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5.1 Introduction

Automated mathematical building performance optimization (BPO) paired with building
performance simulation (BPS) is a promising solution for evaluating many different design
options and obtaining the optimal or near-optimal solution for a given objective or
combination of objectives (e.g., lowest life-cycle cost, lowest capital cost, highest thermal
comfort) while complying with constraints (e.g., net zero-energy) (Brown, Glicksman, and
Lehar, 2010; Bucking et al, 2010; Charron and Athienitis, 2006; Christensen and
Anderson, 2006; Wetter, 2001). Traditionally, buildings have been designed based on
heuristic rules separating the design process into several major design stages with multiple
disciplines (architects, mechanical engineers, structural engineers, electrical engineers,
etc.). Optimization can facilitate greater continuity between disciplines and design stages
by identifying and evaluating major building design parameters (see Figure 5.1), in a
holistic way. Based on this perspective, the previously, often ill-defined, design problem
would be defined as a problem with explicit multiobjective criteria. This will promote fully
integrated net zero-energy building (Net ZEB) designs where the building designers can act
to influence the direction of the optimization. Despite optimization’s potential for Net ZEB
buildings, it remains largely a research tool and has yet to enter common industry practice.

This chapter discusses major obstacles to BPO in the building design and construction
industry including lack of appropriate tools, lack of resources (time, expertise), and the
requirement that the problem be very well defined (e.g., constraints, objective function,
finite list of design options). The objective of this chapter is to document the current
state-of-the-art and future research and development needs for Net ZEB optimization
tools in practice and its use for design and operation of buildings for energy, comfort,
and cost optimization. The content is intended to aid the reader in better understanding
areas of active research in building optimization as well as tools and methods commonly
used by researchers and designers.

5.1.1  What is BPO?

Automated building performance optimization is a process that aims to select the
optimal solutions from a set of available alternatives for a given design or control
problem, according to a set of performance criteria and constraints. Such criteria are
expressed as mathematical functions, called objective functions. Automated optimiza-
tion is a combination of different types of optimization algorithms, setting each
algorithm to optimize one or more design functions. The optimization objectives for
Net ZEBs are to identify impacts on cost, energy, environmental impact (embodied
energy, materials life cycle), comfort, and indoor air quality.

An objective function is defined as a mathematical function subjected to optimization.
Optimization searches for the optimal solution with respect to the objective functions to
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be maximized or minimized, subjected to some constraints (e.g., of the dependent
variables and objective functions). If no constraints are specified, the problem is denoted
an unconstrained optimization problem. A constraint limits the problem space to a
subset of elements (Snyman, 2005). If the optimization problem aims at minimizing a
single objective function, itis called a single objective optimization problem; otherwise,
if the objective functions are more than one, it is called a multiobjective optimization
problem.

Visualization techniques are helpful to facilitate the extraction of relevant information
regarding performance trade-offs, propagation of uncertainties, and sensitivity analysis.
By providing visualization during the optimization process, it is possible for the
designer to interact with the optimization process (Flager et al., 2009). This facilitates
a hybrid approach between traditional design (Chapter 4) and optimization (current
chapter).

5.1.2 Importance of BPO in Net ZEB design

Since building performance optimization of Net ZEBs is aimed at an absolute goal, the
number and complexity of energy efficiency measures forming the energy concept may
be high (Athienitis et al., 2010). The Net ZEB performance objectives have raised the
bar of building performance, and will change the way buildings are designed and
operated. This means that evaluating different design options is becoming more arduous
than ever before. The building geometry, envelope, and many building systems interact
with each other, thus requiring optimizing the building and systems together rather than
merely the systems on an individual level (Hayter er al., 2001).

One promising solution is to use automated mathematical BPO paired with BPS as a
means to evaluating many different design options and obtain the optimal or near-
optimal solutions. A number of energy simulation engines exist and are often used in
different stages of the design process of a building. However, out of the 406 BPS tools
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Fig. 5.2 Evolution of building performance simulation and optimization tools (Attia et al., 2013)

listed on the U.S. Department of Energy (DOE) Web site in 2012, less than 19 tools are
allowing BPO as shown in Figure 5.2.

Based on a literature review, Figure 5.3 reports the number of times a given BPS and
BPO tool has been used to optimize a building design. Progressions in building
simulation tool development and in coupling or combining complementary BPS tools
at run-time expand the domains where BPS optimization studies can occur.

In the architecture, engineering, and construction (AEC) industry, there is a growing
research trend for automated optimization approaches to be used to map out and find
pathways to building designs with desirable qualities, such as aesthetics, geometry,
structure, comfort, energy conservation, or economic features, rather than focusing
on one particular outcome. Although optimization studies are most commonly
performed in the early design stage, where the majority of design decisions are
made, optimization approaches can be equally useful in the late design and operation
stages. For example, optimization can be used for selecting and fine-tuning heating,
ventilation, and air-conditioning (HVAC) control strategies, including model
predictive control.

The use of optimization as a means of providing input to energy policy (e.g., for setting
levels for minimum performance standards or incentive measures) is one of its most
important applications in recent years. For example, using optimization to evaluate the
energy and cost-savings potential from constructing more efficient new homes and net-
zero energy homes in the United States (Christensen, 2005). Also, this includes the call
of the European Commission for implementing a methodology to calculate cost-optimal
levels in the Energy Performance of Buildings Directive (EPBD) framework. European
Member States are required to define cost-optimal levels of minimum energy perform-
ance according to their specificities (Constantinescu, 2010).
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5.2 Optimization fundamentals

The suitable application area for optimization methodologies related to building design
and control is vast and constantly evolving. The most appropriate search algorithms and
modeling approaches vary depending on the application area including optimization
objectives.

5.2.1 BPO objectives (single-objective and multiobjective functions)

In mathematics, optimization is the discipline concerned with finding inputs of a function
that minimize or maximize its value, which may be subjected to constraints (Pardalos and
Resende, 2012). In the AEC community, most BPO methods have focused on solving
single-objective or multiobjective functions (Caldas, 2001; Choudhary, 2004; Hamdy,
2012; Hopfe, 2009; Nielsen, 2002; Pedersen, 2007; Verbeeck, 2007; Wang, 2005; Wetter,
2004).

In the case of single-objective functions, an optimum solution of the problem is either its
global maximum or minimum, depending on the purpose. On the other hand, in
multiobjective optimization problems, a specific building variant is often not able to
simultaneously minimize or maximize each objective function. Instead, when searching
for solutions, one comes to limit variants such that a further improvement toward the
minimum value of one of the objective function causes the others to deviate from the
minima. Therefore, the aim of a multiobjective optimization problem consists in finding
such variants and possibly in quantifying the trade-off in satisfying the individual
objective functions. The role of the optimization algorithm is to identify the solutions
that lie on the trade-off curve, known as the Pareto Frontier (a set of optimal solutions
plotted in the form of a curve; named after the Italian—French economist, Vilfredo
Pareto). These solutions all have the characteristic that none of the objectives can be
improved without prejudicing another.

In the past two decades, researchers have solved design problems for real buildings
using single-objective or multiobjective functions. Figure 5.4 shows the distribution by
objective of 92 papers that use optimization algorithms, applied to buildings. It is
observed that most researchers consider energy as the main objective for BPO.

5.2.2 Optimization problem definition

The formal goal of a minimization study is to find the value x* of a design variable
vector, X, such that f{x*) is the minimum value of f{x), with x varying within a certain
feasible design space. More formally

min f(x) = f(x") (S.1)

where x is the design variable vector x=(x;, X, .. ., xy)! in design space
X c RY: the objective or fitness function, f(), maps the set of design variables
onto an objective vector y = (v, ya, . . . , yar)® where f; € RM, y, =f(x), f: RY —» R!

fori=1,2,..., M, describes the objective solution space Y C RM ; the search for
min{f(x)} is subject to L constraints g; (x) <0 where i=1, 2, . . . , L; feasible design



CHO5

11/03/2014 14:6:47  Page 180

180 5 Building performance optimization of net zero-energy buildings

Energy

Economic

Thermal comfort

Visual comfort

Field

1.IIIIE

Environmental impact

IAQ

Other

o

10 20 30 40 50 60 70
Number of objective functions per field

Fig. 5.4 The distribution of objective functions using BPO in literature

vectors set xX|gi(x)<0 form the feasible design space X, and corresponding
objective vectors set y|x € X form feasible objective space Y'; for a minimization
problem, a design vector a € X is Pareto optimum if no design vector
b € X exists such that y(b)<y(a), i=1,2, ..., M.

5.2.3 Review of optimization algorithms applicable to BPS

In this section, suitable optimization approaches for building simulation studies are
reviewed. A general overview of several methods and algorithms, which have proven to
be versatile in BPS applications, are presented. The following approaches are discussed:
(i) deterministic searches, (ii) population-based searches, and (iii) hybrid search
approaches.

A deterministic search attempts to operate on individual building representations to
identify optimal regions by changing the value of variables using small increments or
decrements. Although the goal of a deterministic search is to identify global optimums,
there is a risk of preconverging to local optimums in multimodal problems. Two
deterministic searches are discussed: (i) hill-climbing search and (ii) Hooke—Jeeves
search. These searches are called deterministic, as a search operation on a given
individual will always result in the same outcome.
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Hill-climbing searches are a simple deterministic search strategy. Building design
variables are incrementally changed to improve an objective function. Typically, the
order in which variables are searched and the particular building design representation
being searched will greatly affect the search outcome. Renders (1994) recommended
integrating a hill-climbing search into the mutation operator of a genetic algorithm or as a
forked process interwoven into the search algorithm. Bucking et al. (2010) compared the
search performance of using hill-climbing searches at the beginning and end of an
Evolutionary Algorithm (EA). This research demonstrated that performing a hill-climbing
search on weakly interacting variables at the start of the hybrid algorithm and locking them
inside an EA improves algorithm performance and search resolution. Performing a hill-
climbing search after an EA was found to only marginally improve search outcomes.

The Hooke—Jeeves (HJ) search (Hooke and Jeeves, 1961), a member of the general
pattern search family (Audet and Dennis, 2002), is a deterministic search algorithm that
explores defined step-sizes in each continuous design variable coordinate. The algo-
rithm selects the design variable, for a given step-size, that best improves fitness. If
fitness is not improved, then the process is repeated to find the best step-size improve-
ment in the other design variable coordinates. When no further improvements are made,
the step-size is decreased, as previous step-sizes are assumed to be too large to resolve
local optimums. Decreasing step-sizes requires the algorithm to be constantly converg-
ing. This feature can be overcome by combining the HJ algorithm with other global
searches, as demonstrated by Wetter and Polak (2004).

Figure 5.5 illustrates a Hooke—Jeeves pattern search using a two-dimensional test
function. The cross with round circles represents the search grid. The search grid has the
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Fig. 5.5 Example of Hooke—Jeeves pattern search on the Broyden function
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same number of dimensions, as there are optimization variables. Dots represent the
selected direction of the next search iteration. Note in the third iteration (3) that the
fitness is not improved so the algorithm halves the search grid size and continues from
the last known improvement. Step-sizes are decreased again in iterations 4, 5, and 6 until
the global optimum is found and the search terminated.

Population-based algorithms perform operations on populations of representative
building designs. Often, they are called metaheuristics due to their nature of finding
near-optimal solutions to a wide range of problems. Two common population-based
search algorithms used with BPS are genetic, which is an evolutionary algorithm, and
particle swarm optimizations.

The first algorithm selected for discussion from the group of population-based algo-
rithms is the Genetic Algorithm (GA), from the EA family. GAs have become popular
due to their ease of implementation and proven ability to solve multimodal and
multiobjective problems. Computational pseudo-evolution was first demonstrated by
Goldberg (1989) using biological inspirations. Performing genetic operations, such as
mutations and crossovers, on representations in combination with selection operators
emulate the “survival of the fittest” found in biological evolution. Eiben and Rudolph
(1999) described members of the EA family as “adaptive systems having a “basic
instinct” to increase the average and maximum fitness of a population.” In typical
implementations, design variables are represented using binary or discrete formats.
Genetic algorithms are a well-studied group within the broader metaheuristic family.
Wang, Rivard, and Zmeureanu (2006) used a GA to perform a multiobjective optimi-
zation using lifecycle cost and exergy on a green building with a polygonal-shaped floor
plan. Caldas (2008) used a GA to simultaneously optimize building geometry, energy
efficiency, and visual comfort. Many modifications exist combining the best elements of
other search strategies from the evolutionary algorithm family, such as Differential
Evolution (DE) (Price, Storn, and Lampinen, 2005), Evolutionary Strategies (ES)
(Eiben and Smith, 2003), and Genetic Programming (GP) (Poli, Langdon, and McPhee,
2008). Literature commonly refers to a modified GA by their more general family name,
EA, to avoid confusion. EAs have been scaled to building optimization problems with
many design variables. For example, Kampf and Robinson (2010) optimized the layout
of a buildings cluster to maximize available solar radiation, while considering design
parameters, such as insulation in ceilings and walls, window types and areas, infiltration,
and thermal mass. A benefit of EAs is the flexibility to include subspecialized search
strategies. For example, multi-island EAs allow for the population in one generation to
be divided into subpopulations, or islands, where specialized subpopulation searches
can be performed. This approach is useful to deconstruct large optimization problems
into smaller, more solvable problems. Ooka and Komamura (2009) utilized a multi-
island EA to design, schedule, and control an HVAC system for a hospital in Japan.

A particle swarm optimization (PSO) is fundamentally different from evolutionary
cycles found in EAs (Eberhart and Kennedy, 1995). Instead of forming a new population
of individuals at each iteration, the existing population is allowed to gravitate toward
other more fit individuals, or particles, in the population. Particles are updated using the
best local and global particles in the swarm. Representations are vectors of continuous
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design variables, although binary and discrete representations can also be used
(Kennedy and Eberhart, 1997). PSO competes favorably with other optimization
algorithms. For example, Elbeltagi, Hegazy, and Grierson (2005) compared five
evolutionary-based algorithms and found that PSO outperforms the other algorithms
for a discrete design problem, with regard to reproducibility of optimal solutions and
ability to scale with increasing problem sizes. PSOs are the primary population-based
search approach used in the Generic Optimization Program (GenOpt) (Wetter, 2001).
Hasan, Vuolle, and Siren (2008) utilized GenOpt’s PSO algorithm to optimize envelope
and HVAC systems with respect to life cycle cost of a single detached home in Finland
using IDA-ICE as a simulation tool. Wetter and Wright compared a GA, with HJ search
using GenOpt (Wetter and Wright, 2004). They found that stochastic methods are
effective at finding near-global optimums; however, deterministic searches may be
required to further resolve searches.

More recently, researchers have combined the strengths of population-based and
deterministic algorithms into a hybrid approach. Population-based algorithms identify
near optimal regions; deterministic searches intensify the search process around near
optimal landscapes. Although hybridization can occur at different levels, the most
common approach is to augment a population-based search with a local deterministic
search (Feoktistov, 2006). The GenOpt tool performs an HJ search on the optimal
individual resulting from a PSO (LBNL and Wetter, 2011). This algorithm was found to
have better convergence properties for nonmultimodal problems compared to a hybrid
DE algorithm (Kampf, Wetter, and Robinson, 2010).

5.24 Integration of optimization algorithms with BPS

Several steps are required to use an optimization algorithm with BPS, see Figure 5.6.
First, the upper and lower limits of design variables are defined within the optimization
algorithm. These limits define the entire possible set of designs available to the
optimization algorithm. Design representations of the algorithm are converted into
simulation files. Simulation files are evaluated using a building simulation tool to
evaluate the performance of each design under analysis. The optimization algorithm
uses databases, such as text file or SQL interactions, to store relevant simulation
information. Building representations are improved upon in the optimization iteration

/ Optimization algorithm \ / Building simulation \

Definition of algorithm Simulation
< > parameter and design results
——— variables interpretation |«—|
A ’ and fitness
Optimization iteration loop assignment
Database / P 2
JL Simulation
Conversion from file
representation generation —»

\_ /

Fig. 5.6 Integration of an optimization algorithm with BPS
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loop until a termination criterion is satisfied. Figure 5.7 presents an overview of the
evolutionary cycle common to an EA.

A set of genomes, or simplified representations of building designs, forms the popula-
tion. In Figure 5.7, the population is initialized by randomly creating a population of a
specified size. The fitness of each individual is evaluated using a building simulation
tool. This population becomes the parent population as it enters the evolutionary cycle.
Parent selection is used to select genomes for variation operators, such as recombination
and mutations. The fitness of new individuals, called children, is evaluated. Survivor
selection, or replacement, selects which genomes from the old and new population will
survive in the next generation. The process is repeated until a termination criterion is
reached, typically a set number of evolutionary cycles sometimes called iterations or
generations. Individuals are elite if there exists no other individual in the present
population with a better fitness. Elitism is an algorithm feature where a specified number
of elite individuals pass to the next generation.

5.2.5 BPO experts interview

This section presents a sample of results from an interview of 28 optimization experts
that took place in 2011. Each interview included 25 questions. The complete study
report results can be found in Attia (2012) and Attia et al. (2013). The most important
findings of this report are listed here; namely, the major obstacles and opportunities of
integrating optimization techniques in Net ZEB design.

The major obstacles of integrating optimization techniques in Net ZEB design can be
classified under two main categories: (1) soft obstacles and (2) hard obstacles. The main
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four soft obstacles — those based on attitudes, processes, and skills — and their frequency
are listed as follows:

Low return and the lack of appreciation among the AEC industry (19).

Lack of standard systematic approach to perform optimization; in most cases
researcher follow many different methods and ad hoc approaches without a structure
and categorization in use (16).

Requirement of high expertise (11).

Low trust in the results (5).

The interviewees indicated that in practice, there is a lack of awareness and confidence
on the use of optimization. Also, it is very important that users understand the
optimization process. There is a large educational need before BPO gets applied
routinely in the design process. Regarding the hard or technical obstacles, the inter-
viewees’ comments and their frequency is listed as follows:

— Uncertainty of simulation model input (27)

— Long computation time (24)

— Missing and uncertain information on costs (19)

— Difficulty of problem definition (objectives arrangement, constraint violation) (12)

— Lack of software environments integrating and linking simulation and optimization
seamlessly (16)

— Low interoperability and flexibility of models for exchange between different design,
construction, simulation, cost estimation, and optimization tools (11)

— Lack of environment with friendly GUI allowing postprocessing and visualization
techniques (7).

The interviewees agreed that computation time is very long and this may inhibit the
initial take-up of optimization in practice. The optimization process also magnifies
the idea of “rubbish-in-rubbish-out” since rather than simulate a single design solution,
the errors or inaccuracies in a simulation are exposed across a wide range of the design
space. This may lead to a need for better education and improved user interfaces for
simulation, as well as more work on the uncertainty associated with simulation models.

According to the interviewees, BPO has been applied successfully in numerous Net
ZEB projects. However, the building simulation community still rarely uses optimiza-
tion and little investment has been made to advance BPO. Interviewees indicated that
many opportunities exist in integrating simulation-based BPO in Net ZEB design and
operation. The most mentioned opportunities include the following:

— Supporting the decision making for Net ZEB design. Many elements, including
government policy that pushes the design of low-energy buildings, have driven the
rise of building performance simulation. At present, any increase in the use of
optimization will be driven by the extent to which it aids design decision making.
In this respect, one of the most powerful forms is multiobjective optimization, since it
gives a set of solutions that lie on the trade-off between two or more conflicting design
objectives. The trade-off can be used to explore the impact of less capital investment on
the increase in carbon emissions. This kind of information is useful in decision making
of Net ZEB, requires little effort, and generates different ideas and alternatives.
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— Designing innovative integrated Net ZEBs with smart and efficient thermal (and
visual) comfort control systems is difficult to achieve because it involves complex
dynamic interactions. Optimization algorithms can help in finding the optimal and
near-optimal solutions regarding the design and sizing of passive and active energy
systems and finding the balance between demand and production.

— Achieving cost-effective Net ZEBs by analyzing and synthesizing multiphysics
systems that may include passive and active facades, lighting controls, natural
ventilation, HVAC, and storage of heat in the building structure combining advanced
technologies, such as micro-CHP, BIPV, BIPV/T, solar thermal collectors, and
microwind turbines. The complexity of such systems poses a serious challenge to
designers. The use of BPO is an opportunity to inform designers of optimal and cost-
effective design decisions during building design and operation.

— Allowing optimal systems scheduling through Model Predictive Control (MPC)
taking into account the dynamics of Net ZEB systems and anticipated future energy
load. When solving the optimal control problem using the MPC algorithm, it
determines near-optimal control settings during design and operation are determined
and the load-matching problem is addressed.

5.3 Application of optimization: cost-optimal and nearly
zero-energy building

5.3.1 Introduction

According to the recast of the European Energy Performance of Buildings Directive
(EPBD-r) (European Parliament and Council, 2010), the minimum energy performance
requirements of buildings should be set with the aim of achieving cost-optimal levels for
buildings, building units, and building elements (Constantinescu, 2010). Higher-energy
performance levels, like net-zero energy, should also be economically feasible. The
EPBD indicates that all new buildings should be “nearly zero-energy buildings” (Nearly
ZEB) by the end of 2020, and two years prior to that for public buildings. According to
the Recital 15 of the EPBD-r

As the application of alternative energy supply systems is not generally explored to its
full potential, alternative energy supply systems should be considered for new buildings,
regardless of their size, pursuant to the principle of first ensuring that energy needs for
heating and cooling are reduced to cost-optimal levels

(European Parliament and Council, 2010).

These combinations should range from those in compliance with the current regulations
to solutions that realize Nearly ZEBs. Those should also include various options for
renewable energy generation.

Finding optimal solutions requires exploring the environmental and economic viabilities
of all compatible designs (Constantinescu, 2010). Figure 5.8 shows the cost-optimal
curve that would be found from the exploration where the environmental and economic
viabilities are presented in terms of PEC (Primary Energy Consumption) and dLCC
(Difference in Life Cycle Cost) per square meter of a building, respectively. The dLCC
is the difference between the LCC for any design and that for the reference one. The
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lowest part of the curve (the economic optimum) is the cost-optimal range of solutions.
The part of the curve to the right of the economic optimum represents solutions that

un

derperform in both aspects (environmental and economic). The left part of the curve,

starting from the economic optimum point, represents the optimal solutions toward
Nearly ZEB, where the extreme left of the curve is the Net ZEB optimal solution.

Here, we summarize a multistage optimization method for cost-optimal and Nearly ZEB
solutions in line with the EPBD-recast 2010. The method (Hamdy, Hasan, and Siren,

20

13) provides efficient, transparent, and time-saving explorations:

Efficient exploration is performed by combining a two-step optimization approach
(PR_GA) (Hamdy et al., 2009, Hamdy, Hasan, and Siren, 2009) and a detailed
building performance simulation program (IDA-ICE 4.0). In the first optimization
phase, a single-objective deterministic algorithm is used to minimize the two-
objective functions (PEC and dLCC) one by one, sequentially, then to minimize
the first objective considering maximum value of the second as a constraint. From the
evaluations’ history of the first optimization step, optimal solutions are found by
sorting code and fed as a seed (a good initial population sample) to the second
optimization step, continuing the optimization process by multiobjective genetic
algorithm, which is a variant of the Non-dominated Sorting Genetic Algorithm-II
(NSGA-II) by Deb et al. (2002). This two-step optimization approach improves the
quality and the repeatability of the optimization results,

Transparent exploration is presented via multistage optimization showing the effect
of the design-variable combinations,

Time-saving exploration is achieved by speeding up the exploration by avoiding the
unrealistic/unfeasible design-variable combinations and using presimulated results
instead of running time-consuming simulations (when possible).
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5.3.2 Case study: single-family house in Finland

In order to find optimal trade-off relations between PEC and dL.CC for a single-family
house in the cold climate of Finland, a multistage optimization method is proposed to
explore more than 3 X 10° (16 X8X13x3Xx3x4x3x2x4x%x31x71) combinations
of the design-variable options (Table 5.1). The dLCC is calculated for 30 years. The
design variables are selected to cover packages of measures ranging from compliance
with the requirements of the current Finnish building code (C3-2010) to combinations
that realize Nearly ZEBs (e.g., U-values typical of a Passivhaus, photovoltaic, and solar
thermal collectors). The variables include a number of external wall, roof, and floor

Table 5.1 Design variables
Design Variable Description Options
1 U-value of the external From 0.17 to 0.07 16
wall [Wm™2K™']
2 U-value of the ceiling From 0.09 to 0.07 8
Wm™K™"
3 U-value of the floor From 0.17 to 0.08 13
Wm™2K™"
4 | Building air tightness 2,1,0.5 3
levels (at 50 Pa) [1/h]
5 | Window type (all with Triple-Laminated glass (Air filled), Triple- 3
Wood-aluminum Laminated glass (Argon filled), or Quadruple
frames) Laminated (Argon filled)
6 | Shading type External blinds, horizontal laths, Blinds 4
between the outer panes, horizontal laths,
Blinds between the inner panes, horizontal
laths, or Internal blinds, horizontal laths
7 | Heat recovery type Cross-flow heat exchanger, Counter-flow heat 3
exchanger, or Regenerative heat exchanger
8 Cooling options No cooling or small cooling unit 2
9 | Heating system Direct electricity with electrical radiators 4
(EH), oil boiler with water radiators (OB),
district heating with water radiators (DH),
GSHP with radiant floor heating (GSHP)
10 | Solar thermal collector From 0 to 30 m> 31
area
11 | PV collector area From 0 to 70 m> 71
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insulation thicknesses, three building tightness levels, three window types, four shading
methods, three heat recovery units, two cooling options, four heating systems, and
different sizes of on-site solar systems. The detailed description of the design variable
option can be found in Hamdy, Hasan, and Siren (2013). A reference case is calculated
according to the National Building Code of Finland C3-2010. The life cycle costs of the
candidate solutions are calculated relative to the reference case one. Considering the
impact of the design variables on the objective functions (PEC and dLCC), the
exploration is performed in three stages:

— Stage-1 aims to find the optimal combinations of the design variables that
influence the building thermal performance (heating, cooling, and thermal com-
fort) of the house, that is, building envelope parameters and a heat recovery
ventilation system;

— Stage-2 assesses the economic and environmental viability of the studied primary
heating/cooling systems to the optimal building combinations (packages) found in
Stage-1; and,

— Stage-3 investigates improving the economic and/or environmental viability of the
optimal combinations of building envelope parameters and HVAC systems assessed
in Stage-2. Stage-3 addresses the renewable energy systems as supplementary
systems.

The aim of Stage-1 is to find representative energy-efficient building designs,
irrespective of the type of heating, cooling, and energy supply systems. In order
to achieve this, the space heating energy demand of the house and the present worth
(PW, defined later) of the influencing measures (insulation level, building tightness,
window type, shading method, and heat recovery type) are minimized, while a
penalty function is applied when the summer comfort criterion (DH,7 > 150 °Ch) is
violated.

According to the Finnish building code D3, degree-hours (DH,7) are used to measure

the summer overheating risk

8760
DHy; = ZdT27At

i=1
(Tl' - 27) >0=>dTy; = (Tl - 27)
(T,'—27)§0:}dT27=0

(5.2)

where T; is the mean air temperature [°C] at the warmest zone and Az is a 1 h time
period [h].

The minimization work is performed by the two-step optimization approach
(PR_GA) mentioned earlier. The first objective (space heating energy demand),
to be minimized in Stage-1, presents the major energy demand in the residential
building in the cold climate. The second objective (PW) presents the initial and
replacement costs (IC and RC) of the key influencing ESMs (external wall, ceiling,
and floor insulation levels, building tightness, window type, shading method, and
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heat recovery type). PW is calculated as follows:

7 7
PW = ZlCi + ZRCi (5.3)
=1 =1

5.3.3 Results

Figure 5.9 presents the optimization results of Stage 1. The results are two optimal
trade-offs (Group 1 and 2) between the space heating energy and the present worth
(PW) of the influencing ESMs. Group 1 presents the optimal building designs, which
satisfy the summer overheating criterion (Eq. (5.2)), while Group 2 presents the ones
that do not fulfill the criterion. Groups 1 and 2 consist of 19 and 13 solutions,
respectively. Group 2 packages are not eliminated as noncomfort solutions, because
they could be addressed with mechanical cooling. In terms of LCC, implementing
RES (e.g., photovoltaic) might improve the economic feasibility of the mechanical
cooling solutions by covering a portion of their electricity demands. The feasibility of
using the cooling and RES systems will be investigated in forthcoming optimization
stages 2 and 3, respectively.

Figure 5.10 presents the results of Stage-2. The results are the dLCC and PEC of Stage-1
optimal solutions (Group 1 and 2; Figure 5.9) when the offered primary heating systems
(direct electrical, district heating, oil fire boiler, and GSHP) are installed. In line with the
EPBD-recast 2010, 3% real interest rate (r) and 2% energy price escalation rate (e) are

80

o All evaluations
70 e
°
g 8 A Optimal building designs (Group 1)

m Optimal building designs (Group 2)

PW of the building envelope parameters and heat
recovery ventilator (€/m?)

09 %00 \:. o
Sho
_1 0 T T T T T 1
20 25 30 35 40 45 50

Space heating energy demand (kWh/m?Za)

Fig. 5.9 Stage-1 optimization results (Hamdy, Hasan, and Siren, 2013)
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40 | A Building designs Group 1 + DH system without cooling, DH27<150 C.h
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o~ X Building designs Group 2 + EH Sys. with cooling, DH27=0 C.h (EH Sys.)
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Fig. 5.10 Stage-2 postprocessing results (Hamdy, Hasan, and Siren, 2013)

used as recommended values. Primary energy factors, efficiencies, capital and service
costs, subscription fees, and energy prices (Table 5.2) are used to calculate Stage-2s
results (dALCC vs PEC). Since the current investigation aims to compare different
designs in the specified solution space, the absolute value of the LCC is not calculated,
but the difference (dLCC;) between the LCC for any design (LCC;) and that for the
reference one (LCC,) is calculated

dLCC; = LCC; — LCC,

11 11

5.4

LCC=) IC;i+» RCG+MC+0C+C G4
Jj=1 j=5

where IC is the investment costs of the 11 investigated design variables (Table 5.1), RC
is the replacement cost of the replaced building elements and systems (e.g., window,
shading, heat recovery unit, etc.), and MC is the maintenance costs of the heating
systems (Table 5.2). OC is the operating cost of energy and C is a constant for other
costs, such as construction and design cost, i denotes indexes for the design solution, and
J is an index for the design parameter (Table 5.1).

The PEC considers the total energy use of the building including heating, cooling,
ventilation, lighting, pumps, and fans, as well as the energy-saving from RES. The PEC
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is calculated by using nonrenewable primary energy factors F according to the energy
source (Table 5.2)

PEC =F SHdelivered +F DHWdelivered +F Eledelivered

SHaetivered = (On/Maist)/Mshs
DHW elivered = (Qpaw — dQprw)/Mpaws
dEle(t) = Qc(t)/COPCu + SHele(t) + DHWele(t) + Ehv(t) + Ela(t) r PVe(t)/’//inverter

t=8761
Elegelivered = Z maX{dEle(t), 0}

t=1

(5.5
where
DHW Domestic hot water
DHW,. The electrical portion of domestic hot water,
Ele The electricity consumption,
E The electrical consumption of the HVAC system
E, The electrical consumption of the appliances and lighting
PV Photovoltaic
PV, The useful electricity produced by photovoltaic system.
O, Space cooling energy demands,
On Space-heating energy demands
SH Space heating
SHele The electrical portion of space heating,
NsHS Efficiency of the space heating system
IDHWS Efficiency of the domestic hot water system
Ndist Distribution efficiency of the heating system
Ninverter Efficiency of the photovoltaic inverter

Equation (5.5) divides the energy demands (Qn, Opuw-dOpuw, Q) by the annual
efficiencies to calculate the delivered ones (SHgelivereds» DHWaetivered> AEl€getivered)-
According to the heating application (SH or DHW), two efficiencies (ysys and #ppws)
are considered as being consistent with the Finnish regulation. Based on the installed
space heating system (electrical radiator, water radiator, or floor heating), the distribu-
tion efficiency (745 1s assumed to be 94, 84, or 87%, respectively (Table 5.2). The
implementation of a flat-plate solar thermal collector reduces the domestic hot water
demand Qpgw by dQOprw. When mechanical cooling (Q.) is needed, it will take place
for a short period. Therefore, the coefficient of performance for the cooling system for
nominal operating conditions (25 °C outdoor air temperature) is used. Only 13 simula-
tions are carried out to calculate the cooling energy required for the Group 2 solutions.
Implementing the mechanical cooling options, with a 25 °C indoor temperature setpoint,
reduced the DH,; (Eq. (5.2)) of the Group 2 solutions to zero.
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Fig. 5.11 Stage-3 optimization results (Hamdy, Hasan, and Siren, 2013). Note that the fronts
labeled “Front 17 and “Front 2” are the same as those in Figure 5.10

Figure 5.11 presents improvements to the environmental viability of Stage-2 building
envelope and HVAC-system optimal solutions (Figure 5.10, front 1 and 2) by
implementing optimal sizes of RES systems (solar-thermal and photovoltaic collector
areas). A simulation-based optimization model is developed, using MATLAB 2008b
and IDA ESBO (a building performance simulation program that includes the possibil-
ity of implementing RES systems), to find the optimal combinations of the front 1 and 2
solutions and the RES options (from 0 to 31 m? solar thermal collector areas and from 0
to 71 m? photovoltaic array area). The optimization is performed by PR_GA approach
(Hamdy, Hasan, and Siren, 2009).

5.3.4 Final considerations about the case study

According to the Directive 2010/31/EU, the minimum LCC solution (global cost-
optimal solution) should be used by Member States when setting the minimum energy
performance requirements. However, a slightly higher LCC solution could be preferable
if it reduces the PEC significantly. Figure 5.11 shows the global and preferable cost-
optimal designs. The difference between the LCC of the cost-optimal solutions is
5 €/m*. Based on the resulted global and preferable cost-optimal solutions, the
calculated minimum energy performance level of the single-family house in Finland
is 103 or 92kWh/m” a of primary energy, depending on the decision maker’s
preferences. These cost-optimal energy performance levels are 40 and 47% lower,
respectively, than that for the reference case defined by the current Finnish regulation.
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5.4 Application of optimization: a comfortable net-zero energy house

Optimization is a versatile technique that in this case study is used to identify the most
suitable technical solutions to guarantee a comfortable environment inside a building
and, hence, to minimize its energy needs for space conditioning. This design strategy
is a rational and promising path toward Net ZEBs (Carlucci, Zangheri, and Pagliano,
2013; Pagliano, Zangheri, and Carlucci, 2010). The European standard EN 15251
(CEN, 2007) also suggests a path, which starts with optimizing the building envelope
and its passive strategies by analyzing the building in free-floating mode; the indoor
thermal comfort is assessed with respect to an adaptive comfort model (de Dear and
Brager, 1998; Nicol and Humphreys, 2002). Therefore, in case thermal comfort
requirements cannot be met only with the building envelope and its passive strategies,
efficient HVAC systems are then introduced, and thermal comfort requirements have
to be verified against the Fanger comfort model (Fanger, 1970). In other words, this
means designing the building envelope for achieving thermal comfort by using
primarily passive strategies, so that, at the next step (if required), efficient HVAC
systems need only a limited amount of energy to provide the required thermal comfort
conditions. At the same time, efficient lighting and electrical appliances have to be
selected to reduce the electricity demand of the building. Then, the overall energy
required by the building has to be covered by renewable energy preferably produced
on-site (Marszal et al., 2011).

The automated computer-based workflow is applied to optimize a single family net zero-
energy house in the Mediterranean climate. It uses EnergyPlus (Crawley et al., 2001) as
the building performance simulation engine, guided by GenOpt (Wetter, 2001) as the
optimization engine. The identified optimal building variant reduces both the seasonal
long-term discomfort indices to a value lower than 10% in free-floating mode, and a
monocrystalline PV field with an area of 21.0 m? that can provide all the needed energy
required by the house (on a yearly basis and via exchange with the electric grid). In case
the identified optimal building variant is equipped with a reversible electric heat pump,
the thermal comfort requirements expressed with respect to the Fanger comfort model
are met with a delivered energy for heating of 7.3 kWhe/(m? a) and for cooling (sensible
plus latent) of 9.5 kWh,/(m” a). Therefore, the area of the monocrystalline PV field shall
rise to 32.6 m” to meet the overall primary energy consumption of the home. It should be
noted that the proposed optimization approach can be applied to any residential or
commercial building prototype.

5.4.1 Description of the building model

The case study is a detached single-family house, located in Mascalucia (CT) in
Southern Italy (Figure 5.12). The single-family home is composed of one occupied story
and one unoccupied basement used as a technical room. Its net floor area is 148 m* and
its net conditioned volume is 445 m>.

Mascalucia is in the zone “Csa” (Koppen, 1930), characterized by a temperate climate
with dry summer, also called Mediterranean climate. To simulate the most representa-
tive local weather conditions, a typical weather year was constructed using the measured
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Fig. 5.12 (a) Three-dimensional model. (b) Plan and indication of the thermal zones of the house

hourly weather data recorded from 2003 to 2009 in Pedara (CT), located 1 km far from
the construction site.

The daily typical occupancy schedule and the daily typical lighting and electrical
appliances usage rates were defined according to owner information about intended use.
In order to provide a comfortable indoor air quality, the minimum air change rate of
0.6h™" was estimated according to EN 15251 and a mechanical ventilation system,
equipped with a high-efficiency (92%) heat recovery unit, was provided.

The energy simulations of the building were run with EnergyPlus release 6.0.0.23 and
the default physical models for calculating heat exchanges were selected to take into
account the trade-off between precision and computation time: (i) the update frequency
for calculating sun paths was set to 20 days, (ii) the heat conduction through the opaque
envelope was calculated via the conduction transfer function method with four time
steps per hour, and (iii) the natural convection heat exchange near external and internal
surfaces was calculated via the adaptive convection algorithm (Department of Energy
(DOE, 2013)).

5.4.2 The adopted methodology and the statement of the optimization problem

The energy design of a building is a multivariable problem, which can accept different sets of
solutions. The number of design alternatives can be very large and not all of them can be
simulated in a time span compatible with the design phase of a building. In order to explore a
very large number of building variants compatible with the design phase in a relatively short
time, the adopted methodology consists of (i) in identifying the design parameters of the
building to be optimized, (ii) in identifying the options for every design parameter, (iii) in
running the dynamic energy simulations of the building in free-floating mode via Ener-
gyPlus, and (iv) in driving the selection of the design parameters via an optimization engine.

The design parameters and the options for each of them used in the optimization are
reported in Table 5.3. The number of all available building variants is larger than 17 million.
The single values have been introduced in the optimization as discrete variables.



CHO5

11/03/2014 14:6:55  Page 197

5.4 Application of optimization: a comfortable net-zero energy house

Table 5.3 Design parameters and their values used in the optimization run

Design Parameters Physical Possible Alternatives
Quantities
External wall construction U-value 0.149]14.0; 0.147|9.9; 0.152|4.6;
(Wm2K™)| 0.261]12.9; 0.254(9.2; 0.246[2.9;
Time shift (h) 0.387|12.6; 0.387|8.9; 0.4102.2.
Roof construction U-value 0.154]12.3; 0.148|8.2; 0.147|4.9;
Wm2K™")| 0.252[13.1; 0.251(9.4; 0.248]5.0;
Time shift (h) 0.398|12.3; 0.404/9.3; 0.381]5.8.
Floor construction U-value 0.143]12.8; 0.150(9.6; 0.152|5.7;
(Wm2K™")| 0.250[13.1; 0.240|9.0; 0.246/5 .4,
Time shift (h) 0.397|12.9; 0.401]9.3; 0.401/4.8.
Constructions of glazing U-value 0.586/36; 0.582|49; 1.099|38,;
units on south-east facade | (Wm™2K™") | 1.065|53; 2.667|34; 2.667|75.
SHGC (%)
Construction of glazing U-value 0.586|36; 0.582|49; 1.099|38;
units on south-west facade | (Wm™2K™") | 1.065|53; 2.667|34; 2.667|75.
SHGC (%)
Construction of glazing U-value 0.586|36; 0.582|49; 1.099|38;
units on north-east/north- (Wm™2K™") | 1.065|53; 2.667|34; 2.667|75.
west facades SHGC (%)
Construction of glazing U-value 0.586|36; 0.582|49; 1.099|38;
units on the central court (Wm2K™") | 1.065|53; 2.667|34; 2.667|75.
facade SHGC (%)
Control strategies for Set-point Indoor air temperature >25 °C;
shading devices Outdoor air temperature >25 °C;
Global irradiance on window
>100 W/m”.
Opening pivoted windows Percentage of the | 0; 100.
window area
open (%)
Opening double-leaf Percentage of the | 0; 50; 100.
windows window area
open (%)

The optimization engine GenOpt release 3.1.0 was used to minimize specified seasonal
thermal discomfort objectives. The Long-term Percentage of Dissatisfied (LPD) in the
ASHRAE adaptive version (Carlucci, 2013) is used to quantify predicted long-term
thermal discomfort by a weighted average of discomfort over the thermal zones



CHO5

11/03/2014 14:6:56  Page 198

198 5 Building performance optimization of net zero-energy buildings

and over time.

ZtT=1 ZZZ=1 (pz,t : ALDz,t : hz)
Yo Y2 (P i)

LPD =

(5.6)

where 7 is the counter for the time step of the calculation period, T'is the last progressive
time step of the calculation period, z is the counter for the zones of a building, Z is the
total number of the zones, p_ , is the zone occupation rate at a certain time step, #, is the
duration of a calculation time step (e.g., 1 h) and ALD, , is the ASHRAE Likelihood
of Dissatisfied calculated inside a certain zone at a certain time step, given by the
equation

exp(0.008 - ATZ, +0.406 - ATy — 3.050)

ALD = (5.7)

1+ exp(0.008 - AT2, +0.406 - AT, = 3.050)

where AT, is the absolute value of the difference between the indoor operative
temperature and the optimal comfort temperature calculated according to the ASHRAE
adaptive model. This index, calculated for summer and winter, constitutes the two
objective functions of the optimization problem.

Assuming a preference for building variants that minimize their distance from the
optimum, scalarization is used to solve the bi-objective optimization problem, by
adopting the weighted exponential sum method with the utility function, U,

U= iwi[Fi(k)]” . Fik)>0 Vi (5.8)
i=1

where w; are the weighting factors of each objective function, such that w; >0, and k is
the vector of the values of each design parameter. For this optimization problem, there is
not an apparent reason to weigh the two objective functions differently, thus the
weighting factors were set to 1. The exponent p was set to 2, hence the utility function is
a distance function that measures the squared distance between a certain solution point
and the utopia point, so that the shorter the distance, the better the building variant. This
optimization approach does not provide a set of optimal solution belonging to the Pareto
frontier, but only one optimal solution; this simplifies the activity of the final user, but
the use of the utility function forces the result of optimization.

The PSO algorithm was selected due to its robustness and efficiency to converge toward
the global minimum (Hopfe, 2009). The setting parameters used are: type of algorithm is
the PSO with inertia weight, neighborhood topology was von Neumann, neighborhood
size was 5, 20 particles, 30 generations, cognitive acceleration was 2.8, social
acceleration was 1.3, initial inertia weight was 1.2, and final inertia weight was
zero. The number of simulation runs for the optimization was 600.
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5.4.3 Discussion of results

The optimization procedure identified an optimal solution that provides both winter and
summer aforementioned Long-term Percentage of Dissatisfied lower than 10% when the
building is in free-running mode during the whole year (Figure 5.13).

The main features of such optimal building variant are: (i) external walls and the roof
with very low-steady-state thermal transmittance, U=0.15 W/(m* K), to reduce heat
exchange with outdoor in both the seasons; (ii) the floor with relatively high steady-state
transmittance, U = 0.40 W/(m* K), to use the basement as a heat sink during summer
without compromising excessively winter performance; (iii) the roof and the floor with
high time shift (S>12h) and external walls with a lower time shift (8 h <S<10h);
(iv) for every orientation, glazing units should have very low values of transmittance,
U,=0.59 W/(m2 K), and solar factor, g =0.36, to reduce uncontrolled heat exchange
through glazing; (v) only on the southeast orientation (such orientation is characterized
by large glazed surfaces in this building), glazing units have a slightly higher solar
factor, g =0.49, to enhance solar gain during winter; (vi) the opening of windows (only
in the living rooms) should be maximized during summer nights to provide maximum
night natural ventilation cooling; (vi) the control parameter of solar shading (e.g., the
beam solar radiation incident on a window) has to be selected and set considering the
trade-off with other nonthermal performance aspects, such as daylighting and glare risk
for occupants. The optimal building variant, in free-floating mode, offers indoor
operative temperatures compatible with the 80% acceptability class of the Standard
ASHRAE 55 (ASHRAE, 2010); only few deviations occur outside the Adaptive
comfort zone defined in such standard (Figure 5.14).

30%

25% - a o

20% A

15% A

10% -

Summer LPDASHRAE

5% -

0%

0% 5% 10% 15% 20% 25% 30%
Winter LPDgyrae
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——————— Minimum LPD at theoretical comfort temperature

Fig. 5.13 Result of optimization run
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Fig. 5.14 Operative temperature profiles inside the living room in free-floating mode compared with
the 80% acceptability range of the ASHRAE Adaptive model

Regarding its energy performance, the delivered energy breakdown in energy uses is
(i) 3.1 kWhg/(m? a) for ventilation; (ii) 6.5 kWhe/(m? a) for lighting; (iii) 15.3 kWh,y/
(m2 a) for electric equipment; (iv) 2.6 kWhe]/(m2 a) for the production of domestic hot
water (DHW). The annual required electricity is 4087 kWh,,. The slope of the roof is 22°
and it was assumed that a southwest-facing PV array was installed with monocrystalline
modules. The single module has a nominal efficiency of 18.4% and a nominal power
generation of 300 W. It is also assumed that its overall DC to AC derate factor is 0.77.
Under these conditions, 13 PV panels, with a covered roof area of 21.2 m?2, cumulate an
overall nominal peak power of 3.9 kW, and should theoretically generate 4911 kWh,,
per year. Thus, the expected electricity production should be slightly higher than the
whole electrical demand (Figure 5.15).

If these indoor conditions are not considered satisfactory for the occupants, a mechanical
heating and cooling system (e.g., a reversible heat pump) may be added to the optimal
variant in order to control the indoor environment in a stricter manner. In this new
scenario, indoor thermal comfort requirements shall be referred to the Fanger comfort
model. The seasonal optimal comfort temperatures (used as setpoint operative tempera-
tures in the model) were calculated assuming a metabolic activity of 1.2 met, a summer
clothing resistance of 0.5 clo, a winter clothing resistance of 1.0 clo, an air velocity of
0.1 m/s, a relative humidity of 50% and an external work set at zero met. The boundary
temperatures of the comfort range were calculated in compliance with the Category II of
EN 15251 suitable for new buildings mechanically conditioned (Figure 5.16).
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According to this scenario, the building is all-electric and delivered energy is alternative
to primary energy to express the breakdown of energy uses. Annual delivered electric
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electricity demand is 7253 kWh per year, that is, 48.8 kWh/(m?” a). Therefore, using the
previous assumptions about the PV array, 20 PV panels are sufficient to cover the whole
electricity demand of this scenario. The PV array is characterized by a nominal peak
power of 6.0kW,, and covering an area of 32.6 m”. The expected annual PV yield is
7580kWh per year, hence the building, also in this scenario, is expected to produce
(over a year) more electricity than it requires.

5.4.4 Final considerations

A novel optimization procedure aiming at minimizing two seasonal long-term dis-
comfort indices in a free-floating building is presented and it was used to support the
design of areal building. This procedure identified an optimal building variant, which, in
free-floating mode, offers indoor operative temperatures compatible with the 80%
acceptability class of the Standard ASHRAE 55 with only few deviations outside such
comfort zone.

If such optimal building variant is equipped with a heating and cooling system, its primary
energy for space conditioning is much lower than primary energy for lighting, electrical
appliances, DHW production, and ventilation. Finally, since annual primary energy
required by the house amounts to 108 kWh/(m? a), the optimized building fulfills also the
Passivhaus certification criteria of having a primary energy requirement lower than
120 kWh/(m? a). It should be noted that the modeling and the optimization approach
outlined here can be applied to any residential or commercial building prototype.

5.5 Conclusion

Building simulation is becoming a major tool in the building design process. At present,
any increase in the use of optimization will be driven by the extent to which it aids
design decision-making, particularly for large projects. In this respect, one of the most
powerful forms is multiobjective optimization, since it provides a set of solutions and
presents a trade-off between two or more possibly conflicting objectives. For instance,
the trade-off can be used to explore the impact of lower capital investment on the
increase in carbon emissions. Optimization can facilitate a multidisciplinary design
process by addressing all building design aspects in a holistic approach. This will
enhance fully integrated Net ZEB designs where the building designers can act to
influence the direction of the optimization.

Despite the potential of building performance optimization, decision support, time,
knowledge, lack of tools, and uncertainty are the themes that need to be addressed for
enhanced market penetration of optimization in the AEC industry. The factors that
inhibit the uptake of BPO are not only related to the optimization techniques or the tools
themselves, but also to the simulation models inputs, causing significant restrain in the
AEC industry take-up. From the evidence available and the presented case studies, the
optimization process has generally been shown to be applicable to real design practice.
For policymakers, it can facilitate development of incentive measures and policies that
integrate many objectives, such as integration of renewables with energy efficiency
measures, as well as optimized operation that reduces and shifts peak electricity demand
while enhancing comfort in high-performance buildings.
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