
 

Abstract— Advanced diagnostics and prognostics tools are 

expected to play an important role in ensuring safe and long term 

operation in nuclear power plants. In this context, we use 

Gaussian Process Regression (GPR) to build a stochastic model 

of the equipment degradation evolution and apply it for 

prognostics.  

GPR is a probabilistic technique for non-linear non-

parametric regression that estimates the distribution of the 

future equipment degradation states by constraining a prior 

distribution to fit the available training data, based on Bayesian 

inference. Training data are taken from sequences of degradation 

measures collected from a set of similar historical equipments 

which have undergone a similar degradation process. Given new 

degradation measures from a currently degrading equipment 

(test trajectory), the distribution of the Remaining Useful Life 

(RUL) before failure is estimated by comparing with a failure 

criterion the distribution of the future degradation states 

predicted by GPR.  

Applications are shown on simulated data concerning the 

evolution of creep damage in ferritic steel exposed to high stress 

and on real data concerning the clogging of sea water filters 

placed upstream the heat exchangers of a BWR condenser. 

 
Index Terms— Remaining Useful Life, Prediction, Prognostics, 

Bayesian Inference, Gaussian Process Regression, Degradation, 

Ccreep, Ffilter Cclogging 

 

I. INTRODUCTION 

UCLEAR INDUSTRY is considering the development 

and use of advanced diagnostic and prognostic tools to 

enable longer term safe operation of nuclear structures, 

systems and components (SSCs) [1-7]. This interest is mainly 

originated by the following three reasons: 

 many nuclear SSCs are becoming old due to the extension 

of the life of the existing reactors beyond the initial 30 or 

40 years. This aging may cause degradation and even 
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failures if SSC maintenance and replacement is not 

properly planned [8]; 

 many utilities are considering performing power up-rates 

in their plants. This typically requires increased coolant 

flow which may cause faster degradation of the SSCs; 

 there is a strong economic interest towards having longer 

fuel cycles and decreased outage times. This may pose 

constraints on the frequency and extent of in-service 

inspections which may become not able to detect in a 

timely manner all SSC degradation modes. 

In this context, in the present paper, we consider the 

development of prognostic methods for estimating the 

remaining useful life of nuclear components, structures and 

systems. Data-driven and model-based methods can be used 

for predicting the Remaining Useful Life (RUL) of degrading 

equipment [9-10], i.e., the remaining time during which the 

equipment can continue performing its function in a safe and 

efficient way. This allows the implementation of predictive 

maintenance strategies which have the potential of increasing 

safety and lowering costs [11]. Model-based methods assume 

that a mathematical model of the degradation process is 

available. In practice, the detailed knowledge necessary for 

building the model is available only for few, well-studied 

degradation mechanisms, and in fact, most often, equipment 

degrade for the interaction among different degradation 

mechanisms, which can be very hard to model [12]. 

Furthermore, these models have to explicitly account for the 

uncertainty in degradation evolution, e.g. arising due to scatter 

in microstructural properties and to variable loadings and 

external conditions [13].  

On the other side, data-driven methods rely on the 

availability of observations collected during the degradation 

process of one or more similar pieces of equipment, from 

which the RUL prediction can be directly or indirectly 

derived. In the former case, Artificial Intelligence techniques, 

e.g., Artificial Neural Networks (ANNs) [14-15], similarity-

based regression [16-17], etc., are used to directly map the 

relation between the observation and the equipment RUL. 

However, when the observations collected are directly related 

to the equipment degradation state, regression is used to 

extrapolate the future degradation path and compare it to a 

failure criterion. This approach provides an informative 

estimation of the entire degradation path, which can be 

checked against expert intuition to verify its consistency. 
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Moreover, contrarily to direct RUL prediction, this approach 

can be applied even when no historical run- to- failure data are 

available.  

Recent research works [18-19] show the effective use of 

ANNs also for degradation-based prognostic systems. A limit 

of ANNs models is that, in general, they do not provide an 

explicit quantification of the uncertainty of the predicted 

states, as do methods like Relevance Vector Machine (RVM) 

[20] or Gaussian Process Regression (GPR) [21-22]. 

Uncertainty is caused by model uncertainty (e.g., due to the 

limited amount of data used to build it), uncertainty on the 

observations (e.g., due to sensor noise), and process 

uncertainty (e.g., due to uncertain future loads and operating 

conditions) [13]. The intrinsic ability of RVM and GPR to fit 

probability distribution functions (pdfs) to the degradation 

data is desirable for prognostics where uncertainty 

management is of paramount importance [23-24]. In practice, 

the RVM method is actually a special case of a Gaussian 

Process (GP) [22].  

The present paper proposes the use of GPR within a 

prognostic approach [25] that explicitly models the uncertainty 

in the future degradation states and provides the state 

prediction in the form of a Gaussian pdf. The hypothesis of 

Gaussianity is embraced to allow analytical calculations that 

make inference simpler. Although we have not always reasons 

to assume that a degradation process generates normally 

distributed degradation states, as long as there is no 

outstanding evidence to support the choice of a different state 

distribution, and GPR provides satisfactory predictions with 

reasonable uncertainty estimates, it might not be reasonable to 

make different assumptions that would only make the 

inference from data more complicate.  

GPR can be used to predict the evolution in time of the 

distribution of the degradation state or of its rate of growth, 

which can be modeled as a function of time or of degradation. 

In this work, we propose a strategy to implement three 

approaches: 1) modeling the degradation state as a function of 

time; 2) modeling the degradation rate as a function of time; 3) 

modeling the degradation rate as a function of the degradation 

state. In any case, the final output is the prediction of the 

distribution of the future degradation states. By comparing the 

distribution obtained at different time instants during the 

degradation evolution with the value of a fixed failure 

threshold, i.e., the maximum value of degradation beyond 

which the equipment cannot be operated, it is possible to 

calculate the distribution of the equipment RUL. 

The problem of inferring the degradation process of the test 

equipment from observations coming from pieces of 

equipment that are similar to it, but have followed degradation 

trajectories which are, in some extent, different, is faced by 

describing the degradation process as the composition of two 

elements: a general structure of the degradation trajectory, 

common to all pieces of equipment, and a variation around 

this structure which is different for each piece of equipment 

and thus uncorrelated between trajectories. 

Two case studies are considered to validate the method and 

compare the three approaches proposed, in terms of the 

accuracy and precision of the RUL prediction and the 

reliability of the uncertainty estimate provided. In the first 

case study, the method is tested on simulated data generated 

by a non-linear model of creep growth in ferritic steel. In the 

second case study, we show the results of the application of 

GPR to real data concerning the clogging of filters used to 

clean the sea water pumped through the secondary side of a 

BWR condenser to cool the steam in the primary side.  

The remaining of the paper is organized as follows: Section 

II describes the method for performing RUL predictions based 

on GPR and details the three approaches proposed for 

degradation modeling; Section III shows the results obtained 

by applying the GPR to the two case studies considered; 

finally, in Section IV we draw some conclusions and suggest 

potential future work. 

II. METHODOLOGY 

A. Gaussian Process Regression 

GPR is a powerful and flexible approach to performing 

inference over functions [22,26]. In a regression problem, 

mapping from an input x  to an output )(xf , GPR defines the 

prior for the output )(xf  in the form of a distribution over 

functions specified by a Gaussian Process. A GP is a 

collection of random variables, any finite number of which has 

a joint Gaussian distribution. A real GP )(xf  is completely 

specified by its mean function )(xm  and covariance function 

)',( xxk : 
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where x  represents a vector of input values and ),( xxK  

indicates the co-variance matrix containing the values of 

)',( xxk  evaluated for all possible pairs of inputs in x . 

This prior is taken to represent our prior beliefs over the 

kind of functions we expect to observe. Typically the prior 

mean and co-variance functions that we use will have some 

free parameters, called, usually, hyper-parameters. Although 

the choice of covariance function must be specified by the 

user, various methods have been proposed for determining the 

corresponding hyper-parameters from training data [22], e.g., 

the conjugate gradient optimizer that maximizes the marginal 

likelihood of the training set with respect to the hyper-

parameters.  

Given the prior information about the GP, the value of the 

hyper-parameters and a set of training data xyD ),( yx

Niii yx :1)},{(  , the posterior distribution over functions is 

derived by imposing a restriction on the prior distribution to 

contain only those functions that agree with the observed data 

[22]. In other words, we impose the output in correspondence 

of the test input vector tstx  to be drawn from the same GP as 

the training data xyD , and thus we have:  
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The presence of a white Gaussian noise i  with variance 

2
  on the observations iy  can be accounted for by adding 

the noise variance to the co-variance function: 
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where I  is the identity matrix. 

From eq. (2), the posterior distribution of the output Dtst |f  

in correspondence of the input vector tstx  can be derived [22]: 
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B. Prognostic model  

It is assumed that R  training trajectories are available from 

measurements collected during the process of degradation of 

R  pieces of equipment similar to the one of interest (test 

equipment). Each reference trajectory Rr :1  is made of a 

sequence r

nrz
:1

 of observations r
jz  directly related to the 

degradation state r
j  of the r -th equipment at time j , 

rnj :1 , where rn  is the last measurement time before 

failure. Equipment fails when its degradation exceeds the 

failure threshold value th ; let r
F  indicate the time at which 

the failure of the r -th piece of equipment occurs. A sequence 

of observations test
Jz :1  from 1  to the present time J  is 

available also for the test equipment. 

The goal of the GPR prognostic model is to predict the 

future degradation states of the equipment of interest and from 

them compute its RUL. In presence of uncertainties, e.g., due 

to the scatter in the microstructural and manufacturing 

characteristics, the loading and external conditions variability, 

etc., the damage state, at any time instant, is better represented 

by a random variable )(  rather than by a deterministic 

quantity [25]. As a consequence, also the equipment RUL at 

the present time J  should be represented by a random 

variable )( JRUL   [23]. 

In this work, we assume the distributions of the degradation 

states to be Gaussian with different mean )(  and variance 

)(2    at every time instant  , and use the GPR method to 

evaluate the conditional probability density function (pdf) 

),|)(( :1)(
test
Jzt ztp test D  of the future damage state )(test , 

p   given the training dataset rR
r
nz rz :1:1

}{ D , and the 

test trajectory test
Jz :1 . Three different approaches are considered 

to infer the conditional pdf ),|)(( :1)(
test
Jzt ztp test D  from data, 

based on GPR: 

1) We directly model the degradation state )(  as a 

function of time by defining the prior: 

 

 }),();(GP{~)( ττττ  Km  (6) 

 

where τ  is a vector of time instants. The hyper-

parameters of )(τm  and ),( ττK  are optimized using 

the set of training data Rrn
r
jjz rz :1;:1/ };{( D  derived 

from the training trajectories. Finally, predictions of the 

mean )(  and the variance )(2    of the pdf 

),|)(( :1)(
test
Jzt ztp test D  of future degradation states are 

obtained from eq. (5) by conditioning the GP in eq. (6) on 

the training data in z/D  and the data available from the 

part of test trajectory already observed: J
test
jj z :1};{( .  

2) We model the degradation rate d  as a function of time 

by defining the prior: 

 

 }),();(GP{~)( ττττ  dd Kmd  (7) 

 

The hyper-parameters of )(τdm  and ),( ττdK  are 

optimized using the set of training data dz/D

Rrnjjj
r
j

r
jj rzz :1;1:111 ))}/()(;{(     derived from 

the training trajectories. Prediction of the mean )'(d  

and the variance )'(2  d  of the degradation rate pdf are 

obtained from eq. (5) by conditioning the GP in eq. (7) on 

the training data in dz/D  and the data available from the 

part of test trajectory: 

1:111 ))}/()(;{(   Jjjj
test
j

test
jj zz  . By integrating the 

mean )'(d  and the variance )'(2  d  of the 

degradation rate from the current time J  up to time   it 

is possible to predict the mean )(  and the variance 

)(2    of the pdf of interest ),|)(( :1)(
test
Jzt ztp test D : 
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In practice, time can be discretized so that the integrals in 

eq. (8) become summations over finite increments 

)'')('( 1 jjjd    . 

3) We model the degradation rate d  as a function of the 

degradation state by defining the prior: 

 

 }),();(GP{~)( δδδδ  dd Kmd  (9) 

 

where δ  is a vector of degradation states. The hyper-

parameters of )(δdm  and ),( δδdK  are optimized using 

the set of training data dzz /D

Rrnjjj
r
j

r
j

r
j rzzz :1;1:111 ))}/()(;{(     derived from 

the training trajectories. Predictions of the mean )(d  

and the variance )(2  d  of the degradation rate pdf are 

obtained from eq. (5) for any value of degradation   in 

input by conditioning the GP in eq. (9) on the training 

data in dzz /D  and on the test data 

1:111 ))}/()(;{(   Jjjj
test
j

test
j

test
j zzz  . The mean )(  

and the variance )(2    of the pdf of interest 

),|)(( :1)(
test
Jzt ztp test D  are obtained as the average and 

the variance of the degradation states of a large number 
sampN  of degradation trajectories sampled from: 
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starting from the last observed degradation state test
Jz  at 

time J  and using the Monte Carlo sampling algorithm. 

Notice that, in this particular case where data are available 

both from historical (training) equipments and from the 

currently degrading (test) equipment, we aim to learn about 

the common structure underlying all degradation processes 

from the test trajectories available, but also to draw from the 

test trajectory the information about the specific variation 

around this structure that characterizes the equipment of 

interest.  

To achieve this, the covariance function is built as follows 

[28]: 
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where x  and y  are the input and output specific to each 

approach adopted and the reference index assigned to the test 

trajectory is 1 Rr . The first term of the kernel 

corresponds to the covariance associated with the common 

structure underlying all degradation trajectories; the second 

represents the covariance owing to the variation of each 

trajectory around the common structure of a degradation 

process. This term assumes a finite value only when r
jx  and 

'
'

r
jx  are taken from the same trajectory, since we assume the 

variation specific to each trajectory to be uncorrelated across 

trajectories. Finally, the third term accounts for the noise 

associated with the observation of a specific output y .  

The functions chosen to represent our prior on the mean 

and covariance of the GP are fundamental ingredients for the 

correct application of GPR. In the literature about GPR, the 

prior on the mean is often set to the constant value of zero, 

after appropriate normalization of the training data [22, 29]. 

However, this does not seem a convenient choice when the 

function to regress has an evident trend, as for degradation 

modeling. In these cases the prior mean function is chosen to 

accurately represent the trend (linear, power low, etc.) of the 

function to regress, which can be often guessed from a 

graphical representation of the training data. Notice, however, 

that imposing a particular functional form for )(xm  does not 

constrain the updated mean tstf  of the output variable to 

follow that same functional form.  

The efficacy of different combinations of mean and 

covariance functions in modeling a set of training data can be 

evaluated based on the marginal likelihood obtained by each 

of them [22]. 

Given the value of the failure threshold, assumed here to be 

known, and the conditional distribution of the degradation 

state ),|)(( :1)(
test
Jzt ztp test D , the RUL cumulative distribution 

function (cdf) ),|( :1)(
test
JzJRUL zrulP

J
D  is computed from 

),|)(( :1)(
test
Jz zp D  as the probability that the degradation 

)(  at time JJ rul  exceeds the failure threshold th  

[27]: 
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where   is the standard normal cdf.  

From the RUL cdf one can derive the prediction Jlur ˆ  of the 

equipment RUL as the mean value of the RUL distribution 

and the confidence interval )](),([)(
supinf  jj rulrulCI   

containing the true value of the test equipment RUL, hereafter 



referred to as Jrul , with probability  . 

III. NUMERICAL APPLICATION  

In this Section, the three approaches proposed for using 

GPR within a prognostics framework are verified on data 

simulated using a non-linear model of creep growth in ferritic 

steel (Section III.A), and on real data taken from a case study 

about the clogging of filters in a BWR condenser (Section 

III.B).  

The quality of the prediction depends from the choice of the 

mean and covariance functions. In this work, different choices 

for the mean and covariance functions have been compared 

based on their marginal likelihood. Notice that finding the 

optimal choice in absence of any knowledge about the actual 

process that governs the system can be a hard task. Since, to 

the best of our knowledge, a widely agreed procedure for the 

selection of GPR mean and covariance functions is not yet 

available in literature, we limited this choice to some 

reasonable combinations of covariance functions available 

from the literature [22] and picked out the one with the largest 

marginal likelihood, without guarantee that the choice is 

optimal and that the assumptions about the process are correct. 

The mean and covariance functions used in this work are 

listed in Appendix A. 

Given tstN  test trajectories 
q

J:1z , tstNq :1 , and trnN

different sets of training trajectories }:1,{
:1

Rrr
n

l
z r  zD , 

trnNl :1 , each prognostic approach is used to provide the 

prediction l
z

q
Jlur D|ˆ

)(  and l
z

q
JCI D|)()(  , in 

correspondence of the life fraction  , i.e., at time step 

q
F

q
J   )( . Three performance indicators are evaluated 

by comparing such prediction with the true RUL value 
q
Jrul )( :  

1) The square root of the Mean Square Error (RMSE), i.e., 

the average value over all test trajectories tstNq :1  and 

training sets trnNl :1  of the square error 

2
)()( )|ˆ( q

J
l
z

q
J rullur  D  made in predicting the true RUL 

of the test equipment. The RMSE measures the accuracy 

of the prediction and is desired to be as small as possible.  

2) The Coverage ( Cov ) of the prediction interval 

l
z

q
JCI D|)()(  , i.e., the percentage of times the condition 

l
z

q
J

q
J CIrul D|)()()(    is verified. This indicator 

measures the reliability of the confidence interval; we 

want the value of Cov to be as close as possible to  .  

3) The amplitude ( MA ) of the confidence interval 

l
z

q
JCI D|)()(   averaged over all test trajectories 

tstNq :1  and training sets trnNl :1 ; this indicator 

gives a measure of the precision of the RUL prediction; in 

order to have a high precision, we wish to keep the value 

of MA  as small as possible.  

A. Artificial dataset: creep growth in ferritic steel 

In this Section, GPR is applied to simulated degradation 

trajectories representing the accumulation of creep damage in 

ferritic steels, which are widely used for welded steam pipes in 

the construction of power plant components that operate under 

high temperatures and loads; in such conditions, the creep 

deformation and rupture are important factors in determining 

the equipment lifetimes.  

1) Creep growth models 

The evolution of creep damage in ferritic steel exposed to 

the load   is simulated using the uni-axial form of the non-

linear creep constitutive equations proposed within the 

framework of Continuum Damage Mechanics by Mustata & 

Hayhurst [30]: 

 

































































C

K

H

Hh
H

HB
A

c 4)1(
3

*
1

)1)(1(

)1(
sinh

 (13) 

 

where   is the creep strain, i.e., the fraction of elongation 

of the metallic piece in the longitudinal direction with respect 

to its original length,   and   are two damage state variables 

describing, respectively, the coarsening of the carbide 

precipitates, and the inter-granular creep constrained 

cavitation damage, H is the hardening state variable, used to 

represent the strain hardening effect attributed to primary 

creep, and A , B , *H , h , cK  and C  are material inherent 

characteristics. Each characteristic CKhHBA c ,,*,,,6:1   

varies with the temperature according to the Arrhenius law, 

i.e., )/exp(0 TQmmm  , 6:1m , where T  is the 

operating temperature and 0m  and mQ  are parameters 

whose values have to be determined experimentally. 

To generate different trajectories, the intrinsic variability of 

the creep growth process is simulated by sampling the values 

of the load   and temperature T  to which the steel is 

exposed at each time step from a normal distribution centered 

on their mean value, whereas the variability of the creep 

growth process between similar pieces of equipment is 

simulated by sampling the value of parameters 0m  and mQ , 

6:1m , at the beginning of each new simulated trajectory. 

We assume failure to happen when the limiting creep strain 

value of 0.02 is reached. Finally, to generate the sequence of 

observations r
njjj

r
n rr :1:1

})({


 z , collected one every 

100 days, a white Gaussian noise j  with standard deviation 

4102   is added to the simulated creep strain )( j  at 

the observation time j . The time interval between two 



observations is rather large; in practical applications, this can 

happen when the costs of an inspection are elevated. Here this 

choice was done to limit the number of training data, since 

computational costs of GPR scale typically as )( 3NO with the 

number N  of training data. Fig. 1 shows an example of 

simulated creep growth trajectory (top) and the corresponding 

sequence of observations r
nr:1

z  (bottom). 

 

 
For a better evaluation of the method, we have adopted two 

different sets of parameters (see Appendix B for their 

distribution) to simulate trajectories with smaller or larger 

variability. Fig. 2 compares 10 trajectories with low (top) and 

high (bottom) variability. 

 

 
2) Results 

In this Section we show, first, some results obtained by 

applying the three approaches proposed in Section II.B to a 

single creep growth trajectory; for this, a set of 10R  

training trajectories is used. In this first part, we consider only 

trajectories with low variability (Fig. 2, top). Then, we 

compare the performances obtained by the three approaches in 

correspondence of trajectories with low and high variability. 

In Fig. 3, the predicted future evolution of degradation 

obtained by the GPR in approach 1 is compared with the true 

evolution of the test trajectory at two prediction time instants, 

11   hour (top) and 2640012   hours (bottom). Notice that 

the prediction accuracy is lower, i.e., the confidence interval is 

larger, for a prediction done at time 11   since no data are 

available from the test trajectory, and the GPR can only 

account for the common structure of the degradation process 

drawn from the training trajectories; on the other side, at time 

2640012   the precision increases, since GPR is able to 

learn its peculiar behavior from the data collected during the 

test trajectory thanks to the second term )',(),( '
2 ' rrxxk rr

jj   of 

the covariance function in eq. (11). See Section III.A.3 for a 

further discussion of this aspect.  

 

 
In approaches 2 and 3, GPR is used to predict the 

degradation rate d  as a function of the time and the 

degradation state  , respectively. In Figs. 4 and 5, the 

predicted degradation rate (top) and the corresponding 

prediction of the future degradation evolution (bottom) are 

shown at the two time instants of Fig. 3 for approach 2; in 

Figs. 6 and 7 the same results are shown for approach 3. The 

predicted value of the degradation rate (continuous line) is 

compared with its true value (asterisks) observed for the test 

trajectory.  

 

 
Fig. 3.  GPR prediction of future degradation states obtained at two time 

instants 11   hours (upper) and 2640012   hours (bottom) using 

approach 1. 

 
Fig. 2.  Examples of creep growth trajectories with low (top) and high 

(bottom) variability. 
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Fig. 1.  Example of simulated creep growth trajectory (top) with the 

corresponding sequence of observations (bottom). 
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Fig. 7  GPR prediction of the degradation rate (top) and of the future 

degradation states (bottom) obtained at time instant 2640012   hours using 

approach 3. 

 
Fig. 6  GPR prediction of the degradation rate (top) and of the future 

degradation states (bottom) obtained at time instant 11   hours using 

approach 3. 
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Fig. 5  GPR prediction of the degradation rate (top) and of the future 

degradation states (bottom) obtained at time instant 2640012   hours  

using approach 2. 
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Fig. 4.  GPR prediction of the degradation rate (top) and of the future 

degradation states (bottom) obtained at time instant 11   hours using 

approach 2. 
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Results show that these two approaches are less effective in 

learning the peculiar behavior of the test trajectory as more 

data are collected during its evolution. This could be due to 

the fact that the observed degradation rate is affected by a 

larger noise than the degradation state, since the relative effect 

of measurement and process noises is more evident on the 

small values of the degradation rates than on those, larger, of 

the degradation states. For this reason, after a sufficient 

amount of observations is collected, we expect approach 1 to 

provide narrower confidence intervals )(CI  than approaches 

2 and 3.  

Fig. 8 compares the RUL prediction obtained by the three 

approaches at different time instants, with the true RUL value 

of the test trajectory considered. All three approaches can 

predict the equipment RUL fairly well, although the prediction 

of approach 3 appears less accurate in the first part of the 

trajectory. Approach 2 supplies narrower confidence intervals 

for the RUL prediction than the other two approaches at the 

beginning of the trajectory; however, the reliability of such 

interval has to be verified by checking that their coverage is 

close enough to the target value of 9.0 . 

 

 
For a more robust evaluation of the performance of the 

three approaches proposed, the model in eq. (13) is used to 

generate 100tstN  test trajectories with low variability (Fig. 

2, top) and 10trnN  different sets of 10R  similar training 

trajectories. For each training dataset simulated, the three 

approaches are applied to each test trajectory at four different 

life fractions 3.01  , 6.02  , 8.03   and 95.04  , 

and the three performance indicators, 9.0Cov , RMSE, and 

9.0MA  are computed. The same procedure is repeated 

simulating trajectories with high variability (Fig. 2, bottom). 

Figs. 9 and 10 show the values of the three performance 

indicators in case of low and high variability of the 

trajectories, respectively. The average value mRUL  of the 

RUL of the test trajectories at each life fraction   is also 

shown for comparison with the values of the indicators RMSE 

and 9.0MA . A horizontal line indicates the target value 

9.0  for the coverage (first from the top).  

 

 

 

 
Fig. 9  Comparison of the performance of the three approaches for 

trajectories with low variability. The horizontal line in the Cov0.9 figure (first 

from the top) indicates the target coverage value 9.0 . 

 
Fig. 8  Comparison at different time instants of the RUL prediction with the 

true RUL value for the three GPR-based approaches. 
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In case of creep growth trajectories with low variability 

(Fig. 9), the error RMSE and the amplitude of the confidence 

interval 9.0MA  are always much smaller than the mean RUL, 

being around 10% and 30% of mRUL , respectively. As 

expected, the value of both indicators decreases with the life 

fraction  , since more data are available and failure is closer, 

and thus the effects of the process uncertainty on the accuracy 

and precision of the prediction are reduced. The increase in the 

accuracy and precision with the life fraction is more evident 

for approach 1. This approach is able to provide always the 

most accurate predictions, and, towards the end-of-life of the 

equipment, even the narrowest confidence interval compared 

to the other two approaches. Moreover, it is also the only 

approach obtaining a coverage always close to 9.0 . 

Approach 2 provides narrower confidence intervals at the 

beginning of the equipment life, but fails attaining the 

coverage value of 0.9, so that we cannot rely on such narrow 

intervals. Finally, approach 3 obtains good coverage except 

for 95.04  , i.e., very close to the equipment failure, but is 

less accurate (larger RMSE) than approach 1. 

Similar results are obtained when trajectories with large 

variability are considered (Fig. 10). Although in this case no 

approach is able to assure a coverage of 0.9, approach 1 goes 

very close to this target, whereas approach 2 reaches such 

coverage only when the equipment is close to failure. The 

confidence interval supplied by approach 1 is rather large in 

the first part of the trajectory, with a value that, at 3.0 , is 

almost twice the average RUL value, mRUL . However, due 

to the large variability of the trajectories, such a large 

confidence interval may be necessary to correctly represent 

the intrinsic uncertainty of the future creep evolution. Finally, 

although in this case we cannot state that approach 1 is the 

most accurate and precise (at 3.01  , 6.02   it is 

outperformed in accuracy by approach 3, and by approach 2 at 

95.04  ), the RMSE is always comparable with that 

obtained by the other two approaches and does not exceed 

30% of the average RUL, mRUL . 

In this case study, all three approaches have shown the 

capability of tackling the prognostic problem and supplying 

accurate RUL prediction with associated measure of 

uncertainty. Approach 1 has outperformed the other two in 

accuracy. However, the fact that the coverage is often lower 

than its target value shows that the prediction uncertainty is 

not correctly quantified. Further research is necessary to 

identify how to correctly account for all sources of uncertainty 

affecting the RUL prediction; we suggest, in particular, that 

model uncertainty could play a significant role, especially in 

case of high variable trajectories. In this case, resorting to an 

ensemble of GPR models [29], could allow achieving higher 

reliability and improved prediction performance.  

Notice finally that, as already mentioned, the choice of the 

covariance also impacts the performance of the method; the 

development of a procedure for the selection of GPR 

covariance functions is a fundamental requirement for the 

successful exploitation of GPR in prognostics. 

3) Analysis of the covariance function 

In this Section, we study the effects of the two terms 

)',( '
'1

r
j

r
j xxk  and )',()',( '

'2 rrxxk r
j

r
j   of the covariance 

function in eq. (11). For this, approach 1 has been applied 

using the covariance function in eq. (11) without the first term 

1k , first, and then without the second term 2k . The 

predictions about the future degradation states provided by 

approach 1 without the first term 1k  or without the second 

term 2k  of the covariance function are shown in Figs. 11 and 

12, respectively, at time instant 11   hours (upper) and 

2640012   hours (bottom). 

 

 

 
Fig. 10  Comparison of the performance of the three approaches for 

trajectories with high variability. The horizontal line in the Cov0.9 figure (first 

from the top) indicates the target coverage value 9.0 . 
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These results show that if the first term 1k  of eq. (11), 

which refers to the common structure underlying all creep 

growth trajectories, is not considered (Fig. 11), the GPR 

model predictions at time 11   hours are very uncertain (Fig. 

11, top). This is due to the fact that no information is available 

about the test degradation trajectory, and at the same time the 

information coming from the training trajectory is not used for 

conditioning the prior GP distribution, but only for optimizing 

the hyper-parameters of the covariance function k . As more 

data about the test trajectory become available the prediction 

improves (Fig. 11, bottom), but remains, however, less 

accurate and precise than that in Fig. 3 (bottom), where the 

complete covariance function is used. 

On the other hand, if we do not consider the second term 

2k  of eq. (11) (Fig. 12), which refers to the variation of each 

trajectory around the common structure of the creep growth 

process, the GPR model predictions at time 11   hours are 

less uncertain (Fig. 12, upper), but no improvement can be 

observed as more data become available (Fig. 12, bottom). In 

other words, the model is not able to learn the peculiar 

behavior of the test trajectory, since all observations, no matter 

which equipment they refer to, are given the same relevance 

when used for conditioning the prior GP distribution. 

It is clear that the two terms 1k  and 2k  are complementary, 

and for this reason their combination assures better prediction 

performance along the entire duration of the degradation 

trajectory, as shown in Fig. 3.  

B. Real dataset: Clogging of BWR condenser filters 

In this Section, we consider the problem of predicting the 

RUL of filters used to clean the sea water entering the 

condenser of the BWR reactor of a Swedish nuclear power 

plant. During operations, filters undergo clogging and, once 

clogged, can cumulate particles, seaweeds, and mussels from 

the cooling water in the heat exchanger. For this reason, 

prompt and effective cleaning of the filter is desirable; 

predictive maintenance can help achieving this result, keeping 

maintenance costs reasonably low.  

An increasing number of articles can be found in the 

literature concerning the study of filter clogging by solid 

aerosols [31] and liquid aerosols [32]. Common for these 

articles is that the results are achieved in a controlled 

environment: in the experimental setup all degradation 

quantities, indicators of degradation, and stressors are 

automatically measured and recorded. This is not the case in 

this industrial case study where, for a filter q  at time j , we 

only have available the measurements of the pressure drop 

q
jP , and the flow across the filter 

q
jM . However, it has been 

well established that the clogging of a filter medium leads to 

an increase in pressure drop over the filter as long as the 

filtration velocity, and thus the flow, is kept constant. It is also 

known that the pressure drop is proportional to the square of 

the filtration velocity, and thus we take as an indicator of the 

state of clogging of filter q  at time j the ratio [33]: 

 
Fig. 12  GPR prediction of future degradation states obtained at two time 

instants 11   hours (upper) and 2640012   hours (bottom) using 

approach 1 without the second term 2k  of the covariance function in eq. 

(11). 

 
Fig. 11  GPR prediction of future degradation states obtained at two time 

instants 11   hours (upper) and 2640012   hours (bottom) using 

approach 1 without the first term 1k  of the covariance function in eq. (11). 
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  (13) 

Fig. 13 shows the sequences of observations 
q

nq:1
z , 

tstNq :1  collected on field during the clogging process of 

8tstN  filters. We can see from this Figure that the clogging 

process is affected by large uncertainties, which can be 

ascribed to the very variable conditions of the sea water; in 

this context, the challenge is to provide sufficiently narrow 

confidence intervals for the values of the filters RUL.  

Due to the absence of physical knowledge about the failure 

threshold, its value has been arbitrarily set to 175th  

bar/(m3/s)2.  

 

 
The three prognostic approaches previously presented are in 

turn applied at each time instant of each trajectory 8:1q , 

using the remaining 7R  trajectories for training. Figs. 14, 

15 and 16 show the RUL prediction obtained by approach 1, 2 

and 3, respectively.  

Due to the large uncertainty of the process, the accuracy of 

the RUL prediction is always rather low and the confidence 

intervals are very large in all three approaches. At a first 

glance, the outcomes of approaches 1 and 2 appear quite 

similar, except for trajectories 5q  and 8q  where 

approach 1 provides more accurate RUL predictions and 

narrower confidence intervals. In Fig. 16 the RUL predictions 

provided by Approach 3 appear, instead, more accurate, but 

the confidence intervals are much larger and noisy than for the 

other two approaches. 

To further evaluate the three approaches, the performance 

indicators RMSE and 9.0MA  are also computed in 

correspondence of the four life fractions 3.01  , 6.02  , 

8.03   and 95.04  ; since only 8 trajectories are 

available, to correctly verify the reliability of the method, the 

coverage indicator 9.0Cov  is evaluated over all the predictions 

performed at each time instant j . Fig. 17 shows these results 

and compares the coverage indicator Cov0.9 with the target 

value 9.0 , and the RMSE and 9.0MA  indicators with the 

average value mRUL of the filters RUL at each life fraction 

 .  

 

 
Results show that the coverage is very close to the target 

value 9.0  for all three approaches. The prediction error 

(RMSE), however, is always quite large, ranging from being 

about half of the average RUL value mRUL at the beginning 

of the clogging process ( 3.01  ) up to almost three times 

 
Fig. 14  Comparison of the RUL prediction supplied by approaches 1 (dots) 

and of its confidence bounds (dotted line) with the true RUL value. 

 

Fig. 13  available clogging trajectories 
q

nq:1
z , q=1:8. 
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(approach 1) this value at 95.04  . Approach 3 achieves 

always the highest accuracy, contrarily to approach 1 that 

obtains always the largest RMSE. On the other hand, approach 

1 assures the narrowest confidence intervals for the value of 

the filters RUL, although their amplitude is still many times 

the average RUL value mRUL . 

In the context of filter clogging, due to the large 

uncertainties involved, we believe that the capability of 

providing narrower confidence intervals (but still, reliable) of 

approach 1 should be preferred to the higher prediction 

accuracy of approaches 2 and 3. 

 

 
 

 

IV. CONCLUSIONS 

In this work, we have considered the problem of directly 

predicting the RUL of degrading equipment and providing a 

measure of confidence in the prediction, based on a set of 

training degradation trajectories observed in similar 

equipments. We have resorted to Gaussian Process Regression 

to model the evolution of the equipment degradation. GPR 

treats degradation as a random variable, rather than as a 

deterministic quantity, and thus is able to provide predictions 

about the distribution of future degradation states. By 

comparing these predictions with a failure threshold, it has 

been possible to obtain the RUL prediction in the form of a 

pdf, from which the derivation of confidence intervals for the 

value of the equipment RUL is straightforward. Moreover, an 

effective structure of the coverage function has been proposed 

to allow accounting both for the common structure underlying 

 
Fig. 16  Comparison of the RUL prediction supplied by approaches 3 (dots) 

and of its confidence bounds (dotted line) with the true RUL value. 

 

 
Fig. 15  Comparison of the RUL prediction supplied by approaches 2 (dots) 

and of its confidence bounds (dotted line) with the true RUL value. 
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all degradation trajectories and the variations specific to each 

trajectory.  

 

 
Three different approaches to apply GPR to degradation 

modeling have been proposed and their performance 

compared in two case studies concerning the simulated 

accumulation of creep damage in ferritic steel and the real 

clogging of filters used to clean the sea water entering a BWR 

condenser, respectively. In both cases, the first approach 

proposed, which models the degradation state as a function of 

time, slightly outperforms the other two, which model the 

degradation rate as a function of time and as a function of the 

degradation state. However, also approaches 2 and 3 have 

shown the potentiality of providing accurate predictions and 

could prove to be more suited than approach 1 for treating 

other prognostic problems: for example, approach 3 could 

provide better results if the degradation processes would show 

a smaller noise and/or if the relation between degradation rate 

and degradation state were easier to model than the relation 

between degradation state and time.  

In the application of GPR to prognostic problems 

characterized by high variability of the degradation 

trajectories, we could not always obtain the desired coverage 

of the predicted confidence interval. We interpreted this as an 

indication that some sources of uncertainty, e.g., the model 

uncertainty, have not been correctly accounted for. We 

suggest that resorting to the ensemble techniques [27,29], has 

the potential of improving these results.  

The results obtained could also be affected by the choice of 

the covariance functions. Here, this choice has been done by a 

trial and error procedure, with the goal of maximizing the 

marginal likelihood of the GP with respect to the training data. 

The development of a procedure for the selection of GPR 

covariance functions is a fundamental requirement for the 

successful exploitation of GPR in prognostics. 

A further important aspect of GPR is its computational cost, 

which scales typically as )( 3NO  with the number of training 

examples. In our application this was not a problem since we 

had, or chose, small training datasets, but it can make the 

application of the method prohibitive even on modern 

workstations for large problems (e.g. 410N ). However, 

various methods have been suggested to reduce the problem 

by approximating the computations [22,29], and should be 

considered in future work to make GPR-based prognostics 

more efficient, especially if used in combination with Monte 

Carlo sampling (approach 3). 

APPENDIX A: MEAN AND COVARIANCE FUNCTIONS USED IN THE 

CASE STUDIES 

In the case studies considered in this work, combinations of 

the covariance functions listed in Table 1A have been used. 

Table 2A and 3A show the mean functions and the terms 

)',(1 xxk  and )',(2 xxk  of the covariance function in eq. (11) 

used in the case studies of Section III.A and Section III.B, 

respectively.  

APPENDIX B: DISTRIBUTION OF THE PARAMETERS IN THE CREEP 

GROWTH MODEL OF SECTION III.A.1 

All parameters 0m  and mQ , 6:1m  which defines the 

quantities CKhHBA c ,,*,,,6:1   of the creep growth model 

in eq. (13), the temperature T  and the load   are assumed to 

have a Gaussian distribution with standard deviation equal to 

the 0.2% (low variability) or 0.5% (high variability) of their 

mean values given in Table 1B. 

 

 
 

Fig. 17  Comparison of the performance of the three approaches on the Ntst=8 

filter clogging trajectories. The horizontal line in the Cov0.9 figure (top, left) 

indicates the target coverage value 9.0 . 
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