
Incremental Syntactic-Semantic Reliability Analysis of
Evolving Structured Workflows

Domenico Bianculli1, Antonio Filieri2, Carlo Ghezzi3, and Dino Mandrioli3

1 University of Luxembourg, domenico.bianculli@uni.lu
2 University of Stuttgart, antonio.filieri@informatik.uni-stuttgart.de

3 Politecnico di Milano, {ghezzi,mandrioli}@elet.polimi.it

Abstract. Modern enterprise information systems are built following the par-
adigm of service-orientation. This paradigm promotes workflow-based software
composition, where complex business processes are realized by orchestrating dif-
ferent, heterogenous components. These workflow descriptions evolve continu-
ously, to adapt to changes in the business goals or in the enterprise policies.
Software verification of evolving systems is challenging mainstream methodolo-
gies and tools. Formal verification techniques often conflict with the time con-
straints imposed by change management practices for evolving systems. Since
changes in these systems are often local to restricted parts, an incremental verifi-
cation approach could be beneficial.
In this paper we focus on the probabilistic verification of reliability requirements
of structured workflows. We propose a novel incremental technique based on a
syntactic-semantic approach. Reliability analysis is driven by the syntactic struc-
ture (defined by an operator-precedence grammar) of the workflow and encoded
as semantic attributes associated with the grammar. Incrementality is achieved
by coupling the evaluation of semantic attributes with an incremental parsing
technique. The approach has been implemented in a prototype tool; preliminary
experimental evaluation confirms the theoretical speedup over a non-incremental
approach.

1 Introduction

Enterprise information systems are realized nowadays by leveraging the principles of
service-oriented architecture [30]. This paradigm fosters the design of systems that rely
on workflow-based composition mechanisms, like those offered by BPEL, where com-
plex applications are realized by integrating different, heterogenous services, possibly
from different divisions within the same organization or even from third-party organi-
zations. These workflows often realize crucial business functions; their correctness and
reliability is of ultimate importance for the enterprises.

Moreover, these systems represent an instance of open-world software [3] where,
because of the intrinsic dynamicity and decentralization, service behaviors and inter-
actions cannot be fully controlled or predicted. These characteristics, when bundled
with the inherent need for enterprise software to evolve (e.g., to adapt to changes in the
business goals or in the enterprise policies), require to rethink the various engineering
phases, for dealing with the phenomenon of software evolution; in this paper we focus
on the verification aspect.

2 Domenico Bianculli, Antonio Filieri, Carlo Ghezzi, and Dino Mandrioli

Incremental verification has been suggested as a possible approach to dealing with
evolving of software [35]. An incremental verification approach tries to reuse as much
as possible the results of a previous verification step, and accommodates within the
verification procedure—possibly in a “smart” way—the changes occurring in the new
version. By avoiding re-executing the verification process from scratch, incremental
verification may considerably reduce the verification time. This may be appealing for
adoption within agile development processes. Incremental verification may speed up
change management, which may be subject to severe time constraints. Moreover, incre-
mental verification helps software engineers reason and understand the effects and the
implications of changes.

In this paper we propose a novel incremental technique for performing probabilistic
verification of reliability requirements of structured workflows. Our technique follows
a syntactic-semantic approach: reliability verification is driven by the structure of the
workflow (prescribed by a formal grammar) and encoded as synthesis of semantic at-
tributes [31], associated with the grammar and evaluated by traversing the syntax tree
of the workflow. The technique is realized on top of SiDECAR [4, 5] (Syntax-DrivEn
inCrementAl veRification), our general framework to define verification procedures,
which are automatically enhanced with incrementality by the framework itself. The
framework is based on operator precedence grammars [20], which allow for re-parsing,
and hence semantic re-analysis, to be confined within an inner portion of the input that
encloses the changed part [2]. This property is the key for an efficient incremental ver-
ification procedure: since the verification procedure is encoded within attributes, their
evaluation proceeds incrementally, hand-in-hand with parsing. We report on the prelim-
inary evaluation of the tool implementing the proposed technique; the results shows a
significant speedup over a non-incremental approach.

The rest of the paper is structured as follows. Section 2 introduces some back-
ground concepts on operator precedence grammars and attribute grammars. Section 3
shows how our framework exploits operator precedence grammars to support syntactic-
semantic incremental verification. Section 4 details our incremental reliability verifi-
cation technique. In Sect. 5 we present the preliminary experimental evaluation of the
approach. Section 6 surveys related work. Section 7 provides some concluding remarks.

2 Background

Hereafter we briefly recall the definitions of operator precedence grammars and at-
tribute grammars. For more information on formal languages and grammars, we refer
the reader to [25] and [10].

2.1 Operator precedence Grammars

A context-free (CF) grammar G is a tuple G = ⟨VN ,VT ,P,S⟩, where VN is a finite
set of non-terminal symbols; VT is a finite set of terminal symbols, disjoint from VN ;
P ⊆ VN × (VN ∪VT)

∗ is a relation whose elements represent the rules of the grammar;
S ∈ VN is the axiom or start symbol. We use the following naming convention, unless
otherwise specified: non-terminal symbols are enclosed within chevrons, such as ⟨A⟩;

Incremental Syntactic-Semantic Reliability Analysis 3

⟨S⟩ ::= ⟨A⟩ {value(⟨S⟩) = value(⟨A⟩)}
⟨S⟩ ::= ⟨B⟩ {value(⟨S⟩) = value(⟨B⟩)}
⟨A0⟩ ::= ⟨A1⟩ ‘+’ ⟨B⟩ {value(⟨A0⟩) = value(⟨A1⟩)+ value(⟨B⟩)}
⟨A⟩ ::= ⟨B1⟩ ‘+’ ⟨B2⟩ {value(⟨A⟩) = value(⟨B1⟩)+ value(⟨B2⟩)}
⟨B0⟩ ::= ⟨B1⟩ ‘*’ ‘n’ {value(⟨B0⟩) = value(⟨B1⟩)∗ eval(‘n’)}
⟨B⟩ ::= ‘n’ {value(⟨B⟩) = eval(‘n’)}

(a)

‘n’ ‘*’ ‘+’
‘n’ ⋗ ⋗
‘*’ .

=
‘+’ ⋖ ⋖ ⋗

(b)

Fig. 1. (a) Example of an operator grammar (‘n’ stands for any natural number), extended with
semantic attributes; (b) its operator precedence matrix

terminal ones are enclosed within single quotes, such as ‘+’ or are denoted by lowercase
letters at the beginning of the alphabet (a,b,c, . . .); lowercase letters at the end of the
alphabet (u,v,x, . . .) denote terminal strings; ε denotes the empty string. For the notions
of immediate derivation (⇒), derivation (

∗⇒), and the language L(G) generated by a
grammar G please refer to the standard literature, e.g., [25].

A rule is in operator form if its right hand side (rhs) has no adjacent non-terminals;
an operator grammar (OG) contains only rules in operator form.

Operator precedence grammars (OPGs) [20] are defined starting from operator
grammars by means of binary relations on VT named precedence. Given two termi-
nals, the precedence relations between them can be of three types: equal-precedence
(.=), takes-precedence (⋗), and yields-precedence (⋖). The meaning of precedence re-
lations is analogous to the one between arithmetic operators and is the basic driver of
deterministic parsing for these grammars. Precedence relations can be computed in an
automatic way for any operator grammar. We represent the precedence relations in a
VT ×VT matrix, named operator precedence matrix (OPM). An entry ma,b of an OPM
represents the set of operator precedence relations holding between terminals a and b.
For example, Fig. 1b shows the OPM for the grammar of arithmetic expressions de-
picted at the left side of Fig. 1a. Precedence relations have to be neither reflexive, nor
symmetric, nor transitive, nor total. If an entry ma,b of an OPM M is empty, the occur-
rence of the terminal a followed by the terminal b represents a malformed input, which
cannot be generated by the grammar.

Definition 1 (Operator Precedence Grammar). An operator grammar G is an oper-
ator precedence grammar if and only if its OPM is a conflict-free matrix, i.e., for each
a,b ∈VT , |ma,b| ≤ 1.

Definition 2 (Fischer Normal Form, from [10]). An OPG is in Fischer Normal Form
(FNF) if it is invertible, the axiom ⟨S⟩ does not occur in the right-hand side of any rule,
no empty rule exists except possibly ⟨S⟩ ⇒ ε , the other rules having ⟨S⟩ as left-hand
side (lhs) are renaming, and no other renaming rules exist.

The grammar of Fig. 1a is in FNF. In the sequel, we assume, without loss of gen-
erality, that OPGs are in FNF. Also, as is customary in the parsing of OPGs, the input
strings are implicitly enclosed between two ‘#’ special characters, such that ‘#’ yields

4 Domenico Bianculli, Antonio Filieri, Carlo Ghezzi, and Dino Mandrioli

precedence to any other character and any character takes precedence over ‘#’. The key
feature of OPG parsing is that a sequence of terminal characters enclosed within a pair
⋖ ⋗ and separated by .

= uniquely determines a rhs to be replaced, with a shift-reduce
algorithm, by the corresponding lhs. Notice that in the parsing of these grammars non-
terminals are “transparent”, i.e., they are not considered for the computation of the
precedence relations. For instance, consider the syntax tree of Fig. 2a generated by the
grammar of Fig. 1a: the leaf ‘6’ is preceded by ‘+’ and followed by ‘*’. Because ‘+’ ⋖
‘6’ ⋗ ‘*’, ‘6’ is reduced to ⟨B⟩. Similarly, in a further step we have ‘+’ ⋖ ⟨B⟩ ‘*’ .

=
‘7’ ⋗ ‘*’ and we apply the reduction ⟨B⟩ ⇒ ⟨B⟩ ‘*’ ‘7’ (notice that non-terminal ⟨B⟩ is
“transparent”) and so on.

2.2 Attribute Grammars

Attribute Grammars (AGs) have been proposed by Knuth as a way to express the seman-
tics of programming languages [31]. AGs extend CF grammars by associating attributes
and semantic functions to the rules of a CF grammar; attributes define the “meaning” of
the corresponding nodes in the syntax tree. In this paper we consider only synthesized
attributes, which characterize an information flow from the children nodes (of a syntax
tree) to their parents; more general attribute schemas do not add semantic power [31].

An AG is obtained from a CF grammar G by adding a finite set of attributes SYN and
a set SF of semantic functions. Each symbol X ∈VN has a set of (synthesized) attributes
SYN(X); SYN =

∪
X∈VN

SYN(X). We use the symbol α to denote a generic element of
SYN; we assume that each α takes values in a corresponding domain Tα . The set SF
consists of functions, each of them associated with a rule p in P. For each attribute α of
the lhs of p, a function fpα ∈ SF synthesizes the value of α based on the attributes of
the non-terminals in the rhs of p. For example, the grammar in Fig. 1a can be extended
to an attribute grammar that computes the value of an expression. All nodes have only
one attribute called value, with Tvalue = N. The set of semantic functions SF is defined
as in the right side of Fig. 1a, where semantic functions are enclosed in braces next to
each rule. The + and ∗ operators appearing within braces correspond, respectively, to
the standard operations of arithmetic addition and multiplication, and eval(·) evaluates
its input as a number. Notice also that, within a rule, different occurrences of the same
grammar symbol are denoted by distinct subscripts.

3 Syntactic-semantic Incrementality

Our incremental technique for probabilistic verification of reliability requirements of
structured workflows is realized on top of SiDECAR [4], our general framework for
incremental verification. The framework exploits a syntactic-semantic approach to de-
fine verification procedures that are encoded as semantic functions associated with an
attribute grammar. In this section we show how OPGs, equipped with a suitable at-
tribute schema, can support incrementality in such verification procedures in a natural
and efficient way.

Incremental Syntactic-Semantic Reliability Analysis 5

3.1 The Locality Property and Syntactic Incrementality

The main reason for the choice of OPGs is that, unlike more commonly used grammars
that support deterministic parsing, they possess and benefit from the locality property,
i.e., the possibility of starting the parsing from any arbitrary point of the sentence to be
analyzed, independent of the context within which the sentence is located. In fact for
OPGs the following proposition holds.

Proposition 1. If a⟨A⟩b ∗⇒ asb, then, for every t,u, ⟨S⟩ ∗⇒ tasbu iff ⟨S⟩ ∗⇒ ta⟨A⟩bu ∗⇒
tasbu. As a consequence, if s is replaced by v in the context Jta,buK, and a⟨A⟩b ∗⇒ avb,
then ⟨S⟩ ∗⇒ ta⟨A⟩bu ∗⇒ tavbu, and (re)parsing of tavbu can be stopped at a⟨A⟩b ∗⇒ avb.

Hence, if we build—with a bottom-up parser—the derivation a⟨A⟩b ∗⇒ avb, we say
that a matching condition with the previous derivation a⟨A⟩b ∗⇒ asb is satisfied and we
can replace the old subtree rooted in ⟨A⟩ with the new one, independently of the global
context Jta,buK (only the local context Ja,bK matters for the incremental parsing).

For instance, consider the string and syntax tree of Fig. 2a. Assume that the expres-
sion is modified by replacing the term ‘6*7*8’ with ‘7*8’. The corresponding new sub-
tree can clearly be built independently within the context J‘+’, ‘#’K. The matching con-
dition is satisfied by ‘+’⟨B⟩‘#’ ∗⇒ ‘+’‘6’‘*’‘7’‘*’‘8’‘#’ and ‘+’⟨B⟩‘#’ ∗⇒ ‘+’‘7’‘*’‘8’‘#’;
thus the new subtree can replace the original one without affecting the remaining part
of the global tree. If, instead, we replace the second ‘+’ by a ‘*’, the affected portion of
syntax tree would be larger and more re-parsing would be necessary4.

In general, the incremental parsing algorithm, for any replacement of a string w by
a string w′ in the context Jt,uK, automatically builds the minimal “sub-context” Jt1,u1K
such that for some ⟨A⟩, a⟨A⟩b ∗⇒ at1wu1b and a⟨A⟩b ∗⇒ at1w′u1b.

The locality property5 has a price in terms of generative power. For example, the
LR grammars traditionally used to describe and parse programming languages do not
enjoy it. However they can generate all the deterministic languages. OPGs cannot; this
limitation, however, is more of theoretical interest than of real practical impact. Large
parts of the grammars of many computer languages are operator precedence [25, p.
271]; a complete OPG is available for Prolog [7]. Moreover, in many practical cases one
can obtain an OPG by minor adjustments to a non operator-precedence grammar [20].

In the current SiDECAR prototype, we developed an incremental parser for OPGs
that exhibits the following features: linear complexity in the length of the string, in case
of parsing from scratch; linear complexity in the size of the modified subtree(s), in case
of incremental parsing; O(1) complexity of the matching condition test.

3.2 Semantic Incrementality

In a bottom-up parser, semantic actions are performed during a reduction. This allows
the re-computation of semantic attributes after a change to proceed hand-in-hand with

4 Some further optimization could be applied by integrating the matching condition with tech-
niques adopted in [23] (not reported here for brevity).

5 The locality property has also been shown to support an efficient parallel parsing technique [2],
which is not further exploited here.

6 Domenico Bianculli, Antonio Filieri, Carlo Ghezzi, and Dino Mandrioli

⟨S⟩

⟨A⟩

⟨B⟩

8*⟨B⟩

7*⟨B⟩

6

+⟨A⟩

⟨B⟩

2

+⟨B⟩

4*⟨B⟩

5

(a)

αS

αM

αN

αK

αP αQ

xw′z

(b)

Fig. 2. (a) Abstract syntax tree of the expression ‘5*4+2+6*7*8’; (b) Incremental evaluation of
semantic attributes on a generic syntax tree

the re-parsing of the modified substring. Suppose that, after replacing substring w with
w′, incremental re-parsing builds a derivation ⟨N⟩ ∗⇒ xw′z, with the same non-terminal
⟨N⟩ as in ⟨N⟩ ∗⇒ xwz, so that the matching condition is verified. Assume also that ⟨N⟩
has an attribute αN . Two situations may occur related to the computation of αN :

1. The αN attribute associated with the new subtree rooted in ⟨N⟩ has the same
value as before the change. In this case, all the remaining attributes in the rest of the
tree will not be affected, and no further analysis is needed.

2. The new value of αN is different from the one it had before the change. In
this case (see Fig. 2b) only the attributes on the path from ⟨N⟩ to the root ⟨S⟩ (e.g.,
αM,αK ,αS) may change and in such case they need to be recomputed. The values of
the other attributes not on the path from ⟨N⟩ to the root (e.g., αP and αQ) do not change:
there is no need to recompute them.

4 Incremental Reliability Analysis of Structured Workflows

In this section we define our procedure for incremental reliability analysis of structured
workflows. As mentioned in the previous section, SiDECAR requires the verification
procedure to be encoded as an attribute grammar schema. We assume that the structured
workflows are written in a tiny and simple language called Mini, whose OPG is shown
in Fig. 3. It is a minimalistic language that includes the major constructs of structured
programming and allows for expressing the sequence, exclusive choice, simple merge,
and structured loops patterns, from van der Aalst’s workflow patterns collection [36].

The verification procedure is based on our previous work [13], which supports the
analysis of workflow constructs similar to those in Mini, in a non-incremental way; we
refer the reader to [13] for the technical choice behind the analysis itself. Moreover,
for the sake of readability and to reduce the complexity of attribute schemas, Mini
workflows support only (global) boolean variables; we model invocation of external
services as boolean functions with no input parameters. We remark that more complex
analyses and workflow languages (see, for example, the extension of [13] in [12] for

Incremental Syntactic-Semantic Reliability Analysis 7

support of BPEL business processes, including parallelism and nested workflows) could
be supported with richer attribute schemas.

Reliability is a “user-oriented” property [8]; i.e., a software may be more or less reli-
able depending on its use. If user inputs do not activate a fault, a failure may never occur
even in a software containing defects [1]; on the other hand, users may stress a faulty
component, leading to a high frequency of failure events. Here we consider reliability
as the probability of successfully accomplishing an assigned task, when requested.

To show the benefits of incrementality, we will apply the verification procedure to
analyze two versions of the same example workflow (shown in Fig. 4a). They differ in
the assignment at line 3, which determines the execution of the subsequent if statement,
with implications on the results of the two analyses. Figure 4b depicts the syntax tree
of version 1 of the workflow, as well as the subtree that is different in version 2; nodes
of the tree have been numbered for quick reference.

The following notation is introduced to specify the attribute schema of the verifica-
tion procedure. For a Mini workflow, let F be the set of functions; V the set of variables
defined within the workflow; E the set of boolean expressions that can appear as the
condition of an if or a while statement in the workflow. An expression e ∈ E is either a
combination of boolean predicates on variables or a placeholder predicate labeled ∗.

To model the probabilistic verification procedure, first we assume that each function
f ∈ F has a probability PrS(f) of successfully completing its execution. If successfully
executed, the function returns a boolean value. We are interested in the returned value
of a function in case it appears as the rhs of an assignment because the assigned vari-
able may appear in a condition. The probability of assigning true to the lhs variable
of the statement is the probability that the function returns true, which is the product
PrS(f) ·PrT (f), where PrT (f) is the conditioned probability that f returns true given
that it has been successfully executed. For the sake of readability, we make the sim-
plifying assumption that all functions whose return value is used in an assignment are
always successful, i.e., have PrS(f) = 1. Thanks to this assumption the probability of
f returning true coincides with PrT(f) and allows us to avoid cumbersome, though
conceptually simple, formulae in the following development.

For the conditions e ∈ E of if and while statements, PrT (e) denotes the probability
of e to be evaluated to true. In case of an if statement, the evaluation of a condition e
leads to a probability PrT (e) of following the then branch, and 1−PrT (e) of following

⟨S⟩ ::= ‘begin’ ⟨stmtlist⟩ ‘end’
⟨stmtlist⟩ ::= ⟨stmt⟩ ‘;’ ⟨stmtlist⟩ | ⟨stmt⟩ ‘;’
⟨stmt⟩ ::= ⟨function-id⟩ ‘(’ ‘)’ | ⟨var-id⟩ ‘:=’ ‘true’ | ⟨var-id⟩ ‘:=’ ‘false’
| ⟨var-id⟩ ‘:=’ ⟨function-id⟩ ‘(’ ‘)’
| ‘if’ ⟨cond⟩ ‘then’ ⟨stmtlist⟩ ‘else’ ⟨stmtlist⟩ ‘endif’
| ‘while’ ⟨cond⟩ ‘do’ ⟨stmtlist⟩ ‘endwhile’

⟨var-id⟩ ::= . . .
⟨function-id⟩ ::= . . .
⟨cond⟩ ::= . . .

Fig. 3. The grammar of the Mini language

8 Domenico Bianculli, Antonio Filieri, Carlo Ghezzi, and Dino Mandrioli

1 begin

2 opA();

3 x := true;

4 if (x==true)

5 then opB();

6 else opA();

7 endif;

8 end

1 begin

2 opA();

3 x := false;

4 if (x==true)

5 then opB();

6 else opA();

7 endif;

8 end

(a) Version 1 (top)
Version 2 (bottom)

⟨S⟩ 0

⟨stmlist⟩ 1

⟨stmlist⟩ 5

⟨stmlist⟩ 10

⟨stmt⟩ 11

⟨stmlist⟩ 18

⟨stmt⟩ 19

⟨function-id⟩ 20

opA() 21

⟨stmlist⟩ 14

⟨stmt⟩ 15

⟨function-id⟩ 16

opB() 17

⟨cond⟩ 12

x==true 13

⟨stmt⟩ 6

true 9⟨var-id⟩ 7

x 8

⟨stmt⟩ 2

⟨function-id⟩ 3

opA() 4

⟨stmt⟩ 6

false 9⟨var-id⟩ 7

x 8

(b) The syntax tree of version 1 of the example workflow; the
subtree in the box shows the difference (node 9) in the syntax
tree of version 2

Fig. 4. The two versions of the example workflow and their syntax tree(s)

the else branch. For while statements, PrT (e) is the probability of executing one itera-
tion of the loop. The probability of a condition to be evaluated to true or false depends
on the current usage profile and can be estimated on the basis of the designer’s experi-
ence, the knowledge of the application domain, or gathered from previous executions
or running instances by combining monitoring and statistical inference techniques [18].

The value of PrT (e) is computed as follows. If the predicate is the placeholder
∗, the probability is indicated as PrT (∗). If e is a combination of boolean predicates
on variables, the probability value is defined with respect to its atomic components
(assuming probabilistic independence among the values of the variables in V):
- e = "v==true" =⇒ PrT (e) = PrT (v)
- e = "v==false" =⇒ PrT (e) = 1−PrT (v)
- e = e1 ∧ e2 =⇒ PrT (e) = PrT (e1) ·PrT (e2)
- e = ¬e1 =⇒ PrT (e) = 1−PrT (e1)

The initial value of PrT (v) for a variable v ∈ V is undefined; after the variable is
assigned, it is defined as follows:
- v:=true =⇒ PrT (v) = 1
- v:=false =⇒ PrT (v) = 0
- v:=f() =⇒ PrT (v) = PrT(f)

The reliability of a workflow is computed as the expected probability value of its
successful completion. To simplify the mathematical description, we assume indepen-
dence among all the failure events.

The reliability of a sequence of statements is essentially the probability that all of
them are executed successfully. Given the independence of the failure events, it is the
product of the reliability value of each statement.

Incremental Syntactic-Semantic Reliability Analysis 9

For an if statement with condition e, its reliability is the reliability of the then
branch weighted by the probability of e to be true, plus the reliability of the else
branch weighted by the probability of e to be false. This intuitive definition is formally
grounded on the law of total probability and the previous assumption of independence.

The reliability of a while statement with condition e and body b is determined by the
number of iterations k. We also assume that PrT (e) < 1, i.e., there is a non-zero prob-
ability of exiting the loop, and that PrT (e) does not change during the iterations. The
following formula is derived by applying well-known properties of probability theory:

E(PrS(⟨while⟩)) =
∞

∑
k=0

(PrT (e) ·PrS(b))k · (1−PrT (e)) =
1−PrT (e)

1−PrT (e) ·PrS(b)

A different construction of this result can be found in [13].
We are now ready to encode this analysis through the following attributes:

- SYN(⟨S⟩) = SYN(⟨stmlist⟩) = SYN(⟨stmt⟩) = {γ,ϑ};
- SYN(⟨cond⟩) = {δ};
- SYN(⟨function-id⟩) = SYN(⟨var-id⟩) = {η};
where:

– γ represents the reliability of the execution of the subtree rooted in the node the
attribute corresponds to.

– ϑ represents the knowledge acquired after the execution of an assignment. Pre-
cisely, ϑ is a set of pairs ⟨v,PrT (v)⟩ with v ∈V such that there are no two different
pairs ⟨v1,PrT (v1)⟩,⟨v2,PrT (v2)⟩ ∈ϑ with v1 = v2. If ∄⟨v1,PrT (v1)⟩ ∈ϑ no knowl-
edge has been gathered concerning the value of a variable v1. If not differently
specified, ϑ is empty.

– δ represents PrT (e), with e being the expression associated with the corresponding
node.

– η is a string corresponding to the literal value of an identifier.
The actual value of γ in a node has to be evaluated with respect to the information

possibly available in ϑ . For example, let us assume that for a certain node n1, γ(n1) =
.9 ·PrT (v). This means that the actual value of γ(n1) depends on the value of the variable
v. The latter can be decided only after the execution of an assignment statement. If such
assignment happens at node n2, the attribute ϑ(n2) will contain the pair ⟨v,PrT (v)⟩.
For example, let us assume PrT (v) = .7; after the assignment, the actual value of γ(n1)
is refined considering the information in ϑ(n2), assuming the numeric value .63. We
use the notation γ(·) | ϑ(·) to describe the operation of refining the value of γ with
the information in ϑ . Given that γ(·) | /0 = γ(·), the operation will be omitted when
ϑ(·) = /0.

The attribute schema for the Mini language is defined as follows:
1. ⟨S⟩ ::= ‘begin’ ⟨stmtlist⟩ ‘end’

γ(⟨S⟩) := γ(⟨stmtlist⟩)
2. (a) ⟨stmtlist0⟩ ::= ⟨stmt⟩ ‘;’ ⟨stmtlist1⟩

γ(⟨stmtlist0⟩) := (γ(⟨stmt⟩) · γ(⟨stmtlist1⟩)) | ϑ(⟨stmt⟩)
(b) ⟨stmtlist⟩ ::= ⟨stmt⟩ ‘;’

γ(⟨stmtlist⟩) := γ(⟨stmt⟩)
3. (a) ⟨stmt⟩ ::= ⟨function-id⟩ ‘(’ ‘)’

γ(⟨stmt⟩) := PrS(f) with f ∈ F and η(⟨function-id⟩) = f

10 Domenico Bianculli, Antonio Filieri, Carlo Ghezzi, and Dino Mandrioli

(b) ⟨stmt⟩ ::= ⟨var-id⟩ ‘:=’ ‘true’
γ(⟨stmt⟩) := 1, ϑ(⟨stmt⟩) := {⟨η(⟨var-id⟩),1⟩}

(c) ⟨stmt⟩ ::= ⟨var-id⟩ ‘:=’ ‘false’
γ(⟨stmt⟩) := 1, ϑ(⟨stmt⟩) := {⟨η(⟨var-id⟩),0⟩}

(d) ⟨stmt⟩ ::= ⟨var-id⟩ ‘=’ ⟨function-id⟩ ‘(’ ‘)’
γ(⟨stmt⟩) := 1, ϑ(⟨stmt⟩) := {⟨η(⟨var-id⟩),PrT (η(⟨function-id⟩))} with f ∈F
and η(⟨function-id⟩) = f

(e) ⟨stmt⟩ ::= ‘if’ ⟨cond⟩ ‘then’ ⟨stmlist0⟩ ‘else’ ⟨stmlist1⟩ ‘endif’
γ(⟨stmt⟩) := γ(⟨stmtlist0⟩) ·δ (⟨cond⟩)+ γ(⟨stmtlist1⟩) · (1−δ (⟨cond⟩))

(f) ⟨stmt⟩ ::= ‘while’ ⟨cond⟩ ‘do’ ⟨stmtlist⟩ ‘endwhile’

γ(⟨stmt⟩) :=
1−δ (⟨cond⟩)

1−δ (⟨cond⟩) · γ(⟨stmtlist⟩)
4. ⟨cond⟩ ::= . . .

δ (⟨cond⟩) := PrT (e), with η(⟨cond⟩) = e
We now show how to perform probabilistic verification of reliability properties with

SiDECAR on the two versions of the example workflow of Fig. 4a. In the steps of
attribute synthesis, for brevity, we use numbers to refer to corresponding nodes in the
syntax tree of Fig. 4b. As for the reliability of the two functions used in the workflow,
we assume PrS(opA) = .97, PrS(opB) = .99.

Example Workflow - Version 1 Given the abstract syntax tree in Fig. 4b, evaluation
of attributes leads to the following values (shown top to bottom, left to right, with η
attributes omitted):

γ(2) := .97; γ(14) := γ(15); γ(10) := γ(11);
γ(6) := 1; γ(19) := .97; γ(5) := (γ(6) · γ(10)) | ϑ(6) = .99;
ϑ(6) := {⟨x,1⟩}; γ(18) := γ(19); γ(1) := γ(2) · γ(5) = .9603;
δ (12) := PrT ("x==true"); γ(11) := .99 ·δ (12) γ(0) := γ(1) = .9603.
γ(15) := .99; + .97 ·(1−δ (12));

The resulting value for γ(0) represents the reliability of the workflow, i.e., each execu-
tion has a probability equal to .9603 of being successfully executed.

Example Workflow - Version 2 Version 2 of the example workflow differs from ver-
sion 1 only in the assignment at line 3, which leads the incremental parser to build the
subtree shown in the box of Fig. 4b. Because the matching condition is satisfied, this
subtree is hooked into node 6 of the original tree. Re-computation of the attributes pro-
ceeds upward to the root, leading to the following final values (shown top to bottom,
left to right, with η attributes omitted):

γ(6) := 1; γ(5) := (γ(6) · γ(10)) | ϑ(6) = .97; γ(0) := γ(1) := .9409.
ϑ(6) := {⟨x,0⟩}; γ(1) := γ(2) · γ(5) = .9409;

Thus, our incremental approach requires to reparse only 3 nodes and reevaluate only
5 attributes instead of the 13 ones computed in a full, non-incremental (re)parsing (as
for Version 1).

Incremental Syntactic-Semantic Reliability Analysis 11

y = 2.0053 + 2.0694x
R2 = 0.8225

y = 6.4139 + 4.1666x
R2 = 0.6962

Average number of evaluated attributes
Average execution time
Linear fit of Average number of evaluated attributes
Linear fit of Average execution time

In
cr

em
en

ta
l o

ve
r n

on
-in

cr
em

en
ta

l r
at

io
 (%

)

0

10

20

30

40

50

Changes of the workflow structure (% of tokens from previous version)
0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

Fig. 5. Comparison between the incremental verification approach and the non-incremental one

5 Evaluation

To show the effectiveness of our approach, we performed a preliminary experimental
evaluation using a prototype developed in Java, on a Intel Xeon E31220 3.10Ghz CPU,
with 32Gb of RAM, running Ubuntu Server 12.04 64bit. We generated 56 random Mini
workflows, each one with about 10000 tokens. For each workflow we randomly gener-
ated 30 subsequent versions, applying a series of deletions and/or insertions of syntacti-
cally valid code snippets, ranging in total from 5% to 50% of the workflow size. We run
the probabilistic verification procedure defined above on all generated versions, both in
an incremental way and in a non-incremental one. For each run, we measured the num-
ber of evaluated attributes and the execution time. Figure 5 shows the average of the
ratio between the performance of the incremental approach over the non-incremental
one, for both metrics. The results show that the execution time of our incremental ap-
proach is linear with respect to the size of the change(s), as expected from Sect. 3.1:
the smaller the changes on the input program are, the faster the incremental approach is
than the non-incremental one. This preliminary evaluation shows a 20x speedup of the
incremental approach over the non-incremental one, for changes affecting up to 5% of
the input artifact (having a total size of just 104 tokens); in the case of changes affecting
about 50% of the code, we measured a 3x speedup. Since for large, long-lasting systems
it is expected that most changes only involve a small fraction of the code, the gain of
applying our incremental approach can be significant.

The parsing algorithm used within our framework has a temporal complexity (on
average) linear in the size of the modified portion of the syntax tree. Hence any change
in the workflow has a minimal impact on the adaptation of the abstract syntax tree too.
Semantic incrementality allows for minimal (re)evaluation of the attributes, by proceed-
ing along the path from the node corresponding to the change to the root, whose length
is normally logarithmic with respect to the length of the workflow description. Notice
that even if the change in a statement affects the execution of another location of the
code (e.g., an assignment to a global variable), such dependency would be automati-
cally handled in the least common ancestor of the two syntactic nodes. Such common

12 Domenico Bianculli, Antonio Filieri, Carlo Ghezzi, and Dino Mandrioli

ancestor is, in the worst case, the root, resulting in the cost for the change propagation
(in terms of re-evaluation of the attributes) being still logarithmic in the length of the
workflow description.

We also analyzed each version of each workflow with Prism v.4.1, a probabilis-
tic model checker. Our incremental verification approach was, on average, 4268 times
faster than Prism, with a speedup of at least 1000x in about 35% of the workflows ver-
sions. We remark that Prism is a general-purpose verification tool that supports various
types of input models (more complex than those needed to model structured work-
flows). Moreover, one can verify with Prism several properties more expressive than
the simple reliability. However, the reason for this comparison is that many reliability
analysis approaches (see also next section) make use of probabilistic model checking,
which ultimately impacts on their performance.

6 Related Work

Reliability analysis of workflow has been widely investigated in the last decade. Most of
the proposed approaches are based on algebraic methods [28], graph manipulation [11],
or stochastic modeling [24, 33, 21, 8, 34, 27]. To the best of our knowledge, the only
approach explicitly formalized by means of an attribute grammar is [13]. Nevertheless,
only few approaches provide incrementality, at least to some extent; they are mainly
grounded in the concepts of change encapsulation and of change anticipation [22].

Incrementality by change encapsulation is achieved by applying compositional rea-
soning to a modularized system using the assume-guarantee [29] paradigm. This para-
digm views systems as a collection of cooperating modules, each of which has to guar-
antee certain properties. The verification methods based on this paradigm are said to
be compositional, since they allow reasoning about each module separately and deduc-
ing properties about their integration. If the effect of a change can be localized inside
the boundaries of a module, the other modules are not affected, and their verification
does not need to be redone. This feature is for example exploited in [9], which proposes
a framework for performing assume-guarantee reasoning in an incremental and fully
automatic fashion.

Approaches based on change anticipation assume that the artifact under analysis
can be divided into static (unchangeable) parts and variable ones, and rely on partial
evaluation [14] to postpone the evaluation of the variable parts. Partial evaluation can
be seen as a transformation from the original version of the program to a new version
called residual program, where the properties of interest have been partially computed
against the static parts, preserving the dependency on the variable ones. As soon as a
change is observed, the computation can be moved a further step toward completion by
fixing one or more variable parts according to the observations.

The above approaches, however, are based on the assumption that engineers know a
priori the parts that are most likely subject to future evolution and can encapsulate them
within well-defined borderlines. Our approach, instead, does not make any hypothesis
on where changes will occur during system’s life: it simply evaluates a posteriori their
scope within system’s structure as formalized by the syntax tree. This should be par-

Incremental Syntactic-Semantic Reliability Analysis 13

ticularly beneficial in most modern systems that evolve in a fairly unpredictable way,
often without a unique design responsibility.

Focusing on incremental probabilistic verification, the three main techniques sup-
porting incremental verification of stochastic models (e.g., Markov Chains) are decom-
position [32], which belongs to the class of change encapsulation, and parametric anal-
ysis [11, 26] and delta evaluation [33], which can be classified as change anticipation
techniques. The first decomposes the input model into its strongly connected compo-
nents (SCCs), allowing verification subtasks to be carried on within each SCC; local
results are then combined to verify the global property. By defining a dependency rela-
tion among SCCs, when a change occurs, only the SCCs depending on the changed one
have to be verified. The benefits of incrementality in this case depend on the quality
of the SCC partition and the corresponding dependency relation. In the case of para-
metric analysis the probability value of the transitions in the model that are supposed
to change are labeled with symbolic parameters. The model is then verified providing
results in the form of closed mathematical formulae having the symbolic parameters
as unknowns. As the actual values for the parameters become available (e.g., during
the execution of the system), they are replaced in the formulae, providing a numeri-
cal estimation of the desired property (e.g. system reliability). Whenever the values of
the parameters change, the closed formula obtained by the preprocessing phase can be
reused, with significant improvements of the verification time [17, 15]. The main limi-
tation of this approach is that a structural change in the software (i.e., not describable by
a parameters assignment) invalidates the results of the preprocessing phase, requiring
the verification to start from scratch, with consequent degradation of the analysis per-
formance. Delta evaluation is concerned with incremental reliability analysis based on
conveniently structured Discrete Time Markov Chains (DTMC). The structure of those
model follows the proposal by [8], where each software module (represented by a state
of the DTMC), can transfer the control to another module, or fail by making a tran-
sition toward an absorbing failure state, or complete the execution by moving toward
an absorbing success state. Assuming that a single module failure probability changes
at a time, only few arithmetic operations are needed to correct the previous reliability
value. Despite its efficiency, delta evaluation can only deal with changes in a modules
failure probability, providing no support for both structural changes and changes in the
interaction probabilities among modules. Finally, in [28] service compositions are for-
malized through a convenient algebraic structure and an incremental framework is used
to compose local results into a global quantitative property, in an assume-guarantee fla-
vor. The approach is widely applicable for verification of component-based systems,
and it has been applied for reliability analysis. The compositionality entailed by the
assume-guarantee infrastructure can be recasted into our syntactic-semantic approach.

7 Conclusion and Future Work

Incrementality is one of the most promising means to dealing with software evolution.
In this paper we addressed the issue of incrementality in the context of the probabilistic
verification of reliability requirements of structured workflows. We defined a novel in-
cremental technique based on a syntactic-semantic approach: the verification procedure

14 Domenico Bianculli, Antonio Filieri, Carlo Ghezzi, and Dino Mandrioli

is encoded as synthesis of semantic attributes associated with the grammar defining
the structure of workflows. As confirmed by the preliminary experimental evaluation,
the execution time of our incremental approach is linear with respect to the size of the
change(s). When changes involve only a small fraction of the artifact to analyze, our
approach can provide a significant speedup over a non-incremental approach.

In the future, we plan to extend our approach to support richer workflow languages,
such as BPEL and BPMN, as well as other types of verification procedures. The first
direction will require to express the grammar of the workflow languages in an OPG
form, with the possible caveat of reducing the readability of the grammar and impact-
ing on the definition of the attribute schemas. As for the second direction, we plan to
investigate richer attribute schemas, to support both new language features and different
verification algorithms (e.g., to support more realistic assumptions on the system under
verification as well as state-of-the-art optimizations and heuristics). Finally, we plan
to apply our approach to the related problem of probabilistic symbolic execution [19,
6, 16]. In all these scenarios incrementality would be automatically provided by our
SiDECAR framework, without any further effort for the developer.

Acknowledgments. This work has been partially supported by the European Com-
munity under the IDEAS-ERC grant agreement no. 227977-SMScom and by the Na-
tional Research Fund, Luxembourg (FNR/P10/03). We thank Alessandro Maria Rizzi
for helping with the implementation of the prototype.

References

1. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. Dependable Secure Comput. 1(1), 11–33
(2004)

2. Barenghi, A., Viviani, E., Crespi Reghizzi, S., Mandrioli, D., Pradella, M.: PAPAGENO: a
parallel parser generator for operator precedence grammars. In: Proc. of SLE 2012. LNCS,
vol. 7745, pp. 264–274. Springer (2012)

3. Baresi, L., Di Nitto, E., Ghezzi, C.: Toward open-world software: Issues and challenges.
IEEE Computer 39(10), 36–43 (2006)

4. Bianculli, D., Filieri, A., Ghezzi, C., Mandrioli, D.: A syntactic-semantic approach to incre-
mental verification (2013), http://arxiv.org/abs/1304.8034

5. Bianculli, D., Filieri, A., Ghezzi, C., Mandrioli, D.: Syntactic-semantic incrementality for ag-
ile verification. Sci. Comput. Program. N/A(N/A) (2013), DOI:10.1016/j.scico.2013.11.026

6. Borges, M., Filieri, A., d’Amorim, M., Păsăreanu, C.S., Visser, W.: Compositional solution
space quantification for probabilistic software analysis. In: Proc. of PLDI 2014. pp. 123–132.
ACM (2014)

7. de Bosschere, K.: An operator precedence parser for standard Prolog text. Softw. Pract. Ex-
per. 26(7), 763–779 (1996)

8. Cheung, R.: A user-oriented software reliability model. IEEE Trans. Soft. Eng. SE-6(2),
118–125 (1980)

9. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for composi-
tional verification. In: Proc. of TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer (2003)

10. Crespi Reghizzi, S., Mandrioli, D.: Operator precedence and the visibly pushdown property.
J. Comput. Syst. Sci. 78(6), 1837–1867 (2012)

Incremental Syntactic-Semantic Reliability Analysis 15

11. Daws, C.: Symbolic and parametric model checking of discrete-time markov chains. In: Proc.
of ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer (2005)

12. Distefano, S., Ghezzi, C., Guinea, S., Mirandola, R.: Dependability assessment of web ser-
vice orchestrations. IEEE Trans. Rel. PrePrint(N/A) (2014), DOI:10.1109/TR.2014.2315939

13. Distefano, S., Filieri, A., Ghezzi, C., Mirandola, R.: A compositional method for reliability
analysis of workflows affected by multiple failure modes. In: Proc. of CBSE 2011. pp. 149–
158. ACM (2011)

14. Ershov, A.: On the partial computation principle. Inform. Process. Lett. 6(2), 38–41 (1977)
15. Filieri, A., Ghezzi, C.: Further steps towards efficient runtime verification: Handling proba-

bilistic cost models. In: Proc. of FormSERA 2012. pp. 2–8. IEEE (2012)
16. Filieri, A., , Păsăreanu, C.S., Visser, W., Geldenhuys, J.: Statistical symbolic execution with

informed sampling. In: Proc. of SIGSOFT ’14/FSE-22. ACM (2014)
17. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model checking. In:

Proc. of ICSE 2011. pp. 341–350. ACM (2011)
18. Filieri, A., Ghezzi, C., Tamburrelli, G.: A formal approach to adaptive software: continuous

assurance of non-functional requirements. Formal Asp. Comput. 24(2), 163–186 (2012)
19. Filieri, A., Păsăreanu, C.S., Visser, W.: Reliability analysis in symbolic pathfinder. In: Proc.

of ICSE 2013. pp. 622–631. IEEE Press (2013)
20. Floyd, R.W.: Syntactic analysis and operator precedence. J. ACM 10, 316–333 (1963)
21. Gallotti, S., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Quality prediction of service com-

positions through probabilistic model checking. In: Proc. of QOSA 2008. LNCS, vol. 5281,
pp. 119–134. Springer (2008)

22. Ghezzi, C.: Evolution, adaptation, and the quest for incrementality. In: Proc. of the 17th
Monterey Workshop. LNCS, vol. 7539, pp. 369–379. Springer (2012)

23. Ghezzi, C., Mandrioli, D.: Incremental parsing. ACM Trans. Program. Lang. Syst. 1(1), 58–
70 (1979)

24. Goseva-Popstojanova, K., Mathur, A., Trivedi, K.: Comparison of architecture-based soft-
ware reliability models. In: Proc. of ISSRE 2001. pp. 22–31. IEEE (2001)

25. Grune, D., Jacobs, C.J.H.: Parsing Techniques - a practical guide. Springer, 2nd edn. (2008)
26. Hahn, E., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric markov models.

STTT 13(1), 3–19 (2011)
27. Immonen, A., Niemela, E.: Survey of reliability and availability prediction methods from the

viewpoint of software architecture. Software and Systems Modeling 7(1), 49–65 (2008)
28. Johnson, K., Calinescu, R., Kikuchi, S.: An incremental verification framework for

component-based software systems. In: Proc. of CBSE ’13. pp. 33–42. ACM (2013)
29. Jones, C.B.: Tentative steps toward a development method for interfering programs. ACM

Trans. Program. Lang. Syst. 5(4), 596–619 (1983)
30. Josuttis, N.: SOA in Practice: The Art of Distributed System Design. O’Reilly (2007)
31. Knuth, D.E.: Semantics of context-free languages. Theory of Computing Systems 2, 127–

145 (1968)
32. Kwiatkowska, M., Parker, D., Qu, H.: Incremental quantitative verification for markov deci-

sion processes. In: Proc. of DSN 2011. pp. 359–370. IEEE (2011)
33. Meedeniya, I., Grunske, L.: An efficient method for architecture-based reliability evaluation

for evolving systems with changing parameters. In: Proc. of ISSRE 2010. pp. 229–238. IEEE
(2010)

34. Pham, H.: System software reliability. Springer (2006)
35. Sistla, P.: Hybrid and incremental model-checking techniques. ACM Comput. Surv. 28(4es)

(1996)
36. Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow

patterns. Distrib. Parallel Databases 14(1), 5–51 (Jul 2003)

