ERs) over the genome (often called ‘peaks’), where

the local accumulation of sequencing fragments exceeds that of a

background distribution, typically estimated from randomly frag-

mented chromatin or by performing the ChIP-seq protocol with a

control antibody (Bailey et al., 2013). As the protocol is subjected to

multiple sources of noise (Chen et al., 2012), some low-intensity accu-

mulation of reads is possible even in absence of a true interaction with

the target. These low-intensity peaks, which are usually present in

large amounts, contain therefore a mixture of false positives and true,

although weak, interactions; they are typically discarded when strin-

gent thresholds on the peak call are used. This approach leads to the

discovery of the strongest interactions only, and might distort the gen-

ome-wide picture of the genomic locations of the transcription factor

binding sites or histone modifications of interest.
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Given the intrinsic noise of the ChIP-seq protocol, it is good prac-

tice to repeat every experiment at least twice, as the guidelines of the

ENCODE project indicate (Landt et al., 2012). The information con-

tained in replicates can then be used to assess the validity of the peaks

obtained from a single sample, especially of those with low-intensity.

In this paper, we propose a novel method to rigorously combine

the results of peak calls in ChIP-seq replicates and to obtain new, sam-

ple-specific, peak lists taking into account their combined evidence.

Our method takes as input, for each replicate, a list of enriched gen-

omic regions and a measure of their individual significance in terms of

a P-value. Starting from a permissive call, we divide the initial ERs in

‘stringent’ (highly significant) and ‘weak’ (moderately significant), and

we assess the presence of overlapping enriched regions across multiple

replicates. Non-overlapping regions can be penalised or discarded ac-

cording to specific needs. The significance of the overlapping regions

is rigorously combined with the Fisher’s method to obtain a global

score. Finally, this score is assessed against an adjustable threshold on

the combined evidence, and peaks in each replicate are either con-

firmed or discarded (a schematic view of our method is given in Fig. 1

and a visualisation of the results of the method on data from the

ENCODE project is shown in Fig. 2). In other words, we are able to

‘rescue’ weak peaks, which would probably be discarded in a single-

sample analysis, when their combined evidence across multiple sam-

ples is sufficiently strong.

We applied our method to ENCODE datasets from ChIP-seq ex-

periments of the Myc transcription factor in K562 human cells, for

which multiple samples with replicates are available. As Myc prefer-

entially binds to a well-defined motif, the choice of this TF allowed

us to validate our results through motif analysis and DNase-seq

data; finally, we compared our findings with other state-of-art meth-

ods. The strong aspects of our method, besides the validity and rele-

vance of the results that it provides, are its simplicity and flexibility,

together with its efficiency (few minutes for 2–3 replicates with a

few tens of thousands of peaks each).

2 Methods

Here, a brief description of the method and datasets used is given.

For more details, see the Extended Methods section in the

Supplementary Material.

2.1 Data collection and peak calling
ChIP-seq enriched regions are read from data files in standard

Browser Extensible Data (BED) format; besides standard ER format

specifications (columns ‘chromosome’, ‘start’, ‘end’, ‘ID’), we re-

quire a P-value quantifying the significance of each ER, which is

usually computed by the peak caller used to identify the ER.

Binary Alignment/Map (BAM) files for the transcription factor

Myc in human K562 cells (myelogenous leukaemia) were taken

from the ENCODE project repository, for a total of 15 samples ob-

tained in 7 different experiments as summarised in Table 1. Each

experiment contained 2 or 3 biological replicates of the same ChIP-

seq. Technical replicates were artificially created to test our method,

as they were not directly available in the ENCODE repository.

Technical replicates were obtained by merging the ENCODE align-

ment files relative to biological replicates for each of the seven con-

ditions considered above, and then by randomly splitting their reads

in two new alignment files. Details about technical replicates, and

the process used to generate them, are collected in the

Supplementary Table S1.

Fig. 1. Pictorial schematic view of the proposed method. First, with a permissive call, we divide peaks of a single individual sample in stringent and weak. Then,

combining the evidence of multiple replicates, the peaks in each replicate are confirmed or discarded

Fig. 2. Genome browser view of a result of the proposed method. Tracks for

two ChIP-seq replicates are shown along with the position of the stringent

peaks, the weak peaks confirmed by our method and the open chromatin re-

gions (measured as DNase-seq enriched regions). Case 1 refers to a weak

peak rescued by a stringent peak, while Case 2 refers to two weak peaks vali-

dating each other
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Peak calling was performed with the software package MACS2

(Zhang et al., 2008) with the following parameters: ‘–auto-bimodal

-p 0.0001 -g hs’ (thus setting a p-value threshold of 10�4), using

alignment files available in the ENCODE repository, together with

the corresponding background (standard input for all samples ex-

cept for Myc2, for which the input signal from rabbit IgG ChIP-seq

was used). In each sample-input pair, the total number of reads was

made equal by randomly down-sampling the largest alignment file.

The performed call determined between �15 k and �345 k peaks

across the different samples (see Table 1).

2.2 Definitions
Given a set of J replicates, each sample j is associated with a set Rj of

I enriched regions rji: Rj¼ {rj1, rj2, . . . , rji, . . . , rjI}. Each region rji is

defined by (chromosomeji, startji, endji, IDji, pji), where pji denotes a

measure of the significance of rji (i.e. its P-value). Ts is a stringent

threshold on P-values, defining a set Rj
s of stringent (highly en-

riched) ERs; Rj
s: rji 2 Rj

s iff pji<Ts. Similarly, we define a set Rj
w of

weak (moderately enriched) ERs, containing all regions whose P-

value is between Ts and a weak threshold Tw, with Tw>Ts, i.e. Rj
w:

rji 2 Rj
w iff Ts�pji<Tw. Clearly, Rj

w \ Rj
s¼Ø and, if Tw is the

maximum P-value allowed for an ER to be associated with sample j,

Rj
w| Rj

s¼Rj.

For each region i of each sample j, let rji,k denote the region of

sample k overlapping with rji, if any. If sample k has multiple re-

gions overlapping with rji, we choose the most significant one, i.e.

the one with the lowest p-value. Let Rji be the collection of rji,k for

k 2 {1, . . . , J}, including rji itself. Let K¼ jRji,*j be the cardinality of

Rji,*, the set of the ERs intersecting with rji, with 1�K� J by

definition.

We distinguish between technical and biological replicates of an

experiment. Technical replicates aim at controlling the variability of

the experimental procedure used to obtain the data and should yield

exactly the same results in absence of experimental noise. In a ChIP-

seq experiment, this corresponds to performing multiple times the

same ChIP protocol on the same biological sample, followed by in-

dependent sequencing on the same platform; we expect to observe a

significant overlap between ER lists in these samples. Conversely,

biological replicates are obtained by applying the same protocol on

biologically equivalent samples, what could give rise to different

binding profiles of a transcription factor, as in the case of tumor

samples; here, the variability in the data can also stem from the

‘true’ biological variation of the phenomenon of interest.

Consequently, the lack of overlap between ERs in biological repli-

cates does not necessarily correspond to a false positive result, as it

could reflect a true biological interaction occurring only in some

samples. With our method, the user is able to control for the

required level of overlap and combined significance, according to

the specificities of the dataset.

2.3 Algorithm: overall procedure
The main idea behind our method is that repeated evidence across

replicates can compensate for a lower significance in a single sample,

which is implemented through the Fisher’s method. The Fisher’s

method combines the P-values of each test in a global test statistics

that follows a chi-squared distribution with 2 k degrees of freedom

(where k is the number of tests combined); therefore, it can be used

to falsify the statement ‘all null hypotheses are true’, i.e. ‘all overlap-

ping ERs are due to background noise’. Comparing intersecting ERs

from a set of J replicates is equivalent to test the same genomic re-

gion in independent experiments against the same null hypothesis

H0, i.e. ‘the number of reads in the region under study is sampled

from the background distribution’, and obtaining independent prob-

abilities of rejecting H0 (i.e. independent P-values). Here, we briefly

outline the structure and motivation of our algorithm, following the

flowchart given in Figure 3, while we discuss its details in the

Extended Methods (data structures, search algorithms and combin-

ing test statistics sections).

We assign every ER rji in a given sample j to either Rj
s or Rj

w ac-

cording to its significance. For a given ER, we then determine Rji,*

as the set of ERs in the replicates that overlap with rji, including rji it-

self (see Definitions subsection). The cardinality K of Rji,* represents

a measure of the reproducibility of the signal in the region spanned

by rji, while the significance of rji,k 2 Rji,* is a measure of the inten-

sity of the signal in a specific replicate k, given the background. We

rigorously combine the significance of the overlapping ERs in Rji,*

with the Fisher’s method, as described in the Extended Methods,

and define a new score for their combined evidence pji
comb. Then,

we compare this new score with an adjustable threshold c: if the

desired stringency is obtained, we assign rji to the set Rj
c of con-

firmed peaks for sample j; if the condition is not met, i.e. the com-

bined evidence is not strong enough, we assign rji to the set Rj
d of

discarded peaks for sample j. All the ERs in Rji,* are assigned to the

corresponding confirmed Rk
c or discarded Rk

d set, respectively.

Table 1. ENCODE alignment files used and their quantitative

features

Sample name Short

name

Aligned

reads

Rs Rw

wgEncodeOpenChromChip

K562CmycAlnRep1

Myc1_1 10 719 209 19 171 287 651

wgEncodeOpenChromChip

K562CmycAlnRep2

Myc1_2 8 763 362 32 850 311 409

wgEncodeOpenChromChip

K562CmycAlnRep3

Myc1_3 9 649 688 13 623 104 911

wgEncodeSydhTfbs

K562CmycIggrabAlnRep1

Myc2_1 17 507 194 42 456 64 016

wgEncodeSydhTfbs

K562CmycIggrabAlnRep2

Myc2_2 22 256 240 33 015 54 773

wgEncodeSydhTfbs

K562CmycStdAlnRep1

Myc3_1 6 077 198 5473 22 965

wgEncodeSydhTfbs

K562CmycStdAlnRep2

Myc3_2 5 897 211 12 832 18 753

wgEncodeSydhTfbs

K562CmycIfna30StdAlnRep1

Ifna30_1 10 115 596 1901 13 654

wgEncodeSydhTfbs

K562CmycIfna30StdAlnRep2

Ifna30_2 18 600 414 2527 97 620

wgEncodeSydhTfbs

K562CmycIfna6hStdAlnRep1

Ifna6h_1 9 377 798 5852 12 087

wgEncodeSydhTfbs

K562CmycIfna6hStdAlnRep2

Ifna6h_2 19 334 518 4547 102 168

wgEncodeSydhTfbs

K562CmycIfng30StdAlnRep1

Ifng30_1 11 602 299 8227 13 190

wgEncodeSydhTfbs

K562CmycIfng30StdAlnRep2

Ifng30_2 16 666 560 30 524 25 484

wgEncodeSydhTfbs

K562CmycIfng6hStdAlnRep1

Ifng6h_1 14 019 564 2485 13 376

wgEncodeSydhTfbs

K562CmycIfng6hStdAlnRep2

Ifng6h_2 19 666 823 27 728 25 118

Peaks were called with the software package MACS2. Rs: stringent ER set

(ERs with P-value <Ts). Rw: weak ER set (ERs with Ts�P-value<Tw).

Ts¼10�8, Tw¼ 10�4.
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We leave the possibility to distrust a region rji, regardless of its

significance, when it is not backed up by the presence of overlapping

ERs in a minimum number of samples C. C is an adjustable param-

eter ranging between 1 and J, with different default values for biolo-

gical and technical replicates. In summary, for a given sample j,

Rj
c¼ {rji j pji

comb� c
V

(K�C)} and Rj
d¼ {rji j (pji

comb> c)
W

(K<C)}. We repeat this procedure for each sample.

We note that an ER can participate in different sets of overlap-

ping regions, as we discuss in detail in the Extended Methods. As a

consequence, it is possible that an ER is assigned to both the con-

firmed and discarded sets as a result of different tests. These peaks

are assigned to the confirmed set if replicates are biological and to

the discarded set if replicates are technical. In other words, as tech-

nical replicates are supposed to be very similar, for an ER it is

enough to fail the test once to be removed from the confirmed set,

while for biological replicates this condition is relaxed and it is

enough to pass the test at least once for an ER to be confirmed.

After applying the proposed method, each peak has two proper-

ties: its initial significance, which can be either stringent (s) or weak

(w), and the result of the multiple replicate comparison, which can

be either confirmed (c) or discarded (d). Then, for each sample we

define four mutually exclusive sets on the basis of these property val-

ues: Rs,c, Rw,c, Rs,d, Rw,d, with Rc¼Rs,c | Rw,c and Rd¼Rs,d |
Rw,d. The final output set Rj

o of each sample j is obtained by apply-

ing the Benjamini–Hochberg correction procedure to Rj
c, independ-

ently from the choice of the other parameters, in order to account

for multiple testing (Benjamini and Hochberg, 1995), and keeping

only the ERs with false discovery rate smaller than an adjustable

threshold a.

2.4 Validation
In order to validate the peaks obtained after combining replicates,

we first checked whether the peaks we rescued fell within open chro-

matin by intersecting their genomic coordinates with enriched

regions in DNase-seq data obtained from ENCODE (see Extended

Methods). Then, we looked for enriched motifs in the nucleotide se-

quences spanned by the sets of ERs that we obtained. To perform

motif analysis, we used the software package DREME (Bailey,

2011) with parameters ‘-e 0.00001 -m 10’. Results were scored

against the JASPAR database (Mathelier et al., 2014) using the soft-

ware package TOMTOM (Gupta et al., 2007). Myc strongly binds

to one specific motif, called the canonical Enhancer-box or E-box,

corresponding to the Position Weight Matrices (PWMs) MA0058

(MAX), MA0059 (MYC::MAX), MA0093 (USF1), MA0104

(Mycn) and MA0147 (Myc) in the Jaspar Core Vertebrata database

(the corresponding sequence logos are shown in the Supplementary

Fig. S1); thus, an ER set is validated when at least one of these

PWMs is found significantly enriched in the ER set. We note that

Myc has a weaker affinity for other versions of the E-box, but we

chose to exclude these other motifs from the validation to achieve

maximum stringency.

2.5 Comparison with other methods
Irreproducibility Discovery Rate (IDR) (Li et al., 2011). It is a met-

ric quantifying the reproducibility of a peak across two ChIP-seq

replicates by comparing the two lists of ERs, ranked according to

their significance. In essence, after calling the peaks, the IDR pipe-

line uses a bivariate rank distribution to separate the signal (repro-

ducible peaks) from noise (irreproducible peaks) in an experiment

(or pairwise comparison). Each peak is associated with an IDR

value, which quantifies the probability that the peak belongs to the

irreproducible set. IDR was computed for our validation with the

scripts provided by Anshul Kundaje at the URL https://sites.google.

com/site/anshulkundaje/projects/idr

jMOSAiCS (Zeng et al., 2013). It is a generic tool for joint ana-

lysis of multiple ChIP-seq samples, which can be also used to find

common patterns of enrichment between ChIP-seq replicates. First,

the MOSAiCS peak caller pre-processes replicates and correspond-

ing control samples by binning the mapped read counts on the gen-

ome (default width of 200 bp), and applies the MOSAiCS model fit

to each replicate-control pair individually. Afterwards, the

jMOSAiCS model is applied to the data fitted with MOSAiCS: re-

gion-specific enrichment patterns are determined by posterior prob-

abilities assigned to the internal variables, and a binary variable

denotes the potential enrichment of a region based on dependencies

among samples. jMOSAiCS was executed with default parameter

values as described at http://www.bioconductor.org/packages/re

lease/bioc/vignettes/jmosaics/inst/doc/jmosaics.R. The complete

script is included in the Extended Methods.

3 Results

In this section, we report the results obtained by applying our

method on either technical or biological ChIP-seq replicates. The

method takes as input the genomic coordinates and a measure of sig-

nificance (i.e. the P-value) of each of the ERs for each replicate con-

sidered. For each input sample j, it outputs the lists of confirmed

(Rj
o) and discarded (Rj

d) ERs, as well as the lists of stringent con-

firmed (Rs,c), weak confirmed (Rw,c), stringent discarded (Rs,d) and

weak discarded (Rw,d) ERs.

Adjustable parameters of the method are: Ts (maximum P-value

to consider a peak as ‘stringent’), Tw (maximum P-value to consider

a peak as ‘weak’), C (minimum number of samples with intersecting

peaks needed to apply the combined evidence evaluation), c (max-

imum combined significance to confirm a peak), a (maximum false

Fig. 3. Flowchart of the proposed method. For the definition of the symbols,

see the Definitions subsection of the Methods
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discovery rate after the Benjamini-Hochberg correction), together

with the choice of ‘technical replicate’ versus ‘biological replicate’

mode. For our evaluations we used: Ts¼10�8, Tw¼10�4, c¼10�8,

a¼0.05 for all comparisons, C¼1 for biological replicates and

C¼ J for technical replicates. Required time was a few minutes for 2

samples with 100 000 peaks each on a standard desktop computer.

3.1 Technical replicates
Technical replicates are used to evaluate and remove the noise intro-

duced in the experimental procedure. In the case of ChIP-seq experi-

ments, they are usually generated by performing the same ChIP

protocol on the same biological sample, and then performing the

sequencing independently. As the ENCODE datasets include only

biological replicates, we tested our method on artificial technical

replicates, simulated as described in the Methods section. Details

about these samples can be found in the Supplementary Table S1.

An alternative to our strategy to generate technical replicates would

be to randomly split the reads in each original alignment file in repli-

cates rather than merging biological replicates in ENCODE first.

However, this procedure gives rise to a much poorer signal, prevent-

ing the identification of most ERs. The statistics of these alternative

technical replicates are described in the Supplementary Table S2.

Results for Ts¼10�8, Tw¼10�4, c¼Ts, a¼0.05 and C¼2 are

shown in Figure 4. For each replicate sample (panels A–G), we show

two bars: the left bar (SS) represents the peaks called in a single-

sample analysis (Rs in light gray and Rw in dark grey), while the

right bar (MS) classifies the same peaks, according to the output of

our algorithm, in the four sets described above: Rs,c (light gray), Rw,c

(medium-light grey), Rs,d (medium-dark grey) and Rw,d (dark grey).

As expected, the number of Rs stringent and Rw weak peaks

called in the same technical replicates is always very similar, even if

the absolute numbers differ significantly across the different condi-

tions considered. Each output set has a consistent fraction of Rw,c

weak confirmed ERs, which ranges from 20% to 98% (mean 46%,

standard deviation 30%) of the starting number of stringent peaks

(Rw,c / Rs, panel H); thus by combining evidence in replicates, our

method ‘rescues’ (i.e. confirms) a large amount of weak co-localised

peaks that would otherwise be discarded through a usual single sam-

ple evaluation. The percentage of stringent discarded peaks (Rs,d /

Rs, panel H) is very low and varies from 0% in Myc2 to 12% in

Myc3 (mean 5.6%, standard deviation 3.8%). The output set Ro

corresponds to the set of confirmed peaks Rc¼Rs,c | Rw,c, where

the significance of each peak has been adjusted for multiple testing;

combining the evidence present in replicates increases the number of

obtained peaks up to almost the double of what obtained with a sin-

gle sample at the same stringency (Ro/ Rs, panel H).

For technical replicates, we expect the output of each replicate to

be similar, and therefore the parameter C was set to C¼ J¼2 for all

technical replicate comparisons. Setting C¼1 would be instead

equivalent to trust even isolated peaks, which are not present in the

other replicate. With the latter choice, and c¼Ts, no stringent peaks

would be discarded.

As a preliminary evaluation of the results obtained, we con-

sidered the overlap of the peaks with the enriched regions in

DNase-seq data. On average, 95.4% of the peaks in Ro, 95.4%

of peaks in Rs and 94.6% of peaks in Rw,c were in open chroma-

tin regions, while this fraction was only 89.4% for Rs,d and

93.0% for Rw,d (Supplementary Table S3). The overlap with

open chromatin, however, is not yet a validation of a specific

binding event. We performed then motif analysis on the nucleo-

tide sequences corresponding to the ERs in the four sets: Rs, Ro,

Rw,c and Rs,d. Myc is known to bind a large number of sites on

the DNA, particularly with high affinity to those with the 6-nu-

cleotide motif called Enhancer-box or E-box. This protein-bind-

ing region has the generic consensus nucleotide sequence

CANNTG (with N representing any nucleotide; Murre et al.,

1989). In particular, Myc binds with maximum strength to the

CACGTG motif (also called the ‘canonical’ Myc E-box [Walhout

et al., 1997]). Therefore, we consider the enrichment of the E-

box in a set of peaks a sufficient condition to consider the set as

containing ‘true’ binding sites. Panel I in Figure 4 shows that the

E-box is always enriched in the Rs stringent and Ro output sets,

as well as in the Rw,c weak confirmed set. This result confirms

that in the large majority of cases the weak peaks overlapping in

replicates identify real binding sites, which are missed by a strin-

gent single-sample call. In 4 out of 14 cases, the Rs,d stringent

discarded set is enriched for the E-box, although at much lower

significance (Supplementary Table S5), while in the remaining

cases the number of peaks in the Rs,d set is low. This analysis sug-

gests that the default value C¼ J used for our artificial technical

replicates may be too conservative and still discards a small frac-

tion of real binding sites.

3.2 Biological replicates
The ENCODE data repository always includes one or more biolo-

gical replicates for each ChIP-seq experiment. For the transcription

factor Myc, multiple data sources are available, either obtained in

independent experiments, or scored against different backgrounds

(in Myc2, the input was derived from immuno-precipitating normal

rabbit IgG, while in all the other samples the standard input for the

K562 cell line was used). We applied our method to biological repli-

cates obtained from each of the ENCODE experiments considered,

and we also combined replicates from 2 experiments (Myc2 and

Myc3). Parameters for the method were the same as for the technical

replicate evaluation reported in the previous section (i.e. Ts¼10�8,

Tw¼10�4, c¼Ts, a¼0.05); for the additional parameter C, in the

case of biological replicates we adopted the permissive choice of

C¼1 (default for the analysis of biological replicates). With these

values (i.e. c¼Ts and C¼1), our method never discards a stringent

peak (we consider that a single strong evidence is enough for biolo-

gical replicate evaluation). Results are shown in Figure 5.

The number of peaks in biological replicates of the same experi-

ment can be very different (panels A-H), reflecting the different effi-

ciency of the ChIP-seq protocol, and the number of weak peaks (Rw)

is usually much larger than the number of stringent peaks (Rs). In

the considered cases, the number of confirmed weak peaks (Rw,c) is

often much bigger (up to �4 times) than the number of stringent

peaks (Rs) (column Rw,c/Rs in panel I), confirming that the evidence

in a ‘good’ replicate allows the rescue of many peaks in a ‘bad’ repli-

cate. We observe a similar situation when we combine samples ob-

tained with different inputs. For example, by combining together

the four replicates of the Myc2 and Myc3 cases (panel D), we in-

crease massively the number of peaks in the output set for the sam-

ples with lower peak counts (Myc3) by confirming a number of their

weak peaks much larger than in the evaluation performed without

Myc2. Therefore, the presence of high-quality replicates can be of

great help in improving the call on many low-quality replicates. The

average overlap with open chromatin regions of the Rw,c weak con-

firmed sets is 91.0% (compared with the 51.6% for the weak dis-

carded peaks), and motif analysis confirms that in all the samples

the ERs contain the canonical Myc binding site (panel J and

Supplementary Tables S6 and S8).
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We applied our method also using C¼2 on all biological repli-

cates considered: most of the times that the Rs,d stringent discarded

peak set had a substantial size, the E-box motif was present, al-

though the average overlap with open chromatin was only 75.9%

(Supplementary Fig. S2 and Tables S9 and S11). This further con-

firms that, in biological replicates, a lack of overlapping with peaks

in other replicates does not necessarily correspond to an artifactual

interaction.

3.3 Comparison with alternative strategies
3.3.1 Alignment read merging

An intuitive way to combine evidence in replicates is to merge the

alignment reads, and use a peak caller on the combined data. As the

combined dataset corresponds to the sum of the two signals, weak,

co-occurring peaks should increase their significance. We have

merged alignment files from replicates for each considered experi-

ment, using merged backgrounds when available (Myc3 only), and

considered only peaks with P-value smaller than Ts¼10�8. In al-

most all the cases, the number of peaks called from the merged repli-

cates was substantially lower than the number of peaks obtained by

our algorithm (Table 2, third and fourth columns). Moreover, a

large fraction of the peaks detected in the merged samples over-

lapped with at least one of the peaks obtained by our method

(Table 2, fifth column). The only cases when this fraction was below

70% were those where the replicates exhibited a very large differ-

ence in the number of called peaks (Myc3, Ifng30, Ifng6h). In these

cases, the output set of the replicate with the higher number of peaks

always showed a very high overlap with the merged sample peaks.

Merging the alignment files therefore ‘averages’ replicates with dif-

ferent sets of peaks, whereas our method ‘rescues’ a sample with few

ERs with the help of a sample with many ERs. Besides, the merging

strategy has no user-defined parameter to tune the results, whereas

our method provides a rigorous way to weight co-occurrence and

significance of ERs.

3.3.2 Irreproducibility discovery rate

The IDR (Li et al., 2011) is a measure of the consistency of ERs

identified in replicates, which has been systematically assessed in the

ENCODE project. We computed the IDR for the ERs in our samples

and used an IDR threshold of 0.05. The results are shown in the

Fig. 4. Technical replicates. For each of the 7 experiments considered, two technical replicates were obtained by pooling reads from the biological replicates of

the conditions and then randomly splitting the resulting alignment files in two equal parts. A-G: ER sets for the technical replicates considered. SS, single sample

analysis; MS, multiple sample analysis. In each panel, the SS stacked bars represent Rs (light gray) and Rw (dark grey) in the two replicates, while the MS

bars show the same peaks, confirmed or discarded according to the output of our method: Rs,c (light gray), Rw,c (medium-light gray), Rs,d (medium-dark gray) and

Rw,d (dark grey). H, general statistics on the cardinality of the ER sets; I, validation of the sets with the Myc binding motif (Myc canonical E-box); ‘Y’, presence of

the E-box; ‘-‘, set too small to find any enriched motif. See Supplementary Table S5 for E-box enrichment P-values
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Fig. 5. Biological replicates. A–H: ER sets in the biological replicates considered. SS, single sample analysis; MS, multiple sample analysis. In each panel, the SS

stacked bars represent Rs (light gray) and Rw (dark grey) in the replicates, while the MS bars show the same peaks, confirmed or discarded according to the out-

put of our method: Rs,c (light gray), Rw,c (medium-light gray), Rs,d (medium-dark gray) and Rw,d (dark grey). I, general statistics on the cardinality of the ER sets; J,

validation of the sets with the Myc binding motif (Myc canonical E-box); ‘Y’, presence of the E-box. See Supplementary Table S8 for E-box enrichment P-values

Table 2. Comparison with merged alignment files and IDR

Sample Rs Ro Merged Ro \Merged IDR< 0.05 Ro \ IDR< 0.05

Myc1_1 19 171 42 663 27 958 20 359 (73%) 3097 3097 (100%)

Myc1_2 32 850 54 420 27 958 22 265 (80%) 4618 4618 (100%)

Myc1_3 13 623 34 858 27 958 20 112 (72%) 4966 4964 (99%)

Myc2_1 42 456 56 989 39 805 38 958 (98%) 24 066 23 767 (99%)

Myc2_2 33 015 54 889 39 805 37 765 (95%) 24 066 23 767 (99%)

Myc3_1 5473 14 411 15 404 9 252 (60%) 2356 2237 (95%)

Myc3_2 12 832 16 401 15 404 12 483 (81%) 2356 2237 (95%)

Ifna30_1 1901 4839 3650 2918 (80%) 1171 811 (69%)

Ifna30_2 2527 5605 3650 2914 (80%) 1171 823 (70%)

Ifna6h_1 5852 9570 6633 5913 (89%) 2274 2078 (91%)

Ifna6h_2 4547 10 547 6633 5671 (85%) 2274 2078 (91%)

Ifng30_1 8227 18 112 32 363 15 828 (49%) 5586 5586 (100%)

Ifng30_2 30 524 33 203 32 363 30 307 (94%) 5586 5586 (100%)

Ifng6h_1 2485 12 052 21 145 8506 (40%) 5181 4352 (84%)

Ifng6h_2 27 728 28 564 21 145 20 187 (96%) 5181 5079 (98%)

Comparison of the output set Ro (3 rd column) with ERs obtained by merging replicates (4th column) and with ERs having Irreproducibility Discovery Rate

(IDR)<0.05 (6th column). The number of overlapping peaks between Ro and the two other methods (5th and 7th columns, respectively) is shown, together with

the fraction of the other method peaks overlapping with peaks in Ro. In general, Ro is larger and comprises the majority of the peaks obtained by the other

methods.
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sixth and seventh columns of Table 2. First of all, the IDR-validated

peaks are few and often entirely contained in our output sets.

This highlights that the IDR method is rather stringent and generates

only a small set of validated (reproducible) peaks. We repeated our

analysis for the Myc2 sample for a lower Tw threshold and

found similar results (see Supplementary Material). Our method

does not score the reproducibility of a peak, but it rather combines

evidence in replicates, and has the option to accept very stringent

peaks even if they are not found in other replicates. We conclude

that our method confirms weak peaks that are considered ‘irrepro-

ducible’ by IDR (with a 0.05 threshold), and are validated by

motif analysis (Figs 4 and 5, Supplementary Tables S3–S11).

Finally, differently from our method, which accepts any number of

replicates, the IDR can be directly computed only for pairs of

replicates.

3.3.3 jMOSAiCS

We compared our results also with those obtained with jMOSAiCS

(Zeng et al., 2013), a tool designed to detect combinatorial patterns

of enrichment in multiple ChIP-seq samples. Even if jMOSAiCS is

conceived to integrate different ChIP-seq datasets that profile dis-

tinct features on the same biological sample, it can also be applied to

replicates of the same ChIP-seq. Applying jMOSAiCS to our biolo-

gical replicates (Table 3) resulted in a very large amount of ERs in

each experiment, which were on average around 5 times larger than

our peaks (ER average size data are not shown). These sets of peaks

contained by far the majority of the ERs identified by our method.

We checked for the enrichment of the Myc E-box in the peaks iden-

tified by our method, but not by jMOSAiCS and vice versa (peaks

identified by jMOSAiCS, but not by our method). While in the for-

mer case the Myc binding motif was enriched in all the sets with an

enough number of peaks to detect any enriched motif, the latter case

showed the presence of the Myc canonical E-box only in half of the

samples. Moreover, the running times of jMOSAiCS for two repli-

cates were in the order of 3 hours, with about 40 GB of memory

consumption, on a server with two Intel Xeon E5-2650 processors

and 64 GB of RAM, as this tool starts from alignment files and finds

ERs independently. On the same platform, our method ran in a few

minutes; the preliminary peak calling step needed to obtain the sets

of enriched regions required about 40 min for each of the replicates

with MACS2 (Zhang et al., 2008). We conclude that jMOSAiCS,

when applied to replicates of the same ChIP-seq experiment, has the

tendency of introducing a large amount of extra peaks, which are

not always validated by motif analysis, and it requires significant

computational resources. On the other hand our method is much

faster, as it allows to start from pre-determined ER lists, and at least

equally specific.

4 Discussion

We introduced a novel and rigorous method to combine evidence in

ChIP-seq replicates and we applied it to several ENCODE datasets

for the transcription factor Myc in the K562 cell line. Our results

confirmed that a considerable number of ERs, which display a weak

significance in single-sample analysis, can be ‘rescued’ by the help of

co-localised evidence in multiple replicates. We proved that the nu-

cleotide sequences spanned by these weak peaks are almost always

found in open chromatin regions and enriched for the Myc canon-

ical E-box motif, for which the Myc protein has the highest affinity.

Surprisingly, even in the case of technical replicates, where reprodu-

cibility should be high, we found that discarding ERs only on the

base of the lack of overlap often results in the dismissal of true bind-

ing sites. This can be due to the fact that our technical replicates

were simulated using a computational procedure starting from the

biological replicates available; nonetheless, we recommend to be

careful in setting the overlapping parameter to high stringency (i.e.

C¼ J).

We stress that our method works as a post-processing of a per-

missive peak call and it does not question the reliability of the output

of the peak caller (any peak caller providing a P-value score can be

used; we recommend using the same peak caller with the same par-

ameters on all the replicates). The method has three main strengths:

(i) rigour: single-sample evidence from each replicate is combined

through the Fisher’s method; (ii) versatility: with the choice of a few

parameters, it can be decided to weight co-localisation (C) and com-

bined significance (c) differently; (iii) efficiency: typically, the

Table 3. Comparison with jMOSAiCS

Sample Rs Ro jMOSAiCS Ro\jMOSAiCS E-box jMOS AiCS\Ro E-box

Myc1_1 19 171 42 663 50 539 7649 Y 31 750 N

Myc1_3 13 623 34 858 33 867 4156 Y 17 249 N

Myc2_1 42 456 56 989 91 252 1346 Y 46 979 N

Myc2_2 33 015 54 889 92 423 799 Y 50 428 Y

Myc3_1 5473 14 411 18 244 2801 Y 9061 N

Myc3_2 12 832 16 401 27 116 1390 Y 13 181 Y

Ifna30_1 1901 4839 32 711 111 - 28 752 Y

Ifna30_2 2527 5605 30 695 527 - 26 616 Y

Ifna6h_1 5852 9570 38 517 114 Y 29 703 N

Ifna6h_2 4547 10 547 36 258 408 Y 28 028 Y

Ifng30_1 8227 18 112 49 843 257 Y 33 763 N

Ifng30_2 30 524 33 203 69 128 150 - 39 996 N

Ifng6h_1 2485 12 052 31 160 483 Y 22 678 Y

Ifng6h_2 27 728 28 564 70 888 98 - 45 601 Y

Comparison of the output set Ro (3rd column) with ERs obtained by jMOSAiCS (4th column). The 5th and 6th columns show the number of peaks that are

present in Ro but not in the jMOSAiCS output, and the enrichment of the Myc canonical E-box in this last set, respectively. Vice versa, the 7th and 8th columns

show the number of peaks present in the jMOSAiCS output but not in Ro, and the corresponding enrichment of the E-box, respectively. For Myc1, the comparison

was done only with replicates 1 and 3. jMOSAiCS outputs a large number of ERs, including most of the peaks identified by our method, but only a fraction of the

jMOSAiCS-specific peaks contains the Myc binding motif. Each E-box column refers to the set described in the previous column and is marked as follows: ‘Y’:

presence of the E-box; ‘N’: absence of the E-box; ‘-’: set too small to find any enriched motif.
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required time is in the order of few minutes on a standard desktop

computer and does not require special hardware.

Comparing our method with two other common approaches

(replicate merging and IDR) confirmed the stable identification of a

core of stringent, reproducible peaks. Besides this, our tests demon-

strated that less stringent evidence consistently present across repli-

cates can be combined, leading to the ‘rescue’ of sets of ERs

corresponding to real binding sites, e.g. of the transcription factor

(TF) Myc. In particular, our results are compatible with those found

with IDR, a method widely used in ENCODE to assess the consist-

ency of each detected peak: IDR works by comparing peak rankings

and inferring the proportion of reproducible and irreproducible sig-

nal in the replicates, while our algorithm provides complementary

information by computing the combined significance of a number of

overlapping peaks. Despite comparable running times, we differ

from IDR as we do not automatically discard non-overlapping peaks

and we can directly apply our method to more than two replicates

without relying on multiple pairwise comparisons. We stress that

our method should not be considered an alternative to IDR, but ra-

ther complementary to it.

A further comparison with a tool designed for more complex

analysis (identifying combinatorial patterns of enrichment across

different ChIP-seq experiments performed over the same biological

sample), jMOSAiCS, revealed that, in the specific task of comparing

replicates of ChIP-seq experiments performed against the same tar-

get, this last tool confirms more peaks, which however do not al-

ways enrich for the E-box.

Recently, JAMM (Ibrahim et al., 2015), a tool based on local

multivariate Gaussian mixture models for directly finding ERs on

ChIP-seq replicates, has been introduced. JAMM confirms that

pooling replicates can blur the specific spatial resolution of single-

sample peaks and lead to less accurate calls in terms of peak width

and intensity.

In summary, our strategy represents a promising trade-off be-

tween stringent techniques (IDR) and permissive techniques

(jMOSAiCS).
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