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Abstract

A numerical method based on topology optimization is proposed to generate optimal strut–

only models for structures made of plain concrete and optimal strut–and–tie models for concrete

structures where fixed regions of reinforcement are prescribed. Assuming concrete as a hyper–

elastic material carrying only compression, both the inherently non linear equilibrium equation

and the energy–based topology optimization problem are solved within the same minimization

procedure. Numerical simulations investigate load paths within the two–dimensional domain in

case of conventional rebar cages. A stress diffusion problem is considered as well.

Keywords: topology optimization, strut–and–tie models, reinforced concrete structures, plain

concrete structures, energy–based methods.

1. Introduction

Strut–and–tie models (STMs) are of primary importance when designing reinforced concrete

members. This detailing approach investigates truss–like structures to define statically admissible

load paths that connect the load application points to the ground constraints, see e.g. [1]. It was

firstly introduced to cope with the transversal reinforcement for shear design of beams [2, 3] and

then extended to the so–called D–regions of reinforced concrete structures, where the Bernoulli
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hypothesis does not hold due to any discontinuity in the geometry of the specimen or in the load

pattern [4]. A complex strain/stress state arises in these regions, meaning that the conventional

assumption about cross sections remaining plane after bending falls. This implies that standard

design methods based on the beam theory can not be applied. According to the plasticity theorem,

any statically admissible truss–like structure that does not violate the yield criteria has a load–

carrying capacity that is a lower–bound of the ultimate strength of the specimen. This supports

the adoption of strut–and–tie modeling to define statically admissible load paths for a proper

detailing of the D–regions.

Methods of structural optimization have been used to generate suitable strut–and–tie models

among the number of truss–like structures that can be defined within a certain domain. The

ground structure approach was firstly adopted to select minimum energy or minimum weight

strut–and–tie models addressing grids of discrete trusses, see e.g. [5–8]. Afterwards, topology

optimization was introduced to generate optimal truss–like layouts adopting the same objective

functions but resorting to the finite element modeling for plane problems. Evolutionary structural

optimization was used in the pioneering approaches proposed in [9–13], whereas the distribution

of solid isotropic material according to the SIMP model for stiffness penalization [14] was adopted

e.g. in [15–20]. The latter approach has also been used for the conceptual design of optimal lay-

outs of steel reinforcement dropping the conventional strut–and–tie approach and moving towards

more general problems of topology optimization for reinforced concrete structures, involving non–

symmetric strength constraints, see e.g. [21–23], damage mechanics [24, 25], elastoplasticity, see

[26]. Remaining in the field of strut–and–tie modeling, an alternative approach combining truss

design and topology optimization has been recently presented in [27, 28] to look for load paths that

are not only statically admissible but also consistent with the stress flow in the concrete element.

To ensure appropriate safety standards, designers are generally required by technical codes to

neglect the limited tensile strength of concrete when detailing reinforced concrete beam sections at
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the ultimate limit state. Indeed, strut–and–tie modeling stands on the assumption that concrete

carries compressive stresses only, whereas steel is used as a reinforcement to carry any tensile

stress. According to technical rules, best STMs can be selected through energy–based criteria [29].

These prescriptions explain the strong interest of the community of designers towards the adoption

of simple numerical methods exploiting topology optimization to distribute linear elastic isotropic

material and achieve truss–like layouts as preferred strut–and–tie load paths, see [30]. Assessment

of the achieved results and detailing of each member making the optimal STM can be performed

subsequently through ad hoc tools, see e.g. [31].

Unfortunately, the linear elastic approach fails when addressing the achievement of energy–

based load paths in structures where the layout of the reinforcement is already prescribed (due

to the adoption of a fixed rebar cage) or when copying with the optimal design of plain concrete

members (with no rebar allowed except for the secondary reinforcement intended for ductility

and durability requirements only). In these cases, conventional methods of topology optimization

should be modified to avoid the arising of any tensile–stressed member within the concrete domain.

This can be conveniently pursued by implementing methods of energy–based topology optimization

for compression–only materials.

Alternative formulations have been proposed in the last decades to address tension–only or

compression–only materials in topology optimization. Most of them resort to non–linear modeling,

see e.g. [32], or to re–modeling theories and material replacement strategies that distribute the

unilateral material depending on the directions of the stress flows computed in the design domain,

see e.g. [33, 17, 34]. A simplified stress–based approach has been presented in [35] that implements

a smooth approximation of the unilateral condition through the formulation of a suitable version

of the Drucker–Prager strength criterion. Due to the inherent isotropic modeling, this approach

can not be straightforwardly applied to structures governed by any complex biaxial stress state. In

this case, a full no–tension/no–compression modeling of the constitutive behavior of the material
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should be implemented.

Hyper–elasticity of unilateral materials allows solving the inherently nonlinear equilibrium

through the minimization of the strain energy, see in particular [36]. The energy–based approach

presented in [37] is herein exploited to address the generation of optimal STMs through a topology

optimization problem that copes with concrete as a compression–only material. An equivalent

orthotropic medium is defined, exhibiting negligible stiffness for any direction along which a tensile

principal stress must be prevented. Two sets of density unknowns are needed to control the stiffness

of the equivalent composite along its symmetry axes, which should be oriented along the principal

stress directions of the no–tension body. The topology optimization problem adopts the weight

as objective function, whereas a global constraint is prescribed on the overall compliance of the

specimen (made of plain concrete or concrete reinforced by a fixed rebar cage). Its solution is

performed adopting an established method of sequential convex programming, the Method of

Moving Asymptotes MMA [38]. The compression–only behavior is efficiently enforced through an

ad hoc penalization of the energy terms related to any tensile stress arising during the optimization.

The layout of the paper is as follows. Section 2 recalls the rationale used to model a compression–

only solid as an equivalent orthotropic medium, whereas Section 3 introduces the energy–based

topology optimization problem that is used to derive optimal STMs addressing concrete as a

compression–only material. Section 3.1 provides details on the implementation of the solving al-

gorithm. Features of the achieved optimal STMs are discussed in Section 4, presenting numerical

examples and providing comparison with optimal layouts found through the conventional approach

with linear elastic modeling and equal behavior in tension and compression of the material. Section

4.1 is devoted to optimal strut–only models for structures made of plain concrete. Section 4.2 deals

with optimal strut–and–tie models for concrete structures where fixed regions of reinforcement are

prescribed. Section 5 resumes the main findings of the work, outlining future extensions of this

research.
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Figure 1: Material model in case of a compression–only material in the general reference of axes z1 and z2 in Ω:
an orthotropic phase with symmetry axes z̃1 and z̃2 is oriented along the principal stress directions zI and zII .
Directions where stiffness of the composite is not negligible are represented through bold lines.

2. A material interpolation for concrete

Young modulus E and non–negative Poisson’s ratio ν are herein assumed for a material that

can sustain only compressive stresses, dealing with plane stress conditions. The principal axis

zIII is orthogonal to the reference plane whose coordinates are labeled z1 and z2. Let σI , σII and

σIII = 0 be the principal stresses for the tensor σij(χ), as computed at any point χ ∈ Ω, with

σI ≤ σII .

The domain Ω is divided into three sub–regions such that Ω = Ω1 ∪ Ω2 ∪ Ω3 and:

Ω1 = χ ∈ Ω : σI < 0, σII < 0,

Ω2 = χ ∈ Ω : σI < 0, σII = 0,

Ω3 = χ ∈ Ω : σI = 0.

(1)

In sub–region Ω1 the material is acted upon by biaxial compression and behaves as any conventional

isotropic medium. In Ω2 the material is acted upon by uniaxial compression and behaves as an

orthotropic medium. A fully elastic behavior is recovered along the compressive isostatic line,

whereas some inelastic strain εc ≥ 0 arises in the orthogonal direction. In sub–region Ω3 neither

stress nor elastic strain is found and the solid behaves as a “void phase”, meaning that any positive
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semi–definite inelastic strain is allowed.

An equivalent orthotropic material model has been formulated in [37] to describe the outlined

behavior through the same closed–form expression at any point χ ∈ Ω. This may be done intro-

ducing two fields of density unknowns that allow specializing the behavior of the solid in each of

the sub–regions Ω1, Ω2 and Ω3 of Eqn. (1), penalizing the stiffness of the orthotropic material

along its symmetry axes z̃1 and z̃2. Principal stress directions zI and zII and the symmetry axes

z̃1 and z̃2 share the same orientation, as provided by the angle θ, see Figure 1. Referring to the

elastic constants of the equivalent orthotropic medium, Ẽ1, Ẽ2 are the Young moduli of the mate-

rial (along z̃1 and z̃2, respectively), G̃12 is the shear modulus and ν̃12, ν̃21 are the Poisson’s ratios.

It is recalled that the equality ν̃ijẼj = ν̃jiẼi holds.

The design problem will be solved through a displacement–based finite element method, adopt-

ing four node bilinear elements. In view of the adoption of such a discretization, let denote as

x1e and x2e the density unknowns that govern the behavior of the equivalent composite along its

symmetry axes (i.e. the isostatic stress lines of the compression–only material) related to each

element of the mesh. Following a generalization of the SIMP (Solid Isotropic Material with Pe-

nalization) [14, 39] used in topology optimization for isotropic materials, the elastic constants for

the equivalent orthotropic material can be written as:

Ẽi = xp
ieE, G̃ij = xp

iex
p
je

E

2(1 + ν)
, ν̃ij = xp

jeν, for i, j = 1, 2. (2)

Reference is made to [40, 41] for the original development of the above formula within the frame-

work of derivable optimality criteria methods for structural optimization. As usually done in

conventional formulations for the topology optimization of isotropic materials the penalization

parameter is assumed such that p = 3, see in particular [30]. The interpolation in Eqn. (2) is

especially conceived to provide vanishing stiffness along any direction along which the relevant

density unknown, x1e or x2e, takes its minimum value. In the general reference with axes z1 and
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z2, denoting by σe = [σ11 σ22 σ12] the vector of the stress components for the e–th element and

by εe = [ε11 ε22 2ε12] the corresponding strain components, the constitutive law for the equivalent

orthotropic material reads:

σe = T(θe)
−1C(x1e, x2e)T(θe)

−tεe, (3)

where C is the constitutive matrix written in the material reference with axes z̃1 and z̃2 and T is

a transformation matrix, i.e.:

C =




Ẽ1

1− ν̃12ν̃21

ν̃12Ẽ1

1− ν̃12ν̃21
0

ν̃21Ẽ2

1− ν̃12ν̃21

Ẽ2

1− ν̃12ν̃21
0

0 0 G̃12




and T =




cos2θe sin2θe 2cosθesinθe

sin2θe cos2θe −2cosθesinθe

−cosθesinθe cosθesinθe cos2θe − sin2θe


 ,

(4)

The parameter θe provides the orientation of the principal stress directions zI and zII (hence, of

the symmetry axes z̃1 and z̃2) in the e–th element, with respect to the general axes z1 and z2.

Specializing C in terms of the extremal values of the variables xmin ≤ x1e ≤ 1 and xmin ≤ x2e ≤ 1,

one may straightforwardly check that Eqns. (3–4) recover the behavior found in each one of the

three sub–regions Ω1, Ω2 and Ω3 of Eqn. (1).

3. An energy–based approach to the automatic generation of strut–and–tie models

A classical formulation of topology optimization looks for the distribution of linear elastic

isotropic material that minimizes the structural compliance, i.e. the work of external loads at

equilibrium, for a prescribed amount of available material. This is generally given as a percentage

of the design domain, the so–called volume fraction 0 < Vf < 1. Low values of Vf allows for the

achievement of stiff truss–like structures that can be interpreted as optimal strut–and–tie models

used for the disposal of the primary reinforcement. The static theorem implies that an energy–
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based STM can be considered as a lower bound of the load–carrying capacity of an elastic–plastic

structural member, if the statically admissible truss does not violate the yield criterion, see e.g. [4].

Concrete structures are provided with the required ductility through the disposal of the secondary

reinforcement. Denoting by xe the element–wise constant density entering the conventional SIMP

model in the e–th finite element, truss–like models can be alternatively generated resorting to the

following discrete statement:





min
xe

W =
N∑

e=1

xeAe

s.t.
∑N

e=1
Ke(xe) U = F,

∑N

e=1
UT

e Ke(xe) Ue ≤ αC0,

xmin ≤ xe ≤ 1.

(5)

In the above equation, the objective function is the the weight W, which is computed multiplying

the element density xe for the relevant area Ae over the N elements in the mesh. Eqn. (5.2)

enforces the discrete equilibrium for the linear elastic isotropic medium, being Ke the element

stiffness matrix, U the global displacement vector and F the vector accounting for the applied

external forces (no body load is considered). Eqn. (5.3) is a constraint on the overall stiffness

that requires the overall compliance C to be lower than a prescribed limit αC0, where C0 is the

compliance found for the full domain made of virgin material (xe = 1 everywhere) and α is a

user–defined parameter. C is computed as the sum of N contributions depending on the element

displacement vectors Ue. Dealing with one point load, this simply means formulating a constraint

on the maximum displacement allowed at the loaded point along the load direction, see in particular

[11]. Eqn. (5.4) introduces a lower bound against singularity of the stiffness matrix due to “void”

regions.
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Following [37], the equilibrium of a hyper–elastic compression–only solid may be solved dis-

tributing suitable phases of the orthotropic material defined in Section 2 in the sub–regions Ω1, Ω2

and Ω3 such that the elastic strain energy stored in the unilateral medium is minimized, see also

[36]. Endowing the original formulation with a weight constraint, a limited amount of material is

made available instead of the full domain. The topology optimization problem can be straight-

forwardly solved through the same minimization procedure, without resorting to any incremental

approach. Truss–like models involving a compression–only material can be alternatively formu-

lated minimizing the structural weight subject to a compliance constraint, which means enforcing

a prescribed stiffness to the optimal design. Eqn. (5) is modified as:





min
x1e,x2e

W =
N∑

e=1

(x1e + x2e − x1ex2e)Ae

s.t.
∑N

e=1
Ke(x1e, x2e, θe) U = F,

θe | z̃1 = zI and z̃2 = zII ,

x1e, x2e | σe,I ≤ 0 and σe,II ≤ 0,

∑N

e=1
UT

e Ke(x1e, x2e, θe) Ue ≤ αC0,

xmin ≤ x1e, x2e ≤ 1.

(6)

The minimization unknowns of the above statements are the sets x1e and x2e, i.e. the element–wise

constant material densities along the symmetry axes of the composite, z̃1 and z̃2 respectively. The

objective function is especially conceived to evaluate the weight of the optimal design in each one of

the sub–regions Ω1, Ω2 and Ω3. It is recalled that under biaxial compression one has x1e = x2e = 1,

whereas xie = 1 and xje = xmin (with i 6= j) stands under uniaxial compression. In a 0–1 optimal

design, “black” regions are those where at least one material density per element is equal to one.

Eqn. (6.2) enforces elastic equilibrium in discrete form, accounting for the equivalent or-
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thotropic material hold by Eqns. (3–4). Eqn. (6.3) calls for the set of element–wise constant

parameters θe that provide the same orientation for the symmetry axes of the composite z̃1 and

z̃2 and the principal stress directions zI and zII , see Section 2. Eqns. (6.4) is needed to enforce a

compression–only stress regime in each finite element that models the region made of plain con-

crete. Any fixed rebar cage can be taken into account by simply neglecting this constraint over

the relevant non–design region. Eqn. (6.5) enforces the compliance constraint, depending on the

user–defined parameter α and the value C0 that is found for the full domain made of virgin material

(x1e = x2e = 1 everywhere).

Section 4 provides comparisons in terms of optimal strut–and–tie models achieved through the

conventional formulation for linear elastic isotropic material with equal behavior in tension and

compression and the proposed approach accounting for concrete as a compression–only material.

Eqns. (5) and (6) are preferred to their minimum compliance counterparts to address layouts

having the same strain energy, being achieved for the same value of α.

3.1. Problem implementation

As detailed in Section 1, the statements in Eqns. (5) and (6) are solved through the gradient–

based minimizer MMA [38], calling for the computation of the sensitivity at each iteration of the

minimization algorithm. The initial guess is the full material domain, that means xe = 1 in each

element in case of isotropic material and x1e = x2e = 1 for the equivalent composite. Solution

of Eqn. (5) is conventional, see e.g. [15], whereas some additional handling is operated on the

statement in Eqn. (6) to speed up the computation.

At each iteration, a structural analysis is performed according to Eqn. (6.2) for the current

values of the minimization unknowns x1e and x2e, along with the orientations θe. The principal

stress directions zI and zII are computed and each parameter θe is updated in order to provide

alignment of the symmetry axes of the composite z̃1 and z̃2 with respect to zI and zII , see Eqn.

(6.3). Instead of implementing the demanding stress constraints of Eqns. (6.4), the efficient
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penalization approach proposed in [42] is adopted. Accordingly, the penalized densities x̂1e and

x̂2e are introduced. For i = 1, 2 one has:





x̂ie = xie, if σ̃e,i ≤ 0,

x̂ie = kxie, otherwise,
(7)

where σ̃e,i are the principal stresses in the e–th element and k ∈]0, 1] is a penalization parameter

that is herein assumed equal to 0.5 when addressing the compression–only concrete. In all the

elements accounting for any fixed rebar cage, k = 1. Eqn. (7) allows for a straightforward

computation of a modified compliance Ĉ, in which the terms related to any possible positive

principal stress are reduced through the parameter k:

Ĉ =

N∑

e=1

UT
e Ke(x̂1e, x̂2e, θe) Ue. (8)

Providing the MMA with the reduced form of the compliance constraint in Eqn. (6.5) and the

relevant sensitivities involving ∂Ĉ/∂x1e and ∂Ĉ/∂x2e, any distribution of stiff material along the

weak direction(s) of the compression–only material is prevented. Derivatives of C with respect

to the element–wise constant material densities can be straightforwardly computed through the

adjoint method, recalling the constitutive law in Eqns. (3–4).

Four–node Serendipity finite elements are used along with an element–wise constant approx-

imation of the density variables. This discretization provides results that are in full agreement

with available analytical and numerical solutions for the equilibrium of two–dimensional no–tension

solids. Good accuracy has been found for benchmark examples even in case of coarse meshes, see

[37]. When handling isotropic material, this discrete scheme is well–known to be affected by nu-

merical instabilities such as the arising of undesired checkerboard patterns and mesh dependence,

see e.g. [30, 43, 44]. The same issues occur with the formulation in Eqn. (6). Many strategies are
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available to solve the aforementioned problems. A density filter approach [45] is herein adopted

for both statements in Eqns. (5) and (6) instead of applying the filter to the objective function

and its sensitivities, as done in most cases. Focusing on Eqn. (6), the original design variables xie

are transformed in new sets of physical unknowns x̃ie reading:

x̃ie =
1∑

N Hel

∑

N

Helxil, Hel =
∑

N

max(0, rmin − dist(e, l)), (9)

for i = 1, 2. In the above equation dist(e, l) is the distance between the centroid of the e–th

and l–th element, whereas rmin > dm is the filter radius, being dm the reference size of the finite

elements. The assumption rmin = 1.5dm is done for all the simulations presented in Section 4.

Problems in Eqns. (5) and (6) are non–convex, meaning that local minima can be found instead

of the expected global optimum. To overcome this numerical issue, a multi–start strategy could be

implemented initializing the minimization algorithm with different starting guesses. Alternatively,

local minima could be avoided by adopting the gradient–based minimizer in its global convergent

version (GCMMA) [46]: conservative convex separable approximations of the objective function

are used in this release, for which the sequence of iteration points converges toward the set of

Karush–Kuhn–Tucker points.

It must be finally remarked that the optimal topology can be non–unique, especially in case of

non–symmetric domain and boundary conditions, see e.g. [47, 48], or addressing stress constraints

and multiple loading, see in particular [49]. Other sources of non–uniqueness can be found looking

at the different assumptions that can be operated on the parameters involved in the material law,

see [50].
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Figure 2: Geometry and boundary conditions for Examples 1–2 concerning structures made of plain concrete.

4. Numerical simulations

This section has the aim of discussing results of the formulation in Eqn. (6), which accounts for

concrete as a compression–only material, comparing the achieved strut–and–tie models with opti-

mal layouts found by the conventional formulation in Eqn. (5). The same compliance constraint

is used in each comparison. Strut–only models are investigated in Section 4.1 for specimens made

of plain concrete, whereas optimal STMs are discussed in Section 4.2 for concrete structures with

assigned rebar cages. Specimens of unitary thickness are considered in the numerical simulations,

assuming conventionally E = 1 N/m2 and ν = 0.3.

Table 1 shows the number of elements used in the simulations presented next. Fine meshes of

bilinear square elements are used to capture the complex strain/stress field arising in the discon-

tinuity regions, while providing the expected accuracy when handling the compliance–constrained

optimization.

All the layouts are presented in terms of physical unknowns, that means the set x̃e for Eqn.

(5) and the sets x̃1e and x̃2e for Eqn. (6). In the latter case, “black” regions are those where at

least one material density per element is equal to one, see Section 3.

Tables 2 and 3 compare the optimal STMs in terms of non–dimensional weight (or volume

fraction) W/W0, compliance C and non–dimensional compliance C/C0, where subscript 0 refers to
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Example Elements

1 9216

2 9216

3 4608

4 6912

5 4608

6 9216

Table 1: Examples 1–6. Number of elements in the discretization.

(a) (b) (c)

Figure 3: Example 1. Optimal design in case of linear elastic material with equal behavior in tension and compression
(a), compression–only material (b) and conventional material with non–active upper constraints (c).

the weight and compliance of the full domain (virgin material).

4.1. Plain concrete specimens

4.1.1. Example 1. The two–bar/four–bar truss example

Let consider the square domain shown in Figure 2(a), which is loaded by a vertical force applied

in the center. Ground supports are available at each corner.

Figure 3(a) shows the optimal solution that is found by the conventional formulation in Eqn.

(5), distributing linear elastic isotropic material with equal behavior in tension and compression.

A compliance constraint with α = 3 is enforced, achieving an optimal design whose strain energy

is three times that of the full domain of material carrying the same load. A symmetric four–bar
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(a) (b)

Figure 4: Example 1. Principal stresses in the lower left strut of the optimal design in case of no–compression
material (a) and conventional material with non–active upper constraints (b). Blue lines stands for compression
whereas red ones for tension.

truss arises with ties and struts sharing the same structural section. The required volume fraction

is around 16%.

The formulation in Eqn. (6) is adopted to investigate the optimal design in case of compression–

only material, having the aim of deriving a strut–only load path for a plain concrete specimen

enforcing the same constraint on the strain energy, that means α = 3. The solution of this

benchmark problem consists of a layout made of two struts that connect the load to the lower

supports, see Figure 3(b). The required volume fraction increases to approximately 21%.

Finally, Figure 3(c) shows the optimal design in case of conventional material removing the

ground constraints at the upper side of the specimen. The achieved solution resembles that of Fig-

ure 3(b), but some remarkable differences arise. The strut–only model derived for the compression–

only concrete is made of members inclined of 45 degrees with respect to the horizonal axis. Each

strut exploits both horizontal and vertical side of the corner to achieve a fully no–tension con-

nection to the ground. On the contrary, the struts of the model achieved by the conventional

formulation in Eqn. (5) follow the shortest path. They connect the load to the inner horizontal
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Figure 5: Example 1. Convergence plot for the optimal layouts in Figure 3(b) and Figure 3(c).

Ex. Fig. Material W/W0 C C/C0

1 3(a) Conventional 0.160 297.48 3.0

1 3(b) Compression–only 0.208 297.48 3.0

1 3(c) Conventional 0.162 297.48 3.0

2 6(b) Conventional 0.211 420.21 2.0

2 6(a) Compression–only 0.320 420.21 2.0

Table 2: Examples 1–2. Comparison of the optimal layouts in terms of non–dimensional weight W/W0, compliance
C (Nm) and non–dimensional compliance C/C0. Subscript 0 refers to the full domain (virgin material).

portion of the ground constraints, with an increased inclination of approximately 50 degrees with

respect to the horizontal axis.

Minor differences that concern the shape of the struts can be found in the vicinity of the corner,

depending on how local stress paths cope with the ground constraints. No tensile stress arises in

the compression–only model, see the principal stresses represented in Figure 4(a), whereas both

compression (blue lines) and tension (red lines) are found in case of conventional material with

equal behavior in tension and compression, see Figure 4(b).

Finally Figure 5 shows history plots of the objective function for the optimization procedures
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(a) (b)

Figure 6: Example 2. Optimal design in case of linear elastic material with equal behavior in tension and compression
(a) and compression–only material (b).

(a) (b)

Figure 7: Example 2. Principal stresses in the elements of the optimal design in case of conventional material (a)
and compression–only material (b). Blue lines stands for compression whereas red ones for tension.

achieving the layouts in Figure 3(b) and Figure 3(c). Both simulations refer to the same mesh made

of 4608 finite elements. The optimization enforcing the compression–only constraint finds smooth

convergence for a slightly increased value of the volume fraction. It calls for some additional steps

with respect to the conventional approach.

4.1.2. Example 2. Anti–funicular load paths in compression–only structures

The square domain represented in Figure 2(b) is considered, along with a vertical force acting

in the middle of the upper side. Constraints against vertical displacements are provided along
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Figure 8: Example 2. Convergence plot for the optimal layouts in Figure 6(a) and Figure 6(b).

the external regions of the lower side, whereas horizontal displacements are constrained along the

upper half of each vertical side of the specimen.

Figure 6(a) shows the optimal design in case of conventional material. Enforcing α = 3, the

symmetric behavior in tension and compression leads to a strut–and–tie model that suggests the

adoption of a horizontal tensile–stressed reinforcement along the lower side of the specimen, see

Figure 7(a).

Figure 6(b) shows the optimal layout achieved by the proposed procedure for compression–

only materials for the same value of the parameter α. The optimal design takes full advantage of

the lateral constraints, which allow steering the inclined struts along the vertical direction. The

strut–only load path visualizes the anti–funicular polygon for the applied load, providing details

on the connection among its members to preserve equilibrium with no need for any reinforcement,

see Figure 7(b).

The above simulations show that the structural behavior of the considered specimen depends

remarkably on the assumption concerning the material modeling. According to the strut–and–tie

model in Figure 6(a), the more stressed zones of the specimen are those located in the inner region.
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Figure 9: Geometry, boundary conditions and possible reinforcement for Examples 3–6 concerning structures made
of reinforced concrete.

Looking at the strut–only model in Figure 6(b), the outer regions of the specimen are crucial to

the equilibrium of the unilateral structural element.

Figure 8 confirms smooth conference of the proposed algorithm, pointing out the increased

volume–fraction required by the strut–only–model to preserve the same strain energy stored by

the STMs under the same load.

4.2. Reinforced concrete specimens

4.2.1. Example 3. A cantilever beam

Numerical investigations are performed concerning the cantilever beam represented in Figure

9(a) and enforcing a compliance constraint with α = 3.

A first simulation is performed without assigning any fixed region of reinforcement, thus looking

for the best STM with no additional manufacturing constraint. Figure 10(a) shows the optimal
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(a)

(b)

Figure 10: Example 3. Optimal design and strut–and–tie model in case of linear elastic material with equal behavior
in tension and compression: no prescribed reinforcement (a); prescribed longitudinal rebar and stirrup (s = h) (b).

(a)

(b)

Figure 11: Example 3. Optimal design and strut–and–tie model in case of compression–only material: prescribed
longitudinal rebar (a); prescribed longitudinal rebar and stirrup (s = h) (b).
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Ex. Fig. Material W/W0 C C/C0

3 10(a) Conventional 0.287 236.02 3.0

3 10(b) Conventional (s = h) 0.322 236.02 3.0

3 11(a) Compression–only 0.398 236.02 3.0

3 11(b) Compression–only (s = h) 0.391 236.02 3.0

4 12 Conventional 0.218 122.90 4.0

4 13(a) Compression–only (s = 3/2h) 0.441 122.90 4.0

4 13(b) Compression–only (s = h) 0.415 122.90 4.0

4 13(c) Compression–only (s = 2/3h) 0.404 122.90 4.0

5 14 Conventional 0.326 860.61 5.0

5 15(a) Compression–only 0.316 3442.44 20.0

5 15(b) Compression–only 0.409 1721.22 10.0

5 15(c) Compression–only 0.518 860.61 5.0

6 16 Conventional 0.284 306.18 1.5

6 17 Compression–only 0.394 306.18 1.5

Table 3: Examples 3–6. Comparison of the optimal layouts in terms of non–dimensional weight W/W0, compliance
C (Nm) and non–dimensional compliance C/C0. Subscript 0 refers to the full domain (virgin material).

design achieved through the conventional formulation in Eqn. (5), along with the strut–and–tie

model that can be derived. Inclined compressive paths (dashed lines) connect the loads to the

lower corner along the clamped boundary, whereas several bars of reinforcement are needed to

steer the stress flux preserving the equilibrium.

An additional simulation is performed to investigate results provided by Eqn. (5) when ad-

dressing a specimen with prescribed steel reinforcement. A rebar made of an upper longitudinal

bar and a central stirrup is considered, see Figure 9(a). The optimal design is represented in

Figure 10(b). Table 3 shows that an increased amount of material is needed to meet the com-

pliance requirement with respect to the solution of Figure 10(a), confirming that the stirrup is

not beneficial to the optimal solution being an additional constraint. The achieved STM is not so

different with respect to the previous one and an inclined tie arises with respect to the assigned
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Figure 12: Example 4. Optimal design and strut–and–tie model in case of linear elastic material with equal behavior
in tension and compression and no prescribed reinforcement.

reinforcement layout. As expected, the conventional approach for materials with equal behavior

in tension and compression can not be used to investigate load paths arising in concrete structures

that are reinforced with prescribed rebar cage of any shape.

To this end, the proposed formulation modeling compression–only concrete along with fixed

region of conventional material can be successfully implemented. Figures 11 show the optimal

layouts and relevant strut–and–tie models provided by Eqn. (6), prescribing an upper horizontal

bar only, see Figure 11(a), or the longitudinal rebar coupled with a central stirrup, see Figure

11(b). The same compliance constraint with α = 3 is considered in both cases. In Figure 11(a),

two thick struts connect the loaded points to the lower corner of the clamped side. The equilibrium

at the loaded nodes is preserved by the fixed longitudinal steel bar. Focusing on the right load,

a strong compressive action arises in the strut, due to its small inclination with respect to the

steel bar, approximately 25 degrees. In Figure 11(b), the achieved STM takes full advantage of

the central stirrup to create a truss–like structure whose right strut has an increased inclination

(approximately 35 degrees) to solve the equilibrium of the loaded node with reduced stresses.

Table 3 shows that the achieved design meets the compliance constraint calling for a volume

fraction that is lower than the previous design. This confirms the positive contribution due to

shear reinforcement and the robustness of the proposed approach exploiting stirrups to find stiff

STMs for compression–only materials.
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(a)

(b)

(c)

Figure 13: Example 4. Optimal design and strut–and–tie model in case of compression–only material: prescribed
longitudinal rebar and stirrup with s = 3/2h (a); s = h (b); s = 2/3h (c).

4.2.2. Example 4. The MBB beam

Half of the MBB beam depicted in Figure 9(b) is analyzed, due to symmetry reasons, adopting

a mesh with 6912 finite elements. At first the formulation in Eqn. (5) is used to investigate an

optimal STM for a specimen without any a priori assumption on the reinforcement, enforcing

α = 4. The well–known truss–like structure represented in Figure 12 arises, suggesting the use of

struts and ties with an inclination of 45 degrees with respect to the horizontal axis.

The formulation in Eqn. (6) is subsequently used to investigate STMs for the specimen with

assigned rebar: a longitudinal reinforcement at the lower side of the domain along with a transversal

reinforcement with different stirrup spacing s. The same compliance constraint enforcing α = 4

is adopted. Figures 13(a), (b) and (c) show the optimal layouts and relevant STMs found for

s = 3/2h, s = h and s = 2/3h respectively, being h the height of the specimen, see Figure 9(b).

A set of truss–like structures is achieved that is in full agreement with established models

provided by the technical literature on the shear reinforcement of beams, see in particular [2,

3]. No tensile–stressed member is found, except for the prescribed longitudinal and transversal
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Figure 14: Example 5. Optimal design and strut–and–tie model in case of linear elastic material with equal behavior
in tension and compression. A fixed non–design region of reinforcement is assumed at the extrados of the specimen.

reinforcement. Every STM exploits all the available ties, meaning that the number of struts found

in the optimal layout strictly depends on the stirrup spacing. For s = 3/2h two compressive bars

arise, having an inclination of approximately 30 degrees with respect to the horizonal axis. The

overall volume fraction is around 44%. An improved stirrup geometry with s = h allows for three

struts with an optimal inclination of 45 degrees. This design achieves a decrease in terms of weight

with respect to the previous solution that is around 6%. For s = 2/3h the inclination of 45 degrees

is preserved for most of the struts found in the lower part of the beam. These struts are deviated

by the stirrups to join the horizontal compressive stress path at the extrados of the beam. Three of

the four stirrups manage two struts each, meaning that the tensile stress can be non–homogenous

along a single transversal bar, for s < h. The achieved layout slightly reduces the overall volume

fraction with respect to the previous solution, with a decrease that is around 3%.

4.2.3. Example 5. A shear wall

This example refers to the shear wall in Figure 9(c). Figure 14 shows the optimal design

and strut–and–tie model achieved in case of conventional material with equal behavior in tension

and compression, assuming a fixed non–design region of reinforcement along the extrados of the

specimen. A compliance constraint enforcing α = 5 has been adopted to perform this simulation.

The same result arises for α = 10 and α = 20, as considered next.

The formulation in Eqn. (6) is implemented to investigate the response of the wall, assuming

the compression–only behavior for the concrete and considering four vertical bars of reinforcement

that are symmetrically distributed along the width. Figure 15(a), (b) and (c) show the optimal
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(a)

(b)

(c)

Figure 15: Example 5. Optimal design and strut–and–tie model in case of compression–only material for a prescribed
vertical rebar: with C/C0 = 20 (a); C/C0 = 10 (b); C/C0 = 5 (c).

layouts and relevant STMs found for increasing requirements in terms of allowed strain energy,

i.e. α = 20, α = 10 and α = 5 respectively. In the first case, the whole shear load is carried

by the external vertical reinforcement along with a single strut inclined of about 45 degrees with

respect to the horizontal axis. A minor deviation of the axis of this element is due to one of the

inner bars of the vertical reinforcement. The scheme described above is doubled when the allowed

strain energy is halved. The strictest requirement calls for the parallel activation of a third scheme,

leading to a third strut whose inclination is ruled by the spacing of the vertical reinforcement.

This example shows that strut–and–tie models can exploit some of the available rebar or the full

cage, depending on the strain energy limit enforced through the compliance constraint. If compliant

layouts are allowed, the proposed procedure provides load paths involving only elements that are

strictly needed to achieve the equilibrium. Requiring an increased stiffness, more articulated STMs

can be mobilized.
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Figure 16: Example 6. Optimal design and strut–and–tie model in case of conventional material with prescribed
horizontal reinforcement.

Figure 17: Example 6. Optimal design and strut–and–tie model in case of compression–only material with prescribed
horizontal reinforcement.
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4.2.4. Example 6. Stress diffusion in compression–only concrete

Conventional formulations for the minimization of the elastic strain energy generate equili-

brated truss–like layouts but do not include any explicit enforcement of full consistence of the

achieved STM with respect to the stress regime acting in the original structure. Among the oth-

ers, [7, 27] show that auto–equilibrated compression–only loads may originate strut–only designs,

without providing the expected reinforcement that should be placed along the principal tensile

directions of the structural element.

To investigate this issue a stress diffusion problem is considered, assuming the geometry and

boundary conditions of the specimen reported in Figure 9(d).

A preliminary simulation is performed through Eqn. (5), prescribing a fixed horizontal rein-

forcement layer at half height of the specimen. As expected, the achieved optimal STM is a single

vertical strut connecting the load and the ground constraints. The steel bar is inactive, see Figure

16.

Eqn. (6) is adopted to assess the capability of the proposed approach when copying with the

reinforced specimen made of compression–only concrete. Figure 17 shows the optimal design and

and the feasible stress paths read through the STM. Part of the load is directly transferred to the

ground by the vertical strut. A parallel load paths is additionally needed for the equilibrium of the

compression–only medium. Struts inclined of about 30 degrees with respect to the force direction

confine the loaded node. They are deviated along the vertical axis by the tensile stresses arising

in the prescribed reinforcement bar.

The achieved STM is in full agreement with detailing solutions that are usually exploited in

prestressed concrete structures to manage spalling stresses at the anchorages.

It is recalled that strut–and–tie modeling assumes concrete as a compression–only material. The

proposed approach succeeds in providing a feasible load path for the considered stress diffusion

problem because it effectively enforces this assumption within the optimization procedure.
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5. Conclusions and perspectives

A numerical method has been proposed to cope with the energy–based topology optimization of

compression–only materials and generate optimal strut–only models for structures made of plain

concrete. The approach exploits hyper–elasticity of the considered unilateral material to solve

both the inherently non linear equilibrium equation and the topology optimization problem within

the same minimization procedure. No handling of the load history is required, thus avoiding

demanding incremental procedures for the iterative solution of the state equation.

Numerical investigations addressing plain concrete specimens show that any thick strut arising

in the optimal design is robustly managed by the proposed optimization approach. Indeed, the

equivalent orthotropic modeling allows for full feasibility of the achieved layouts with respect to

the assumption of unilateral behavior of the material. Stress flows are completely free from any

tensile component, both in the vicinity of the ground constraints (Example 1) and in the bulk of

the elements (Example 2). It must be remarked that feasible load paths are noticeably affected

by the compression–only assumption. Strut–only anti–funicular paths replace optimal truss–like

layouts found for linear elastic isotropic material with equal behavior in tension and compression.

Converge is smooth, whereas the number of iterations is similar to conventional methods.

The proposed numerical approach can be also used to generate optimal strut–and–tie models

for concrete structures where fixed regions of reinforcement are prescribed. In full agreement

with the STMs theory, the compression–only material that models concrete does not allow for

any additional tensile member. Therefore, the arising optimal strut–and–tie models are forced to

rely upon the prescribed reinforcement only. Numerical simulations address load paths in case of

conventional rebar cages. Both longitudinal and transverse reinforcement are addressed (Example

3), investigating the effect of stirrup spacing in beams (Example 4) and recovering established

truss–like models of the technical literature on shear reinforcement. Depending on the strain

energy limit that is enforced through the compliance constraint, strut–and–tie models exploit
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some of the available rebar or the full cage (Example 5). In case of stress diffusion problems the

achieved optimal load path takes full advantage of any reinforcement for lateral spreading, whereas

conventional formulations provide unfeasible strut–only models (Example 6).

The proposed investigations are limited to plane problems. The ongoing research is mainly

devoted to the extension of this approach to the three–dimensional framework, having the main

goal of investigating stress paths in specimens such as reinforced box–shaped structures or deep

beams calling for solid modeling.
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