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Abstract: Photovoltaic (PV) systems are becoming a relevant electricity source, characterised by a 

growing trend in the last years. This paper analyses the economic feasibility of investments in 

industrial PV systems of different sizes (200 kW, 400 kW, 1 MW, and 5 MW), in the absence of 

subsidies, and in a mature market (Italy). The selected indicators for this kind of assessment are net 

present value (NPV) and discounted payback time (DPBT). Furthermore, the environmental 

advantage in comparison to fossil sources of energy is evaluated through the reduction of carbon 

dioxide emissions (ERcd). Finally, a sensitivity analysis on critical variables (percentage of self-

consumed energy, average annual insolation rate, annual electricity purchase price, annual 

electricity sale price, unitary investment cost and opportunity cost) is conducted. Results highlight 

the strategic role of self-consumption in a market characterised by an absence of public policy 

incentives and the presence of interesting economic opportunities for industrial applications. 
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1. Introduction 

Renewable energy sources (RES) are able to cope with global economic crisis, unpredictable oil 

price oscillations and environmental issues [1–4]. In fact, renewable energy technologies, pushed also 

by governmental incentives, saw in the last decade an incredible increase in their application, both in 

private and public contexts. Among them, PV systems present a significant growth. In fact, the 

European Photovoltaic Industry Association (EPIA) [5] shows that PV technology has grown globally 

over the past five years with a remarkable rate (from 24 GW worldwide in 2009 to 178 GW in 2014), 

and is now seen as a strategic electricity source. Europe's contribution to the cumulative PV 

installations was equal to 49% in 2014, while was 59% in 2013. 

Furthermore, solar energy can be used not only for electricity production, but also for heat 

generation. For example, the combination of solar systems and heat pumps (HP) can add profits and 

reduce environmental pollution with a net saving rate of about 41% of energy consumption per unit 

investment for cooling and 35% for heating [6,7]. Another interesting application is represented by a 

combination of an energy storage system (ESS) with a PV system [8]. This way, with an ESS it is 

possible to increase the self-consumption quota by 10%–24% with 0.5–1 kWh per installed kW of PV 

power [9]. The other main technology in able to increase PV self-consumption is the demand side 

management (DSM) [10]. A review on this topic quantifies this value in 2%–15% points [9]. DSM can 

be combined also with ESS to further increase the self-consumption. In a futuristic scenario, 

characterized by an expansion of the distributed generation of energy, smart grids could help to better 
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integrate RES with distribution and transmissions systems [11]. In fact, they are able to provide 

several beneficial utilities, like the optimization of production and consumption of energy, power 

monitoring and data provision. [12] Micro-grids are a very specific portion of a smart grid [13]: the 

first operates in order to optimize energy fluxes, while the second tries to solve power’s unbalances 

issues and other technical problems in real time [14]. Consequently, forecasting methods could play 

a fundamental role in this context [15] and the use of micro-grids powered by PV systems could 

contribute significantly to global energy requests [13]. 

The role of PV systems in industrial contexts is extremely important to reach the World’s 

sustainability goals [16]. From the sustainability point of view (both in economic and environmental 

terms), these technologies are been analysed by many authors [17–20]. Feed-in Tariff (FiT) incentive 

schemes encourage and accelerate the deployment of PV installations in several countries, and 

represent the preferable tool to develop new markets [21]. Otherwise, in the absence of support 

mechanisms, the profitability of PV facilities is completely related to the self-consumption share [22–

24]. This paper performs an economic assessment of PV systems in industrial applications. The 

analysis is based on an economic model and includes a sensitivity analysis considering different 

ranges of several important decision parameters. This assessment will be contextualized in the Italian 

PV sector, and could give a clear view to other national governments that are going to introduce 

enabling strategies for the diffusion of RES. 

2. Materials and Methods 

2.1. The Italian Photovoltaic (PV) Sector Status 

The Italian electric sector is characterized by a strong presence of RES. In 2014, they represented 

43.3% of the national production and 37.5% of the national consumption. The PV systems growth rate 

was significant (Figure 1) [25]: 

 The installed power increased from 477 MW to 18,285 MW in the 2008–2014 period, with 52% of 

installations in 2011; 

 The electric generation grew from 193 GWh to 23,229 GWh in the 2008–2014 period, with a 2014 

growth rate of 9% in comparison to 2013; 

 The PV electric production is equal to 8.7% of the national production and to 7.5% of the national 

consumption. These values in 2008 were less than 0.1%; 

 The 2014 installed power mainly referred to residential plants (about 59% of them has a power 

≤20 kW). Big plants were hugely reduced (12% and 4% for 201–1000 kW and >1 MW power 

plants, respectively);  

 The 2014 installed power was mainly located in the northern part of Italy, characterized by less 

favourable insolation rates (Lombardia 14.2%, Veneto 12.1%, Emilia Romagna 11.6%, Lazio 7.9%, 

Piemonte 7.7% and Toscana 7.4%). 

2.2. Policy Aspects 

The 4th FiT scheme applied a specific tariff to the energy produced. Instead, the 5th FiT scheme 

considered an all-inclusive FiT for the share of net energy injected into the grid and a premium rate 

on the share for net energy consumed on site. After the 5th FiT scheme, the Decree approved by the 

Italian Council of Ministers foresees a 50% tax deduction (compared to the usual 36%) for PV plants 

for private and small individual businesses purposes. 

The deduction is divided into ten equal yearly amounts [17]. Furthermore, Gestore Servizi 

Energetici (GSE—the institutional actor responsible for the control of renewable energies plants) 

provides additional support services, as the Net Metering Service. It, activated on request by the 

parties, regulates the electricity generated by a consumer/producer in an eligible on-site plant and 

injected into the grid and the one withdrawn from the grid. Hence, a contribution is paid to customers 

based on both injections and withdrawals of electricity in a given calendar year and on their market 

values (for PV plants up to 500 kW). Under simplified purchase and resale hypotheses, producers sell 
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the electricity generated and injected into the grid to GSE at the local price or at a minimum price 

guaranteed on the first 2 million kWh per year. A new interesting opportunity for customers is 

represented by the Efficient Systems for Users (SEU). In this case, the energy produced and consumed 

within the SEU is free from grid and system fees, with lower rates if compared to energy withdrawn 

from the public grid. For producers, the benefit lies in the sale of the energy at an above-market price 

[26]. 

  
(a) (b) 

  
(c) (d) 

Figure 1. The growth of photovoltaic (PV) in Italy (2008–2014) Source: [25]. * = Cumulative value 

(<2008–2014); ^ = Specific value (2014). 

2.3. Environmental Impact 

The substitution of fossil fuels with RES allows the reduction of environmental pollution, 

premature mortality, lost workdays and overall healthcare costs [27–29]. In order to evaluate the 

environmental advantages, a comparison between CO2 emissions released by a PV plant per unit of 

produced energy (𝐸cd
PV) and the ones released by fossil fuels (𝐸cd

FF) is required. These data will be 

multiplied by the overall produced energy (EOut) [30]. 

Some authors have quantified emissions released by a PV plant at 81 gCO2eq/kWh, of which 

93.7% are caused by PV panel manufacture [31]. Instead, fossil sources emissions were quantified in 

771 gCO2eq/kWh [32]. This last value sees oil and natural gas weighing in at 47% and 36%, 

respectively. Coal only accounts for 17% because, even if more pollutant than the previous sources, 

it is less present within the Italian energy mix. Hence, it is possible to estimate the environmental 

savings at 690 gCO2eq/kWh. It is important to underline that a PV plant allows an interesting 

reduction of pollutant emissions, but it is not possible to define with precision this value, given the 

338 723

2326

9454

3480

1440
385

18,285

2008 2009 2010 2011 2012 2013 2014 Total*

Annual installed PV capacity (MW)

MW installed Final MW

193 484
1197

8794

7945

2596

2070 23,299

2008 2009 2010 2011 2012 2013 2014 Total*

PV energy production (GWh)

GWh increase Initial and Final GWh

0.06 0.14
0.4

3.1

2.8

1.1

1.1 8.7

2008 2009 2010 2011 2012 2013 2014 Final^

% PV of national energy production

% PV increase Initial and Final % PV

0.06 0.14
0.4

2.6

2.5

1.0

0.8 7.5

2008 2009 2010 2011 2012 2013 2014 Final^

% PV of national energy consumption

% PV increase1 % PV increase2



Energies 2015, 8, page–page 

4 

uncertainty characterizing emission values related to each energy source [33]. Furthermore, the 

environmental benefit is quantified equal to 20.1 tCO2eq per installed kW during the entire lifecycle 

of a PV plant (about 20 years) [32]. 

Finally, the scientific literature shows that the recycling of PV modules is an actual and 

interesting topic [34]. From an environmental point of view, they allow a savings of about 800–1200 

kgCO2eq per 1 ton of silicon PV modules [35]. However, from an economic point of view, there is a 

loss of about 4.2 € and 1.9 € per kg of treated PV modules, calculated for two recycling plants with 

capacities of 185 t and 1480 t, respectively [36]. Some authors have observed that the optimized scale 

able to guarantee profitability is 19,000 t [37]. However, a current solution could be represented also 

by a correct mix of different e-wastes [38]. 

2.4. Economic Assessment 

Profits coming from the implementation of PV plants are related to both incentive tariffs in 

developing markets [19] and self-consumption in developed markets [22]. On the one hand, 

incentives allowed the development of a supply chain and a relevant turnkey plant cost reduction 

(which can increase the competitiveness of the sector), with benefits in terms of electric system 

sustainability. On the other hand, the cost needed to support this development was transferred as 

tariffs onto electricity bill and, consequently, added to consumers’ costs. The environmental 

advantage can be quantified in economic terms through the Social Cost of Carbon (SCC). It is 

evaluated in 20 €/tCO2eq [39], or equal to an initial value of about 15 €/tCO2eq, increasing over time 

[40]; a recent paper suggested a decrease of this value, equal to 6 €/tCO2eq [41]. 

From the financial perspective, the main variable influencing revenues is represented by 

incentive tariffs, whatever the size. In fact, this value can be equal to 59%–65% [32] or 50%–57% [42]. 

From the cost point of view, investments greatly influence the profitability of plants. However, cost 

reductions in 2014 were relevant, if compared to 2010 data [22]. Costs decreased from 4500 €/kW to 

2000 €/kW (excluding Value Added Tax) for 3 kW plants, from 3500 €/kW to 1280 €/kW and from 

2800 €/kW to 800 €/kW for 200 kW and 1 MW plants, respectively. Finally, another operational 

parameter influencing results is the insolation rate. Thus, some regions in the southern part of Italy 

can register NPVs that are double than the ones in the northern part of Italy [43]. 

The assessment of the economic performance of residential PV plants was assessed by [17] under 

different incentive structures. These range from 4519 €/inhabitant to 5050 €/inhabitant under a feed-

in premium tariff in 2012, to 2756–3150 €/inhabitant under all-inclusive FiT in 2013, to 1920–2210 

€/inhabitant under the 50% tax deduction scenario in 2013, up to 2300–2460 €/inhabitant under both 

50% tax deduction in 2014 with a reduction of investment costs in comparison to the previous year. 

Table 1 shows some plant dimensions related to industrial applications. In general, there is a clear 

non-profitability of some plants focused on selling all of the produced energy. 

Table 1. Economic analysis of industrial PV systems. 

Size Value (€/kW) Reference Size Value (€/kW) Reference 

200 kW (−115)–180 1 [22] 1 MW 400–550 1 [22] 

200 kW (−740)–560 2 [22] 1 MW 90–740 2 [22] 

400 kW 160–310 1 [22] 1 MW 800–1200 2 [42] 

400 kW (−150)–500 2 [22] 1 MW 274–2638 2 [44] 

1 MW 1561 1 [32] 5 MW (−510)–3200 2 [45] 

1 MW 576–2513 2 [32] 5 MW 1225 1 [32] 

1 MW (−296)–3691 2 [45] 5 MW 340–2128 2 [32] 

1 Baseline scenario; 2 Alternative scenario. 

The PV plants’ profitability evaluation under non-incentivized electric markets scenarios has a 

relevant role. In fact, the incentive policy mission is the support of the sector development till it 

becomes competitive, and not a perpetual assistance [24,46,47]. 
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2.5. Model Assumptions 

The profitability analysis of residential PV plants investments is conducted on the base of 

Discounted Cash Flow (DCF) [22,48]. NPV is defined as the sum of present values of individual cash 

flows and DPBT represents the number of years needed to balance cumulative discounted cash flows 

and initial investment. Furthermore, it is possible to evaluate the ERcd, that defines the environmental 

advantage from the amount of energy produced (EOut) using a PV system compared to the use of 

fossil fuels. The annual energy output of a PV system depends on several factors and it can be 

calculated by considering several factors: average annual insolation rate, optimum angle of tilt, 

module efficiency, balance of system (BoS) efficiency, active surface, nominal power of PV modules 

and number of PV modules to be installed [17,31,49]. Due to the degradation time of the PV system 

components’ performances, the efficiency cannot be constant over time and, consequently, an 

efficiency reduction factor is considered. A useful technical parameter is the performance ratio (PR). 

PR, defined as the ratio of actual and theoretically possible energy outputs, can be used to determine 

the efficiency of PV systems [50]. Consequently, it can be evaluated after both the realization of the 

project and the sampling period (about 1 year). Nowadays, PR is equal to 90% in some PV systems 

[51]. 

The used model is based on recent scientific papers [22,46] and it considers all the relevant items 

and gives values that are similar to the ones found in business plans proposed to consumers. This 

way, it can be used directly for real applications. Furthermore, a survey conducted among senior 

managers, policy makers, and researchers with experience in energy decision-making processes, 

highlighted that NPV is the indicator presenting the highest relevance in reaching the sustainability 

goal. The potential revenues from PV plants come from: (i) energy internal consumption savings and 

(ii) sale of energy not for internal consumption. The investment cost is the main item of expenditure 

and it is covered by third party funds. The operating cost is low due to the free nature of solar 

radiation and the limited maintenance costs. The reference mathematic model is described as follows: 

NPV = ∑ 𝐶𝑡/(1 + 𝑟)𝑡

N

𝑡=0

= ∑(𝐼𝑡 − 𝑂𝑡)/(1 + 𝑟)𝑡

N

𝑡=0

 (1) 

∑ 𝐶𝑡/(1 + 𝑟)𝑡

DPBT

𝑡=0

= 0 (2) 

𝐼𝑡 = 𝑆𝐶el,𝑡 + 𝑆𝑃el,𝑡 ∀t = 1,  ··, N (3) 

0𝑡 = 𝐶lcs,𝑡 + 𝐶lis,𝑡 + 𝐶m,𝑡 + 𝐶ass,𝑡+𝐶ae,0+𝐶ri,10 + 𝐶tax,𝑡 ∀t = 1,  ··, N (4) 

𝑆𝐶el,𝑡 = 𝑥𝑡
𝑐 × 𝑝𝑡

𝑐 ∀t = 1,  ··, N (5) 

𝑆𝑃el,𝑡 = 𝑥𝑡
𝑠 ∗ 𝑝𝑡

𝑠 ∀t = 1,  ··, N (6) 

𝑥𝑡
𝑐 = ωself,c × 𝐸Out,𝑡 (7) 

𝑥𝑡
𝑠 = ωsold × 𝐸Out,𝑡 ωself,c + ωsold = 1 (8) 

𝐸Out,𝑡 = 𝑡r × 𝐾f × ƞm × ƞbos × 𝐴cell × 𝑃f × ƞf (9) 

𝐸Out,𝑡+1 = 𝐸Out,𝑡 × (1 − d𝐸f) ∀𝑡 = 1,···, N (10) 

𝑝𝑡+1
𝑐 =  𝑝𝑡

𝑐 × (1 + infel) (11) 

𝑝𝑡+1
𝑠 =  𝑝𝑡

𝑠 × (1 + infel) (12) 

𝐶inv = 𝐶inv,unit × 𝑃f × ηf (13) 

𝐶lcs,𝑡 = 𝐶inv/𝑁debt ∀t = 0 … Ndebt−1 (14) 

𝐶lis,𝑡 = (𝐶inv − Clcs,t) × rd ∀t = 0 … Ndebt−1 (15) 

𝐶m,t = 𝑃Cm × 𝐶inv × (1 + inf) ∀t = 1,  ··, N (16) 
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𝐶ass,t = 𝑃Cass × 𝐶inv × (1 + inf) ∀t = 1,  ··, N (17) 

𝐶ri,10 = 𝑃Ci × 𝐶inv (18) 

𝐶tax,𝑡 = 𝑆𝑃el,t × 𝑃Ctax ∀t = 1,  ··, N (19) 

𝐸𝑅cd = ∑(𝐸cd
FF − 𝐸cd

PV) × 𝐸Out,𝑡

N

t=1

 (20) 

As already underlined in Section 2.4, the economic result is directly influenced by decisions 

related to both dimensions (standards size of industrial plants are 200 kW, 400 kW, 1 MW and 5 MW) 

and location of the plant (the authors selected an average value characterizing Italy, equal to 1450 

kWh/m2*y). Alternative scenarios will be assessed with the sensitivity analysis. Economic and 

technical inputs considered in this analysis are presented in Table 2. The contribution related to the 

net metering service (given the complexity and the number of variables to be considered), is 

evaluated by increasing the energy price produced and sold to the grid of a certain delta, according 

with [22]. 

Table 2. Economic and technical input data-sources: [17,52]. 

Variable Value Variable Value 

Acell 7 m2/kWp 𝑝𝑡
𝑐 13 cent€/kWh 

Cae 12.5 1–15.6 2–25 3–70 4 k€ 𝑝𝑡
𝑠 3.9 3,4–8.3 1,2 cent€/kWh 

Cinv,unit 1280 1–1040 2–800 3–700 4 €/kW 𝑃Cass
 0.4% 

dEf 0.7% 𝑃Ci
 15% 

Ebos 85% 𝑃Cm
 1% 

Ef 16% 𝑃Ctax 43.5% 

inf 2% 𝑃f f (size) 

infel 1.5% r 5% 

kf 1.13 rd 3% 

N 20 y tr 1450 kWh/m2*y 

Ndebt 15 y ωself,c 50% 

ηf f (size) ωsold 50% 

Size: 1 = 200 kW; 2 = 400 kW; 3 = 1 MW; 4 = 5 MW. 

3. Results 

A photovoltaic (PV) system intercepts sunlight and permits the generation of electric energy. 

Starting from Equations (9) and (10) it is possible to calculate the amount of energy produced over 

the entire useful life of plants, set equal to 20 years. This electric energy allows two main results (Table 

3): (i) a reduction of pollutant emissions and (ii) the generation of economic opportunities. 

Table 3. Indicators–baseline scenario. 

Title 200 kW 400 kW 1 MW 5 MW 

Energy output of PV system (MWh) 5787 11,574 28,936 144,680 

Reduction in the emissions of carbon dioxide (tCO2eq) 3993 7986 19,966 99,830 

Discounted payback time (DPBT) (y) 16 5 4 2 

Net present value (NPV) (k€) 56.2 236.7 655.1 3928.9 

NPV/power (€/kW) 281 592 655 786 

Regarding ERcd, it is calculated according to Equation (20). For example, by considering the 200 

kW system, a value of 3993 tCO2eq (5787 MWh × 690 gCO2eq/kWh) is obtained. Given the following 

linear relationship, and considering the same location for all plants, the environmental advantage 

related to the 400 kW system will be double that of the previous plant. Results will be therefore equal 

to 20 tCO2eq per kW installed and it is almost the same as proposed in Section 2.3. In addition, with 

the aim of making the production of electricity greener, the use of PV panels allows the achievement 

of greater energy independence. 
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Looking at economic results, in accordance with Equations (1) and (2), it is clear as DPBT is 

advantageous, independently from the considered dimensions. However, the 200 kW plant is not 

interesting from an industrial point of view, given its cut off period equal to 16 years [22]. The 5 MW 

plant presents the best performance (2 years), similar to values proposed by [32]. NPV results are 

coherent with DPBT values. The profitability of PV systems is verified in non-subsidized markets. 

Values range from 281 €/kW for the 200 kW plant to 786 €/kW for the 5 MW plant. These results are 

generally lower in comparison to values reported in Table 1, but nevertheless economic opportunities 

are present. It is useful to underline the following points: 

 The 400 kW plant results (if compared to 200 kW), and 5 MW plants results (if compared to 1 

MW), are expected, given they have the same energy selling price and the same unitary 

investment cost reduction; 

 200 kW and 400 kW plants, while exploiting the net metering service, present less advantageous 

economic results. This means that cost reduction is more significant than revenue items. 

In order to give solidity to the obtained results, the following section will economically evaluate 

alternative scenarios, representing multiple case studies. 

4. Sensitivity Analysis 

The obtained results are related to hypotheses on input variables. Hence, a strong variance of 

the expected economic profitability results could occur. This limit can be addressed by implementing 

a sensitivity analysis on critical variables [43]. In this sense, such an analysis is able to define dynamic 

scenarios, in line with similar studies [13,24]. The assessment can be done by considering different 

plant dimensions, such as 200 kW (Figure 2), 400 kW (Figure 3), 1 MW (Figure 4) and 5 MW (Figure 

5) and sensitivity analysis is performed, varying only one critical variable: 

 Percentage of self-consumed energy ( ωself,c ), assesses the level of harmonization between 

consumption and production of energy. This variable is relevant for the economic feasibility 

assessment. Based on both consumption behaviours and change adaptation of investors 

different scenarios are defined, with additional increments of about 10% (in extreme cases, ωself,c 

is equal to 0% if all the produced energy is sold, and equal to 100% if all the produced energy is 

consumed). 

 Average annual insolation (tr), assesses the level of insolation of the plant. Italy, because its 

conformation, presents different insolation levels. Hence, respect to the base value of about 1450 

kWh/m2 per year, four scenarios are considered, two pessimistic (1300 kWh/m2·y and 1375 

kWh/m2·y), and two optimistic (1525 kWh/m2·y and 1600 kWh/m2·y) ones, where extreme values 

characterize the country’s northern and southern regions respectively. 

 Annual electricity purchase price (pc), assesses the reduction of electrical energy costs reported 

in the energy bill. This is the main revenue item in non-incentivized contexts. An increment of 

pc is a positive scenario for PV investors. Variations are in the range of about 1–2 cent €/kWh, 

both in positive and negative terms. Given that, this variable can assume values going from 11 

cent €/kWh up to 12 cent €/kWh (pessimistic scenarios), or 14 cent €/kWh up to 15 cent €/kWh 

(optimistic scenarios). 

 Annual electricity sales price (ps), assesses incomes coming from the selling of extra energy. This 

is similar to the previous variable and, so, it has the same variation. For example, ps (that in the 

baseline scenario with a 5 MW plant can be equal to 3.9 cent €/kWh, can reach values going from 

2 cent €/kWh and 3 cent €/kWh (pessimistic scenarios), or 5 cent €/kWh and 6 cent €/kWh 

(optimistic scenarios). 

 Unitary investment cost (Cinv,unit), saw a drastic reduction during the last years. Hence, it is 

possible to hypothesize reductions from 100 up to 200 € if compared to basic scenarios. However, 

these optimistic scenarios are compared to pessimistic ones where a reduction of the same value 

(for example, Cinv,unit related to a 200 kW plant-equal to 1280 €/kW in the basic scenario–is 

considered equal to 1100 €/kW and 1200 €/kW in optimistic scenarios, or 1400 €/kW and 1500 

€/kW in pessimistic scenarios). 
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 Opportunity cost (r), assesses a measure of the return coming from an alternative investment 

similar to the considered one in terms of risk level. If compared to the basic value (5%), some 

increases and decreases of about 1% and 2% are assessed. 

The investments profitability is verified in 91% of scenarios taken into consideration and is 

strongly linked to the energy self-consumption level. The self-consumption variable has a significant 

role and it is possible to estimate its breakeven point value explaining the investment profitability: 

 35% for 200 kW plant; 

 18% for 400 kW plant; 

 24% for 1 MW plant; 

 17% for 5 MW plant. 

 

Figure 2. Sensitivity analysis–NPV (k€) for a 200 kW power system. NPV: net present value. 

 

Figure 3. Sensitivity analysis–NPV (k€) for a 400 kW power system. 
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Figure 4. Sensitivity analysis–NPV (k€) for a 1 MW power system. 

 

Figure 5. Sensitivity analysis–NPV (k€) for a 5 MW power system. 

Consequently, eleven of the assessed scenarios presented a negative NPV. Today, the idea to 

implement a PV plant up to sell the entire energy produced is not feasible. In fact, these scenarios are 

unprofitable. Specifically, in an industrial context, even the comparison among different plant 

dimensions is useless. In fact, they are selected only in function of the energy consumption. In this 

view, actors involved in the solar market tend to sell even less products and even more to sell services 

[53,54]. 

This work defined that the installation of a PV plant, if compared to the purchase of electric 

energy from the grid, is convenient and the advantage increases if the self-consumption of energy 

increases. Going from 50% up to 60% self-consumption, 200 kW and 400 kW plants improve their 

NPV of about 180 € per kW installed (NPV equal to 93 k€ and 180 k€, respectively). Instead, 1 MW 

and 5 MW plants increase their NPV of about 240 € per installed kW (NPV equal to 892 k€ and 5113 

k€, respectively). This is caused by the selling prices of energy that characterize 1 MW and 5 MW 

plants, which in fact, as highlighted in Table 2, is lower for these facilities. Figure 6 reports the increase 

of financial results corresponding to an increase of self-consumed energy. It is clear that, 

independently from the analysed size, profitable results are reachable (see Table 1). As evidenced in 

Section 1, technological solutions (e.g., ESS and/or DSM) suitable to this scope were presented in 
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several scientific papers, but an economic feasibility is required to guarantee their diffusion. This 

work quantifies the revenue increases. For example, in a 200 kW plant they are equal to 27 k€ (if the 

adopted solution allows a 10%increase of the self-consumed energy) or 73 k€ (if the increase is equal 

to 20%), in a baseline scenario where it is equal to 50%. This cash inflow would be compared to 

investment and operational costs related to that technologies for the definition of the economic 

feasibility. Furthermore, the obtained results from the sensitivity analysis can even influence initial 

choices of the PV plant sizing. In fact, starting from the calculation of the energy consumption trend, 

and from the related distribution in several days of the year, the choice can be an undersized plant, 

by opting for a reduction in investments. However, that solution could be disadvantageous because 

of a series of aspects: (i) the non-exploitation of available economies of scale; (ii) the non-fulfilment of 

energetic peaks caused by their own energy demand; (iii) the non-consideration of future scenarios 

where energy demand could be synchronized with the PV plant production.  

 

Figure 6. Sensitivity analysis–NPV/Power (€/kW) in function of percentage of self-consumption. 

As evidenced in Section 3, investment costs were reduced in a relevant way, thus increasing the 

solar market competitiveness. Whenever the unitary investment cost is reduced of about 100 €/kW, an 

NPV increase of about 90–120 € per kW installed follows. In fact, by considering a 200 kW plant, NPV 

is equal to 75 k€ and 775 k€ in a 1 MW plant. A previous survey evidenced that the selling price of a 

PV plant depends by several aspects [55]. Today, companies that are better positioned in the market 

are the structured ones that, relying on their technological and managerial expertise, can successfully 

gain share of foreign markets and continue to preside over a national market, which does not have 

the volumes of past years but is still attractive. 

Results show that 200 kW and 400 kW plants constructed in regions with an insolation rate 

higher than 75 kWh/m2 per year compared to the baseline scenario present an higher NPV of about 

100 € per kW installed (NPV equal to 76 k€ and 276 k€ respectively). 1 MW and 5 MW have a less 

relevant increase equal to 85 € per kW installed, even because of the different selling price (NPV equal 

to 740 k€ and 4352 k€, respectively). Investments in southern regions are more advantageous, but 

data in Section 2.1 shows as northern regions invest more. Hence, for southern regions, there exists 

an opportunity that, currently, is not exploited. 

Regarding the electricity selling price, an increase equal to 1 cent €/kWh determines an 

improvement in NPV of about 40–60 € per kW installed. In fact, by considering a 200 kW plant, NPV 

is equal to 64 k€ and 715 k€ in a 1 MW plant. The national energetic policy highly influences this 

value. If a high purchasing price is applied, a centralized system is favoured and the non-consumed 

energy is valued more, particularly with the use of net metering services. Instead, when a low value 

is adopted, the delta profit coming from the non-consumed energy is reduced. Hence, this pushes 

consumers to synchronize their consumptions basing on most productive hours. 

Future scenarios where energy bill costs will be higher than now push consumers to implement 

PV plants. In fact, in the presence of an increase of about 1 cent €/kWh, avoided costs tend to increase 

and NPV goes up of 110 € per kW installed. For example, by considering a 200 kW plant, NPV is 

equal to 78 k€ and 765 k€ in a 1 MW plant. The political approach at the base of this variable is, hence, 

to ask for a higher energy fee from actors using a more polluting energetic mix. This way, they are 
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pushed towards more sustainable plants. Avoided costs on the energetic bill are the main revenue 

item. However, the great influence on results arises from the percentage of self-consumed energy, 

and not from the electricity purchase price. 

The opportunity cost of capital is assessed in different scenarios, because an alternative value 

can be selected basing on national macro-economic conditions, the type of investor and the 

investment reference industrial sector. For example, by considering a lower value of about 4%, the 

NPV related to a 200 kW plant is equal to 71 k€, while is equal to 4425 k€ for a 5 MW plant. By 

consequence, the range variation is contained between 75 € and 100 € per installed kW. 

5. Discussions and Policy Implications 

PV is a policy-driven market. In fact, some countries that adopted new FiT policies are 

characterized by a significant increase of their markets. Instead, other countries that declined political 

support for PV are characterized by a reduction of their markets. The economic crisis characterizing 

a great part of the European landscape can be matched by exploiting the green economy as a 

restarting engine (as highlighted by acts of the conference titled “Circular Economy: boosting 

business, reducing waste” organised by European Commission on 25 June 2015). Renewable energy 

progress reports released by European Commission on 16 June 2015 define that “the sun is the 

World’s primary source of energy, and a clean energy source for heat or electricity”. The increases of 

installed PV power, and the simultaneous reduction of European weight in the global mix, 

demonstrate as these energy choices are taken also from non-European countries. 

This paper confirms that the objectives of environmental protection and economic profit can co-

exist investing in PV plants. Furthermore, the development of RES contributes to the achievement of 

greater energy independence. The analysis of the Italian market is particularly interesting since it is 

a mature market, useful to underline the following points: 

 The incentivizing policy favoured the sector development and, together with efforts done by 

the actors involved in the whole supply chain, allowed it to achieve great results in terms of 

very advantageous investment costs proposed to their customers; 

 The use of PV panels, together with heat pumps, can be economically feasible when the 

thermal energy purchase price is at least higher than the electricity selling price; 

 The development of hybrid plants, typically coupled with biomass–characterised by a non-

intermittent nature, could be adequate for an industrial context with high-energy 

consumptions in the evening hours. In that sense, an important role is played by ESS, even if 

they are currently characterised by high costs; 

 SEUs can constitute an important opportunity, by focusing on the increase of self-consumption. 

In the current state, there are some regulation doubts, (it is applied only for mono-user 

plants), and debates about possible imbalances on distribution network burdens are still 

without an answer; 

 PV investments may be undertaken as an increase of the overall sustainability of the firm 

and, hence, the improvement of the external brand image (also when PV plant’s profits to be 

not in line with company’s benchmarks); 

 The net metering service can offer interesting opportunities and the increase from 200 kW to 

500 kW defined by the government is a positive signal, but has to be related to both 

bureaucratic simplifications and reduction of uncertainty in regulations; 

 Unitary tax deduction, set at 50%, is the legislative support for such investments; the basic 

rate is, in fact, 36%. This policy measure is defined as strategic for the residential sector. 

During the incentives period the plants dimensions were selected also for speculative aims, 

because of the high economic return given by these investments. In the last years, a secondary market 

was developed, in which existing PV plants were bought up in order to obtain greater economic 

returns through the increase of their efficiency with new technological solutions. 

The results of this paper define that: 
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 The profitability of PV systems is strictly linked to the self-consumption share in non-subsidized 

electricity markets, in which electricity purchase price (or savings on the energy bill) is greater 

than the electricity selling price; 

 Sensitivity analysis, considering different ranges of several critical variables, provides a solid 

foundation to the obtained results. The profitability is verified in several scenarios; 

 Revenues derived from an increase of self-consumption can be used in order to evaluate the 

relative costs of alternative solutions, such as: (i) integrated PV-battery systems and/or (ii) 

integrated PV-HP systems. 

Future research will aim to assess the profitability of these alternative scenarios. 

6. Conclusions 

The PV sector registered in the last years significant changes. The growth was exponential, 

initially developing in European regions such as Germany and Italy, and widely spreading in the last 

years in China, USA and Japan. The non-intermittent production, that initially represented a strong 

limitation, today is seen as a simple disadvantage. The scientific literature has confirmed the 

sustainability of this source. Again, the adoption of incentivizing policies has improved the maturity 

level of the sector and its competitiveness. 

This work specifically assessed the Italian context that, being one of the leading nations in the 

sector, can offer valid elements of reflection. Past criticisms against this sector were essentially three: 

(i) incentives that, initially, were offered basing on the energy produced by a PV plant and not on the 

quantity of energy delivered to the grid; (ii) very high incentive values were subsequently translated 

into cost items on the energy bill of the users; and (iii) incentives did not favour only strategic 

investments, but also speculative behaviours with big plants that converted agricultural lands with 

the only aim to sell electrical energy to the grid. It is possible to reach relevant economic results, only 

when there is a harmonization between energetic consumption and production. From the PV plant 

manufacturer side, there is the need to increasingly focus on the selling of services. From the PV plant 

buyer side, the most promising strategy can be the gathering of economic profits from this investment 

and the improvement of the green image of their brand. 

The productions of guaranteed and clean energy, together with economic chances, offer the PV 

sector a strategic role within the national energy mix. After a relevant growth, 2014 and the beginning 

of 2015 saw a critical decrease, also caused by administrative uncertainties and above-cited criticisms. 

This paper has demonstrated that PV systems can represent an investment with interesting 

perspectives and limited risks, even in a non-subsidised market. Given that the mission of incentive 

schemes is to support the development of the sector until it becomes competitive, and it is not a 

perpetual assistance, consequently all countries will see the elimination of incentives. PV systems 

contribute to sustainable development and are a strategic player in the global electricity market. Since 

the electricity contributes more than any other power sector to reduce the share of fossil fuels in the 

global energy mix, consequently PV energy will deliver clean, safe and affordable energy to the 

greater number of citizens all over the world. Even if the residential sector can offer a valid 

contribution in reaching sustainability targets, the industrial sector involvement—characterized by 

bigger plants—is needed. An investment in PV plants makes economic sense and this work has 

considered multiple application cases supporting this affirmation, even in non-incentivized markets. 

Results highlight that the profitability is strictly linked to the self-consumption share and consumers 

can maximize the profits when using the energy in the periods of greatest solar productivity and/or 

have intelligent machinery. In conclusion, this paper defines that the profitability of PV in industrial 

applications does not depend on potential sales to the wholesale electricity market, but rather on 

energy bill savings through self-consumption. 
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Nomenclature 

Acell Active surface 

bos Balance of system 

C Discounted cash flows 

Cae Administrative and electrical connection cost 

Cass Assurance cost 

Cinv Total investment cost 

Cinv,unit Unitary investment cost 

Clcs Loan capital share cost 

Clis Loan interest share cost 

Cm Maintenance cost 

Cri Replacement inverter cost 

Ctax Taxes 

DCF Discounted Cash Flow 

dEf Decrease efficiency of system 

DPBT Discounted payback time  

DSM Demand side management 

Ef Efficiency of system 

𝐸cd
PV Emissions released by a PV plant per unit of produced energy 

𝐸cd
FF Emissions released by fossil fuels per unit of produced energy 

ERcd Reduction of carbon dioxide emissions 

EOut Energy output of the system 

EPIA European Photovoltaic Industry Association 

ESS Energy storage system 

FiT Feed-in Tariff 

GSE Gestore Servizi Energetici 

HP Heat pump 

I Discounted cash inflows 

inf Rate of inflation 

infel Rate of energy inflation 

Kf Optimum angle of tilt 

N Lifetime PV system 

Ndebt Period of loan 

NPV Net present value 

Ƞbos Bos efficiency 

ƞf Number of PV modules to be installed 

ƞm Module efficiency 

O Discounted cash outflows 

pc Electricity purchase price 

ps Electricity sales price 

PCass Percentage of assurance cost 

PCi Percentage of inverter cost 

PCm Percentage of maintenance cost 

PCtax percentage of taxes 

Pf Nominal power of a PV module 

PR Performance Ratio 

PV Photovoltaic 

r Opportunity cost of capital 
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rd Interest rate on loan 

RES Renewable energy system 

SCel Saving energy internal consumption 

SCC Social Cost of Carbon 

SEU Efficient Systems for Users 

SPel Sale of energy not for internal consumption 

t Single period 

tr Average annual insolation 

xc Amount of self-consumed electricity 

xs Amount of electricity sold to the grid 

ωself,c Percentage of energy self-consumption 

ωsold Percentage of the produced energy sold to the grid 
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