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ABSTRACT 

In this work, a sensitivity analysis framework is presented to identify the relevant input variables of 

a severe accident code, based on an incremental Bayesian ensemble updating method. The proposed 

methodology entails: i) the propagation of the uncertainty in the input variables through the severe 

accident code; ii) the collection of bootstrap replicates of the input and output of limited number of 

simulations for building a set of Finite Mixture Models (FMMs) for approximating the probability 

density function (pdf) of the severe accident code output of the replicates; iii) for each FMM, the 

calculation of an ensemble of sensitivity measures (i.e., input saliency, Hellinger distance and 

Kullback–Leibler divergence) and the updating when a new piece of evidence arrives, by a Bayesian 

scheme, based on the Bradley-Terry model for ranking the most relevant input model variables. An 

application is given with respect to a limited number of simulations of a MELCOR severe accident 

model describing the fission products release in the LP-FP-2 experiment of the Loss Of Fluid Test 

(LOFT) facility, which is a scaled-down facility of a pressurized water reactor (PWR). 
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1. INTRODUCTION 

 

Simulation codes used for thermal hydraulic (TH) or severe accident calculations are very complex 

and, therefore, computationally burdensome. For this reason, one attempts to perform sensitivity 

analysis with minimal computational burden, for an effective dimensionality reduction of input 

variables, which can speed up calculations without diminishing the code capability of representing 

the real system response. Sensitivity analysis can, indeed, inform on the input variables most affecting 

the simulation results of the system results [Saltelli, 2002; Pourgol-Mohammad, 2009; Di Maio et al., 

2014]. However, most sensitivity analysis methods can turn to be themselves computationally 

expensive [Secchi et al., 2008; Carlos et al., 2013; Di Maio et al., 2014; Pengfei et al., 2014].  

In this work, the focus is on the implementation of a sensitivity analysis method to perform input 

variables ranking with an affordable computational effort. Different solutions have been proposed in 

literature. One could make theoretical efforts for developing insightful simple novel sensitivity 

measures [Liu et al., 2010; Plischke et al., 2013] or resort to traditional sensitivity measures (such as 

Variance Decomposition method [Helton, 1993; MacKay, 1995; Borgonovo, 2007; Cadini et al., 

2007], Sobol Indices [Sobol et al., 1995; Saltelli et al., 1999]) in combination with surrogate models 

like Artificial Neural Networks (ANNs) [Cadini et al., 2007] and Response Surface Methods (RSMs) 

[Hoseyni et al., 2014], where the idea is to use the surrogate models as substitutes of the complex 

simulation codes, in the quantification of the contribution of each parameter to the model output.  

Alternatively, a relatively novel methodology for global sensitivity analysis is proposed in [Carlos et 

al., 2013; Di Maio et al., 2015] that does not resort to any surrogate model. The sensitivity results are 

drawn directly by analyzing Finite Mixture Models (FMMs) built on the results of an uncertainty 

propagation of the input variables uncertainties onto the simulation code. Ensemble of sensitivity 

measures can be used [Di Maio et al., 2014], where a set of alternative input variable rankings are 

aggregated to overcome possible misjudgments of the single sensitivity measure in case of a limited 

number of code runs. The aggregation methods commonly used are the “majority voting” and “sum” 

[Kukkonen et al., 2007], where the former consists in assigning the ranking position to each input 

variable which has been voted by the majority of the calculated sensitivity measures, whereas the 

latter aggregates by taking the sum of the ranking positions for each input variable provided by the 

individual sensitivity measures and, then, sorts them with respect to their scores. 

The limitations of these two traditional aggregation strategies are that “majority voting” fails in the 

case of no agreement among the ranking orders provided by the different sensitivity measures, 

whereas the “sum” strategy fails when the evidence of the superior capability of one (or more) 

sensitivity measure(s) cannot be accommodated over the remaining ones, within its rigorous 



assignment of equal weights (equal preferences) to the outcomes of the sensitivity measures 

considered.  

In this work, a novel sequential Bayesian approach is embedded into the framework of ensemble-

based sensitivity analysis proposed in [Di Maio et al., 2014] for the aggregation of sensitivity 

measures, so as to overcome the above-mentioned deficiencies. The proposed sensitivity analysis 

approach is applied to the LP-FP-2 severe accident following a Loss Of Coolant Accident (LOCA) 

of the Loss of Fluid Test (LOFT) facility, which is a scaled-down facility of a Pressurized Water 

Reactor (PWR). The most relevant input variables affecting the output of the MELCOR severe 

accident model are identified.  

The novel sequential approach resorts to the FMMs built based on a limited number of code 

simulations for approximating the probability density function (pdf) of the severe accident model 

output variables (i.e., the fission products releases during the LOCA) and uses three alternative 

sensitivity measures, input saliency [Law et al., 2004], Hellinger distance [Gibbs et al., 2002; 

Diaconis et al., 1982] and Kullback–Leibler divergence [Gibbs et al., 2002; Diaconis et al., 1982], to 

identify the input variables bearing the most pronounced effects on the output variable, and make 

their aggregated ranking.  

The novelty of the Bayesian aggregation stems from the capability of providing weights to the 

sensitivity measures and aggregating them according to the degree of belief that one could have on 

the calculated measures. In other words, the evidence that one sensitivity measure overcomes the 

others (i.e., the larger degree of belief/weight on one sensitivity measure over the others) is, in 

principle, obtained by performing a set of sequential experiments with the same Design Of 

Experiments (DOEs). When the sequential experiments cannot be performed, one could resort to 

bootstrapped samples of the original outcomes of the experiments to build the FMMs replicates. For 

each new FMM, the values of sensitivity measures are calculated and treated as the new data (under 

the same DOE) within a Bayesian updating scheme of the original sensitivity values. A Bradley-Terry 

model is devised for Bayesian updating [Weng et al., 2011] of the sensitivity measures of the provided 

input variable ranking orders, that is a full-pair comparison scheme for on-line ranking of multiple 

players (e.g., input variables) in successive matches (i.e., experiments). 

 

The paper is organized as follows. Section 2 discusses the principles of the ensemble-based sensitivity 

analysis along with the description of FMMs and the three sensitivity measures used. In Section 3, a 

definition is given for the Bayesian aggregation approach, the bootstrap technique and the updating 

rules. Section 4 presents the case of study. Section 5 analyses the results of the implementation of the 

proposed Bayesian ensemble strategy on the case of study. Conclusions are made in Section 6. 



2. Ensemble-based sensitivity analysis  

In this Section, a brief summary is provided of the ensemble-based approach for sensitivity analysis 

presented in [Di Maio et al., 2014]. As shown in Fig. 1, the idea is to rely on a limited number N of 

code simulations to build a FMM that reproduces the multimodal pdf of the output variable (Section 

2.1). In order to identify the input variables with most pronounced effects on the severe accident 

model output variable, three alternative sensitivity measures are computed (i.e., input saliency [Law 

et al., 2004], Hellinger distance [Gibbs et al., 2002; Diaconis et al., 1982] and Kullback–Leibler 

divergence [Gibbs et al., 2002; Diaconis et al., 1982]) (Section 2.2). The reliability of the sensitivity 

measures is quantified by the sequential Bayesian scheme that aggregates the rankings according to 

the degree of belief that one could have on the calculated measures (Section 2.3). 

 

 
 

Fig.1 Flowchart of ensemble-based methodology 

 

2.1 FMM model 

Let y represent the output of a complex code model m, viz: 

 



y =m(x1; x2; . . . ; xl; . . . ; xD)       l= 1, . . . ,D (1) 

 

where xl is the realization of the l-th input variable of the model, whose inputs are distributed with 

pdf ( )
l

f x . The random output variable y follows a finite mixture density f(y) with K models if [Carlos 

et al., 2013]: 
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where ( | )
k k

f y   are K different probability density functions, 
k

  is the set of parameters of the k-th 

model of the mixture and 
k

 are the mixing probabilities that satisfy: 
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The Expectation Maximization (EM) algorithm [Mc Lachlan et al., 2000] is used to fit f(y) to the N 

available data y = (y1, . . ., yN), i = 1, . . ., N and for the identification of parameters θ and π [Di Maio 

et al., 2014]. Once the parameters θ and π of the mixture models are known, the best approximation 

of the pdf of the output of the model is completely characterized with small number of code 

simulations. 

 

2.2  Sensitivity Measures 

 

2.2.1 Input saliency 

In the case of independence of input variables, the FMM of Eq. (2) can be rewritten as a function of 

the D input variables of the model: 
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where m is the severe accident model function and ( | )
l kl

f x   is the pdf of the l-th input x that 

determines the output y to belong to the k-th cluster. The l-th input does not affect the output if its 

distribution is independent from the cluster, i.e., it follows its common density ( | )
l kl

q x   among all 

the clusters [Pudil et al., 1995; Vaithyanathan et al., 1999]. The decomposition of the term ( | )
l kl

f x   

in Eq. (4) with weights ρl into a distribution accounting for the contribution of the l-th input in the k-

th cluster ( | )
l kl

f x   and with weight “1- ρl “ in the common distribution ( | )
l kl

q x  , yields to: 
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The saliency ρl is the importance of the l-th input in affecting the output y. In fact, if ρl is large, it 

means that the input variable distribution varies significantly from one cluster to another of the 

“natural” clusters corresponding to each model ( | )
k k

f y   and, thus, the input is important in 

determining the variability of the output. On the other hand, if ρl is small, the inputs follow the 

common distribution in any cluster and, thus, the input is not relevant in shaping the distribution of 

the output [Di Maio et al., 2014].  

The estimation of the input variable importance ρl is a model parameter identification problem that 

does not admit any closed form analytical solution [Figueiredo et al., 2002]; thus, it can be tackled 

by the Expectation Maximization (EM) algorithm as proposed in [McLachlan et al., 2000; Di Maio 

et al., 2014]. 

 

2.2.2 Hellinger distance 

The Hellinger distance measures the difference between the pdf of the l-th input contributing to shape 

the k-th cluster ( | )
l kl

f x   and its common distribution ( | )
l kl

q x   [Gibbs et al., 2002; Diaconis et al., 

1982] by: 
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satisfying the inequality 0≤  ( | ), ( | )
lk l kl l l

H f x q x  ≤ 1. 

The importance of the l-th input variable in affecting the output y is computed as: 
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The l-th input variable is important if HLl is large (in relative terms). 

 

2.2.3 Kullback-Leibler divergence  

 

The Kullback–Leibler divergence measures the different information carried by the pdf of the l-th 

input in the k-th cluster ( | )
l kl

f x   and its common distribution ( | )
l kl

q x  [Gibbs et al., 2002; Diaconis 

et al., 1982]: 
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with values in [0, ∞]. 

The importance of the l-th input variable in affecting the output y is quantified as: 
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The l-th input variable is important if KLl is large (in relative terms). 

2.3  Aggregation  



The idea of the ensemble is particularly useful for sensitivity analysis when the number N of code 

simulations is deliberately kept low to control computational cost. As a consequence, due to the 

limited quantity of data, individual sensitivity methods would mislead the individual rankings 

because, as shown in Section 2.2, input saliency, Hellinger distance and Kullback-Leibler divergence 

would quantify different aspects of the input variables importance. On the other hand, the ensemble 

approach is expected to generate reliable rankings by agreement among the rankings produced by the 

individual methods without requiring any additional simulation. Thus, the advantage of the ensemble 

approach is twofold: it can overcome possible misjudgments of the individual methods when 

alternative sensitivity measures disagree, and, furthermore, it is possible to gain more confidence on 

the ranking when they agree.  

The central issue is to decide how to aggregate the sensitivity ranking outcomes provided by the 

different methods in the ensemble [Baraldi et al., 2011; Di Maio et al., 2012].  

In this paper, we propose a novel Bayesian approach for the aggregation of sensitivity measures 

results. Classically, in the Bayesian process, for a given prior distribution, one can update the state of 

knowledge once a new piece of data or evidence becomes available. In the proposed framework, the 

prior is the value of the sensitivity measures obtained for each parameter from the original FMM; the 

new evidence (for updating the state of knowledge about the three sensitivity measures) consists in 

the values of the sensitivity measures derived from the bootstrapping procedure (to mimic the 

repetitions of experiments under the same DOE). 

The ranking results obtained by using the proposed Bayesian approach will be compared with the 

rankings obtained by traditional ensemble methods such as “majority voting” and “sum” [Kukkonen 

et al., 2007], where the “majority voting” method fails in the case of no agreement among any of the 

ranking orders provided by the different sensitivity measures, whereas the “sum” strategy can be 

proven to be ineffective when the evidence of the superior capability of one (or more) sensitivity 

measure(s) over the remaining ones cannot be accommodated within its rigorous assignment of equal 

weights to the outcomes of the involved sensitivity measures.  

The benefit of the proposed Bayesian aggregation is to provide weights to the sensitivity measures 

and aggregate them according to the degree of belief that one could have on the calculated measures. 

The rationale behind the evidence that one sensitivity measure has larger degree of belief than the 

others can be obtained (in principle) by performing a set of sequential experiments with the same 

DOEs; otherwise, when the sequential experiments cannot be performed, one could resort to 

bootstrapped samples of the original outcomes of the experiments to build the FMMs replicates. In 

other words, a weight (performance) is assigned to each sensitivity measure in order to i) reward the 

sensitivity measure with high-ranking stability (reproducibility) during the updating process and ii) 



penalize the measures with fluctuating orders throughout the successive ranking that treats the 

successively accumulated evidences (i.e., the repeated experiments under the same 

DOE/bootstrapped repetitions).  

 

3. The Bayesian aggregation approach  

The proposed approach entails: i) the generation of B bootstrapped samples of the original N code 

outputs dataset to build B new FMMs replicates (Section 3.1); ii) the evaluation of the three sensitivity 

measures for each new FMM, that is, thus, treated as a new piece of evidence for the Bayesian 

updating of the original sensitivity values (Section 3.2) by the Bradley-Terry model [Hunter, 2004; 

Weng et al., 2011]. Finally, the aggregation of the sensitivity measures is obtained (Section 3.3).  

 

3.1  The Bootstrap  

The bootstrap is a computer-based method for assessing the accuracy of statistical estimates with very 

little assumptions or analysis [Efron et al., 1993]. It is used in different frameworks, e.g., in an order 

statics framework for computing the TH code uncertainties in order to estimate the safety margins 

using limited samples of Thermal-Hydraulic (TH) code execution [Pourgol-Mohammad et al., 2007; 

Zio et al., 2008], or in a framework to propagate uncertainties in TH code calculations [Probst et al., 

2006]. The main benefit of bootstrapping approach is to avoid additional computational burden and 

rely on the available data from the results of uncertainty analysis already performed. In general, 100–

200 bootstrap replications are enough to obtain a good estimate [Zio et al., 2008]. 

The basic idea is to generate a number B of bootstrap samples drawn at random with replacement 

from the original training set of N input/output patterns. The generic bootstrapped sample b-th is 

constituted by the same number N of input/output, although, due to sampling with replacement, some 

of the input/output will appear more than once whereas some will not appear at all [Efron et al, 1993].  

In the proposed approach, the bootstrap technique is employed for generating B times the N replicates 

from the original dataset of the code as shown in Fig. 1. In other words, each bootstrap process takes 

samples of the original output dataset and generates a new dataset. The FMMs are built on these new 

data and used for the calculation of sensitivity measures. Thus, new data/evidences are available for 

use in the Bayesian updating process.  

 

3.2  Bayesian updating of the sensitivity measures  



A Bayesian updating process is implemented to derive simple analytic rules for updating the ranking 

of the code input variables based on the outcomes of the sequential experiments [Weng et al., 2011], 

based on the Bradley-Terry model (typically used for ranking competitive games) [Hunter, 2004]. 

The proposed process for updating the sensitivity measures of the input variables (that can be seen as 

players) uses data provided by the bootstrapped FMMs replicates (that can be seen as consecutive 

games). With this premises, it can be said that the l-th player (input variable) beats the q-th player 

(input variable) if the first one has lower rank position (higher strength) than the latter. The resulting 

sensitivity measures represent the games results and, thus, an input variable is more relevant if its 

sensitivity measure value is higher. 

Given a prior distribution of a random variable, Bayesian process allows updating its knowledge 

when new data or evidence becomes available. In our case, the prior knowledge is the value of the 

sensitivity measures obtained for each input variable from the original FMM, whereas the new 

information used for updating the state of knowledge about the three above mentioned sensitivity 

measures are the values of the sensitivity measures derived from the B replicates of the original N 

simulations. 

 

Let 
l

  be the strength, i.e. the sensitivity measure value of the l-th input variable whose value is to 

be estimated. The Bradley-Terry Bayesian ranking method starts by assuming that 
l

  has a prior 

distribution 2( , )
l l

N   , with 
l

  and 2

l
  known [Weng et al., 2011]. Upon a game (bootstrap 

replication) completion, based on its ranking results  1
,...,

D
T T T , the normal distribution 2( , )

l l
N  

is updated to the posterior * 2*( , )
l l

N   , whose updated mean *

l
 and variance 2*

l
  are considered as 

prior information for the next game up to the B updates.  

The procedure for updating ηl is hereafter described. Let  
'

1
,...,

D
Z Z Z be the vector of standard 

normal variables with probability density function 
D

  [Weng et al., 2011] 
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where D is the number of players (input variables). The posterior density distribution of Z given the 

game outcome  1
,...,

D
T T T , i.e., the ranking results, is [Weng et al., 2011]: 
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where  f Z  is the probability of the game outcome  |P Z T : 

 

 
1

( )
D

l

l

f Z f Z


  (12) 

 

The posterior mean *

l
 and variance 2*

l
 of ηl for each l-th input variable, where l = 1,2,…, D, are 

related to Zl [Weng et al., 2011]: 
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The expectation terms in Eqs. (13) and (14) are the average relative changes of f (the probability of 

the game outcome, that is, the ranking results) with respect to the strength 
l

 . For example, suppose 

that input variable 1 beats input variables 2: f  is expected to increase for 
1

  and the adjustment 
1



of 
1

  is equal to the relative (i.e., normalized on  f Z ) rate of change of all input variables strengths 

with respect to 
1

  (i.e,   1ZZf  ), whereas, f  is expected to decrease for 
2

  and the adjustment 
2

  is 

negative. 

The approximating expectations are, thus, given by: 
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where [Weng et al., 2011]: 
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and   is a lower bound to ensure a positive 2

l
 . 

Notice that, the posterior density of   is expected to be centered in   and, thus, the derivative terms 

are evaluated at 0Z  so that the 
l

  is replaced by 
l

 . Furthermore, the right terms of Eqs. (15) and 

(16) are functions of 
l

  and 2

l
 , so the updated mean *

l
 and variance 2*

l
  are computed using the 

current values of 
l

  and 2

l
  [Weng et al., 2011]. 

Finally, we can calculate the probability (after any of the B updates) that variable l is more relevant 

than variable q as: 
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where  

 

2* 2* 2
lq l q

c       (21) 

 

and   is a positive constant [Weng et al., 2011]. 

The pseudo-code of the Bradley-Terry model for full-pair comparison tailored to the ranking updating 

problem is as follows: 
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  with l=1, 2, …, D.  

2.  For l=1, 2, …, D 

2.1 For q=1, 2, …, D, with q ≠ l, 

3. Calculate 
l

 and 
l

 (in Eqs. (17) and (18)) by the following steps: 
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where s is equal to: 
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and q
 is an arbitrary parameter [Weng et al., 2011].  

3.2. Calculate 

l qq l   (28) 

l qq l
   (29) 

3.3. The mean value 
l

  and the standard deviation 
l

  of the l player are updated using 

Eqs. (15) and (16), respectively. 

 

3.3 Weighting the sensitivity measures within the Bayesian updating procedure 



 

The bootstrapped FMMs replicates and, thus, the input variables sensitivity measures can fluctuate 

due to the randomness of the sampling (e.g., the uncertainties of the measures in the real experiments 

with the same DOE) that might lead to wrong ranking results. To counterbalance possible misleading 

results, we build an ensemble of sensitivity measures introducing a weight (performance) to each 

sensitivity measure in order to i) reward the sensitivity measure with high-ranking stability 

(reproducibility) during the updating process and ii) penalize the measures with fluctuating orders 

throughout the successive ranking that treats the successive accumulated evidences (i.e., the repeated 

experiments under the same DOE/bootstrapped repetitions). The weight (performance index) of the 

sensitivity measure, sm= 1, 2, 3 for input saliency, Hellinger divergence and Kullback Leibler, 

respectively, is defined using the Coefficient Of Variation (COV) as:  
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(30) 

 

The COV of each ‘sm’ is the mean value of the COV of the sensitivity measures evaluated on all the 

code input variables at the last update, accounting for the input variables sensitivity measures 

variability in relation to their mean value, i.e., COV aims to describe the goodness of each sensitivity 

measure in terms of the relative sizes of the squared residuals and mean values. The higher the COV, 

the greater the dispersion in the sensitivity measures evaluated on all the code input variables; 

whereas, the lower the COV, the smaller the residuals relative to the sensitivity measures mean value. 

COV is defined as [Zio, 2007]: 
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where l=1, 2, ….D. 

Once the weights are calculated for each SA measure, the Bayesian aggregation of their values 

quantifies for each l-th input variable an ensemble of the three SA measures as the weighted sum of 

the three
l

 :  

𝐸𝑆𝐴𝑙 = ∑ 𝑤𝑠𝑚𝜂𝑠𝑚

3

𝑠𝑚=1

 (32) 

 

Fig. 2 schematically represents the proposed scheme. 



 

 

Fig. 2: Bayesian aggregation of SA measures 

 

4. The LOFT LP-FP-2 experiment  

 

4.1  Description of LOFT LP-FP-2 experiment 

 

The LOFT experimental facility [Kmetyk, 1992] was designed to simulate the major components and 

system responses of a current-generation Pressurized Water Reactor (PWR) during a LOCA. The 

experimental subsystems include the reactor vessel, the intact loop, the broken loop, the Blow-down 

Suppression Tank (BST) system, and the Emergency Core Cooling System (ECCS). The layout of 

the major LOFT components for test LP-FP-2 is shown in Fig. 3. LOFT is a PWR model with a rated 

power of 50 MWth, including all systems and components needed to simulate a severely damaged 

core assembly and to determine the fission product release and transport to the piping system [Lewis 

et al., 2008]. The LOFT-FP project, completed in 1985 [IRSN-200783, 2007], was conducted by the 

Idaho National Laboratory (INL/INEL) on an assembly of 121 UO2 rods with nuclear heating (in-

pile) core. It consisted of tests on rod degradation and fission product release, and involved 

temperatures up to 2400 K. 
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Fig. 3: Schematic Diagram of the LOFT Test Facility for Experiment LP-FP-2 [Kmetyk, 1992] 

 

The specific objectives of the test are to [OECD/NEA, 2001]: i) simulate a medium break LOCA, 

with delayed operation of the ECCS; ii) attain substantial fuel damage and maintain maximum fuel 

temperatures above 2100 K for several minutes; iii) study fission product migration along the leak 

path, which represents the Low-Pressure coolant Injection System (LPIS) pipe connected to the hot 

leg. 

This test has provided very interesting data on core degradation and fission product release and 

transport in a V-type LOCA sequence, under low system pressure, in a decay-heated bundle, and at 

a larger scale compared with other bundle in-reactor tests. The test confirmed the damage zones 

observed in Three Mile Island-2, showed the inability of blockages to stop fuel oxidation, and showed 

significant damage and enhanced hydrogen production occurrence during the reflood. Quantitative 

measurements of fission product deposition have been made. The test has shown a dominance of 

silver iodide (AgI) as chemical form of Iodine (I).  

To show the applicability of the proposed framework of Section 3 for the sensitivity analysis of the 

MELCOR code simulating the prediction of the fission product release in LOFT LP-FP-2 experiment, 

the “Xenon release fraction” under CORSOR modeling option is considered as output y of interest. 

MELCOR model nodalization is shown in Fig. 4. A total of N = 100 runs of the code have been done, 

each one with a different batch of input variables values sampled from the distributions listed in Table 

1 [Hoseyni et al., 2014]. The very small number of samples has been chosen with the aim of 

challenging the proposed method: as we shall see in what follows, we will be able, by bootstrapping 



B=100 times the N samples, to collect different replicates of the code output under the same DOE and 

to provide an effective input variables ranking as compared with other aggregation methods of 

literature that have been proposed for sensitivity analsysis [Di Maio et al., 2014]. 

 

 

Fig. 4 MELCOR model nodalization for LOFT-LP-FP2 experiment 

 

Table 1: Uncertain Input parameters of LOFT MELCOR model and their distributions [Hoseyni et 

al., 2014] 

 
Input 

variables 
Description 

Type of 

distribution 
Mean value µ 

Standard 

deviation 𝞼 

1. POWER Fission Power (MW) normal 28.8E+6 0.467E+6 

2. SAREA-1 ILCL break flow area (FL415) normal 0.000683 3.48469E-05 

3. SAREA-2 LPIS break flow area (FL405) normal 0.000683 3.484E-05 

4. BDC-1 ILCL Break Discharge Coefficient (FL415) normal 1 0.067 

5. BDC-2 LPIS Break Discharge Coefficient (FL405) normal 1 0.067 

6. BLC-1 ILCL Break Loss Coefficient (FL415) normal 1.005 0.507 

7. BLC-2 LPIS Break Loss Coefficient (FL405) normal 1.005 0.507 

8. RVF1 Core radiation view factors normal 0.03  0.005 

9. RVF2 Core radiation view factor 2 normal 0.22  0.01 



10. ZMLT Zircaloy Melt Temperature normal 2200  51.02 

11. DSF Dynamic Shape Factor (RNMS000) normal 1 0.408 

12. ASF Agglomeration Shape Factor (RNMS000) normal 1  0.408 

13. SC7101-1 CORSOR parameter-1           C7101(1,1,1) normal 900  5.102 

14. SC7101-2 CORSOR parameter-2           C7101(1,1,2) normal 900  5.102 

15. SC7101-3 CORSOR parameter-3           C7101(1,1,4) normal 900  5.1026 

16. SC7101-4 CORSOR parameter-4           C7101(2,1,1) normal 1400  20.408 

17. SC7101-5 CORSOR parameter-5           C7101(2,1,2) normal 1400  20.408 

18. SC7101-6 CORSOR parameter-6           C7101(2,1,4) normal 1400  20.408 

19. SC7101-7 CORSOR parameter-7           C7101(3,1,1) normal 2200  25.510 

20. SC7101-8 CORSOR parameter-8           C7101(3,1,2) normal 2200  25.510 

21. SC7101-9 CORSOR parameter-9           C7101(3,1,4) normal 2200  25.510 

22. SC7101-10 CORSOR parameter-10         C7101(1,2,1) normal 7.02E-09  3.581E-10 

23. SC7101-11 CORSOR parameter-11         C7101(1,3,1) normal 0.0088 0.00047 

24. SC7101-12 CORSOR parameter-12         C7101(1,2,2) normal 7.525E-12  3.852E-13 

25. SC7101-13 CORSOR parameter-13         C7101(1,3,2) normal 0.0142  0.000724 

26. SC7101-14 CORSOR parameter-14         C7101(1,2,4) normal 7.02E-09  3.581E-10 

27. SC7101-15 CORSOR parameter-15         C7101(1,3,4) normal 0.00886  0.000452 

28. SC7101-16 CORSOR parameter-16         C7101(2,2,1) normal 0.000000202 1.03061E-08 

29. SC7101-17 CORSOR parameter-17         C7101(2,3,1) normal 0.00667  0.000340306 

30. SC7101-18 CORSOR parameter-18         C7101(2,2,2) normal 1.7019E-07  2.65357E-08 

31. SC7101-19 CORSOR parameter-19         C7101(2,3,2) normal 0.00667  0.000340 

32. SC7101-20 CORSOR parameter-20         C7101(2,2,4) normal 1.7019E-07  2.653E-08 

33. SC7101-21 CORSOR parameter-21         C7101(2,3,4) normal 0.00667  0.00034 

34. SC7101-22 CORSOR parameter-22         C7101(3,2,1) normal 0.0000174  8.877E-07 

35. SC7101-23 CORSOR parameter-23         C7101(3,3,1) normal 0.0046  0.000234 

36. SC7101-24 CORSOR parameter-24         C7101(3,2,2) normal 0.0000174  8.877E-07 

37. SC7101-25 CORSOR parameter-25         C7101(3,3,2) normal 0.0046  0.000234 

38. SC7101-26 CORSOR parameter-26         C7101(3,2,4) normal 0.0000174  8.87755E-07 

39. SC7101-27 CORSOR parameter-27         C7101(3,3,4) normal 0.0046  0.000234 

 
Input 

variables 
Description 

Type of 

distribution 
Lower value Upper value 

40. OPHEIT-1 Core Flow Path Opening Heights (FL115) uniform 0.01 1 

41. OPHEIT-2 Core Flow Path Opening Heights (FL116) uniform 0.01 1 

42. SC1214 Turbulent Forced Convective Flow in Tubes uniform 0.0115 0.0345 

43. SC1221 Laminar Free Convection between Parallel 

Vertical Surfaces 
uniform 0.09 0.27 

44. SC1222 Turbulent Free Convection between Parallel 

Vertical Surfaces 
uniform 0.0325 0.0975 

45. SC1231 Forced Convective Flow over a Spherical 

Particle 
uniform 0.3 0.9 

46. SC1232 Free Convective Flow over a Spherical 

Particle 
uniform 0.3 0.9 

47. SC1001-5 Zircaloy Oxidation Rate Constant 

Coefficients (T lower) 
uniform 1843 1863 

48. SC1001-6 Zircaloy Oxidation Rate Constant 

Coefficients (T upper) 
uniform 1864 1882 

49. OXTHICK Minimum Oxide Shell Thickness 

(COR00008) 
uniform 1E-6 2E-4 



50. TBLOCK Time of blockage formation uniform 1400 1600 

 

5. Sensitivity analysis results for the LOFT LP-FP-2 model 

Based on the N = 100 original code runs [Hoseyni et al., 2015], the histogram of Xenon release is 

shown in Fig. 5, where several maxima can be seen to be approximated by a multimodal analytical 

distribution. Therefore, in Fig. 5 it is also shown the analytical reconstruction (solid line) of the prior 

distribution of the Xenon release function, ( )f y , that has been obtained by the FMM method, where 

the number K of clusters is set equal to 3 and the parameters values of the K Gaussian models have 

been obtained by Expectation Maximization algorithm [Carlos et al., 2013]. The choice of using three 

Gaussian distributions for the FMM parameters identification is the result of a trial and error 

procedure. An automatic optimization of the number K of distributions in the FMM is also possible 

[Figueiredo et al., 2002]. As a last remark, it is worth pointing out that the common distributions q(x) 

used in this application are, instead, uniform distributions. 

 

Fig. 5: reconstructed PDF of the model output based on a three-cluster FMM (solid line) for the 

original code output dataset. 
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In order to obtain additional information to provide a realistic evaluation of the Xenon release fraction 

variability and, thus, an increase of the robustness of the sensitivity analysis results, the original 

Xenon dataset of code simulations has been replicated by Bootstrap to generate B datasets  for a total 

of B = 100 bootstrap samples (Section 3.1). 

For each b-th bootstrap sample, the analytical reconstruction of the N simulations replicates pdf ( )f y  

is performed by FMMs and, thus, the sensitivity measures are evaluated. The new values of sensitivity 

measures, derived from the b-th bootstrap, are used as new evidences for updating the state of 

knowledge about three sensitivity measures, i.e., the mean value 
l

  and standard deviation 
l

  of the 

sensitivity measures are updated into the posterior mean *

l
  and variance 2*

l
 by the Bradley-Terry 

algorithm (Section 3.2).  

Without loss of generality, the updated mean *

l
  (Eq. 15), updated variance 2*

l
  (Eq. 16) and the 

updated rank position for input variable l = 19 as a function of the b-th updating step are shown in 

Fig. 6. Whatever the sensitivity measure considered, Fig. 6 shows that: 

1) the variance decreases as the updating procedure proceeds; 

2) the mean and, consequently, the rank behave differently from the variance, and fluctuate.  

3) the Hellinger distance and Kullback–Leibler divergence show larger stability than input 

saliency in the updating procedure (i.e., smaller ripples in the plot of the mean). 
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Fig. 6:  Updated mean, variance and rank for input variable 19 of Table 1 

 

We, then, perform the Bayesian ensemble by calculating the weighted sum of Eq. (32) with the 

weights listed in Table 2 (Section 3.3), where the acknowledged better stability of Hellinger distance 

and Kullback–Leibler divergence with respect to input saliency is rewarded with larger weights, that 

account, indeed, for the high-ranking stability (reproducibility) of the sensitivity measure during the 

updating process (as pointed out before in Section 3)). 

 

Table 2: Bayesian weights of SA measures for aggregation 

SA Measure Assigned weight 

ρ 0.0582 

HD 0.4595 

KL 0.4823 

 

The results of the final Bayesian ensemble of sensitivity measures are reported in Table 3 where the 

first 20 ranking positions are compared by showing the input variables that would have been assigned 



by the traditional sum (Rsum) and majority voting (Rmv) aggregation approaches [Kukkonen et al., 

2007] that are the much easier but approximate methods for sensitivity analysis purposed in [Di Maio 

et al., 2014]. 

In fact, it can be seen that, the proposed Bayesian method, Rsum and Rmv approaches agree only on 

the two most important input variables (i.e., the Minimum Oxide Shell Thickness (OXTHICK) and 

the Agglomeration Shape Factor (ASF)), whereas they disagree on the other input variables. One 

might argue that Rsum or Rmv approaches still remain the best choices due to the fact that among 

themselves they agree on the first four positions, and to their lower computational burden. In fact, 

Rsum and Rmv are computed using only the B=1 original MELCOR output dataset and, thus, any further 

bootstrap replication is avoided.  

However, even if the proposed Bayesian method uses B=100 bootstraps of the original MELCOR 

output dataset (i.e., the computational time is B times larger than for Rsum and Rmv), the Bayesian 

ensemble aggregation is hereafter shown to be preferable because it holds two fundamental properties 

of Bayesian processes: i) the memory property and ii) the exchangeability property.  

The memory property entails a prior belief (e.g., the value of sensitivity measures obtained for each 

input variable from the original FMM) to be differently updated depending on the quantity and quality 

of the available evidence (e.g., the new bootstrap replicates) used for computing the posterior 

[Friedman et al., 1997]. Consequently, different batches of evidences lead to different posterior 

distributions (e.g., different sensitivity measures values and ranking positions). Figure 7 shows that 

the memory property holds in our case: two different batches of evidences of t = 20, 40 successive 

bootstrap replicates, respectively, are used. Dashed line with circles in Fig. 7 shows the updated 

aggregated sensitivity measures for input variable 19 for t = 20 successive updates, whereas dotted 

line with squares are those for t = 40 updates: a perfect matching in the updating process of the 

aggregated sensitivity measures is obtained using the first and the second batch up to the 20-th 

bootstrap, due to the use of the same cumulated evidence. Contrarily, assuming that the bootstrap 

replicates are not available up to t = 20 and that we start calculating from t = 21 up to t = 40, the 

aggregated sensitivity measures at time t = 40 differ from those of the batch that exploits all the 40 

bootstrap replicates, due to the lack of the first 20 evidences (continuous line with triangles in Fig. 

7).  

 

Table 3: Comparison of the input variables ranking position provided by different approaches 

Rank Bayesian Rsum Rmv 

1 OXTHICK OXTHICK OXTHICK 

2 ASF ASF ASF 

3 SAREA-1 C7101(3,3,2) C7101(3,3,2) 



4 SC1214 BDC-1 BDC-1 

5 C7101(3,3,2) SAREA-1 SC1221 

6 SC1221 BDC-2 C7101(1,3,1) 

7 DSF SC1221 C7101(3,1,4) 

8 C7101(3,2,2) C7101(1,3,1) C7101(1,1,1) 

9 C7101(1,1,2) C7101(3,3,1) - 

10 C7101(1,31) C7101(1,2,4) - 

11 C7101(2,3,1) C7101(2,3,2) - 

12 C7101(1,1,4) C7101(3,1,4) - 

13 RVF1 C7101(2,2,1) - 

14 SAREA-2 C7101(2,2,2) - 

15 C7101(2,2,4) C7101(1,1,4) - 

16 C7101(1,3,2) DSF - 

17 C7101(3,1,4) C7101(1,1,1) - 

18 C7101(2,3,4) C7101(3,2,1) - 

19 RVF2 RVF2 - 

20 BLC-2 7101(1,3,4) - 

 

The exchangeability property entails that the order of the information fed to the Bayesian updating 

process is irrelevant to the results (e.g., if the order of B = 100 bootstrap replicates is shuffled to 

updating process leads, independently from the order of the evidences, to the same final ranking). 

Again for input variable 19, the ensemble of sensitivity measures calculated with the B = 100 and the 

same shuffled replicates, differ for less than 1%, which proves that the proposed process possesses 

the exchangeability property. 

This means that the Bayesian ensemble aggregation has to be preferred to Rsum and Rmv because it 

is robust to the variability of the experiments results to be used for sensitivity analysis as it allows 

cumulating knowledge (memory property) irrespectively of the occurrences sequence of the 

experiment results (exchangeability property). 

 



 

Fig. 7 Memory property of updating 

 

6 Conclusion 

 

In this paper, a novel framework is presented for performing an ensemble sensitivity analysis based 

on the Bayesian updating procedure. The framework is built based on performing an uncertainty 

analysis on the severe accident model for estimating a Gaussian FMM to retrieve the analytical pdf 

of the model output with as few simulations as possible. A bootstrap technique is adopted to replicate 

B new model output datasets. An innovative ensemble strategy is designed to aggregate three 

sensitivity methods, namely input saliency, Hellinger distance and Kullback–Leibler divergence, that 

exploits a Bayesian updating procedure based on the Bradley-Terry algorithm for an incremental 

learning and iterative update of the input variables sensitivity measures. An application is shown with 

regards to a long-running MELCOR code simulating the fission product release during a LOCA in a 

scaled-down PWR. The results show the capability of the proposed framework in discerning between 

influent and negligible input variables, with properties of memory and exchangeability inherent in 

the Bayesian updating process. 

 

Nomenclature 

COV Coefficient Of Variation 

DSA Deterministic Safety Assessment 

DOE Design of Experiment 

ECCS Emergency Core Cooling System 

EM Expectation Maximization 

FMM Finite Mixture Model 

FOM Figure of Merit 

FP Fission Products 



INL Idaho National Laboratory 

LOCA Loss of Coolant Accident 

LOFT Loss of Flow Test 

LPIS Low Pressure Injection System 

MV Majority voting 

NPP Nuclear Power Plant 

pdf Probability density function 

PWR Pressurized Water Reactor 

RF Release fraction 

RN Radio Nuclide 

SA Sensitivity Analysis 

SNL Sandia National Laboratories 

TH Thermal-hydraulics 
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