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Abstract— The iterative demodulation and decoding algorithm
introduced in 2005 by Colavolpe, Barbieri, and Caire to cope
with channels affected by phase noise needs pilot symbols to
bootstrap. However, pilot symbols reduce the spectral efficiency
of the system and, consequently, system’s throughput. The aim
of the paper is to show that trellis-based demodulation can be
used to bootstrap the iterative process without the need of pilot
symbols. Also, the complexity issue of trellis-based demodulation
is addressed in the paper. The result is that the performance
of iterative demodulation and decoding after the iterations
is virtually unaffected by complexity reduction, provided that
the reduced-complexity demodulator guarantees cycle-slip-free
operation. From the numerical results presented in the paper
we show that cycle-slip-free operation can be achieved with
substantial complexity reduction also for phase noise associated
with linewidths of practical interest.

Index Terms— Coherent communication, Phase noise, Coded
modulation, Demodulation, Information rate.

I. I NTRODUCTION

The context of the paper is coherent demodulation of coded
modulations with high spectral efficiency in the presence of
phase noise. The goal of demodulation is to work out the
sequence of probability distributions of the input bits given the
entire received signal. Demodulation can become a challeng-
ing task when transmission takes place over a channel with
memory. Prominent examples of channels with memory are
the intersymbol interference channel, the phase noise channel,
and the fading channel. Among channels with memory, the
phase noise channel is considered here, a recent tutorial on
the subject being [1].

Demodulation of signals affected by the phase noise is a
classical and hot topic in the context of point-to-point radio
backhauling systems [2], [3] and coherent optical systems [4]–
[7]. In these systems, coded constellations with high spectral
efficiency are adopted, and the performance of demodulation
in the presence of phase noise becomes one of the major issues
in the rush to higher and higher spectral efficiency.

In optical systems, phase noise is due to both laser oscilla-
tors used for up- and down-conversion [8], and cross-phase
modulation that arises in wavelength-division-multiplexing
systems [9]. Several schemes have been proposed to estimate
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the received carrier phase for arbitrary phase-shift keying
(PSK) and quadrature amplitude modulation (QAM) constel-
lations in presence of phase noise. Among these methods, the
blind feedforward scheme of [10] addresses the constraints
imposed by high speed parallel processing. Pilot-aided carrier
phase recovery schemes have recently gained attention as
candidate phase recovery approaches for systems affected by
strong phase noise. Papers [11], [12] are based on the insertion
of a pilot tone in a notch of the transmitted signal spectrum,
while in papers [13]–[15] pilot symbols are inserted in time
domain. Papers [16]–[21] discuss coding and demodulation
techniques based on pilot symbols aimed at combating the
cycle-slip phenomenon. The drawback of pilot symbols is
that they are introduced at the expense of spectral efficiency.
To mitigate the loss of spectral efficiency one can resort
to the approach of [22], [23]. Basically, strongly encoded
symbols are periodically inserted in the sequence of modulated
symbols. Thanks to their strong encoding, thesequasi-pilot
symbols allow for robust decision-directed phase detection, as
it happens in conventional decision-directed phase detection
schemes operating at high signal-to-noise ratio (SNR). An
advanced approach to demodulation is based on the union
of pilot symbols and iterative demodulation and decoding
[24], [25], where pilot symbols allow for bootstrapping the
receiver before the first decoding, then the following demod-
ulation stages take advantage from the estimates of source
symbol’s log-likelihood ratios (LLRs) obtained by soft-insoft-
out (SISO) decoding of the error correcting code. The aim of
this paper is to show that trellis-based demodulation can be
used to bootstrap the iterative process of [24] without the need
of pilot symbols, leading to throughput increment.

To show the benefits of trellis-based demodulation we rely
upon the analysis of the information rate transferred through
the phase noise channel. It is strongly intuitive that inaccu-
racies that are introduced in tracking the time-varying phase
process can impair the information rate between the source
and channel’s output. This topic has been deeply investigated
in the past. Specifically, the information rate transferredover
the Wiener phase noise single input single output channel is
considered in [26]–[36], while the information rate transferred
over the more general autoregressive moving-average phase
noise channel is studied in [37], [38]. White phase noise with
uncorrelated samples is studied in [39]. In [2], [40], [41] the
impact of phase noise on the capacity of the multiple input
multiple output channel is considered.

The source/channel information rate is a limit that can be
achieved only by ideal demodulation, while, with suboptimal
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Fig. 1: Block diagram of the proposed receiver with hybrid iterative demodulation and decoding. In the receiver proposed in [24] the switch between
demodulation and decoding is always connected to the block “parametric demodulation”.

demodulation, the actual information rate extracted by the
receiver depends on the specific demodulation algorithm. An
observation of major practical importance that we can make
by studying the information rate is that, as it will be clear
from the results to be hereafter presented, the informationrate
achieved by non-iterative and non-pilot-aided demodulation
can be close to the information rate of ideal demodulation
in many channels of practical interest, provided that demod-
ulation fully exploits the information that can be obtained
from the received signal about the carrier phase. To fully
exploit the information carried by the received signal, one
can adopt non-parametric Bayesian tracking methods as the
trellis-based demodulation scheme of [15] which relies upon
the classical forward/backward recursion on the trellis of[42].
The main difference between the conventional parametric ap-
proach and non-parametric Bayesian tracking is the following.
In the conventional parametric approach, the demodulation
algorithm produces an estimate of two parameters that aims
to represent the unknown phase: its mean value and variance
given the available observations. In contrast, in trellis-based
demodulation the entire probability distribution of the phase
is computed and used in an integral equation to produce the
wanted statistics.

After having observed that, in many cases of practical
interest, non-iterative and non-data-aided non-parametric de-
modulation can virtually extract all the information that can
be extracted by ideal demodulation, our next step, and main
contribution of the paper, is to propose non-pilot-aided trellis
demodulation to bootstrap the iterative demodulation and
decoding algorithm of Colavolpe Barbieri and Caire [24] (CBC
in the following). We show that, once properly initialized,
the CBC algorithm does not need the aid of pilot symbols,
hence the combination of a first trellis-based demodulation
followed by the iterative algorithm allows for saving the
bit rate that would be elsewhere sacrificed to pilot symbols.
However, while the complexity of the parametric iterative CBC
algorithm is moderate, the complexity in terms of number of
operations per symbol of trellis-based demodulation can be
large, making it not so attractive for those systems where,
due to the very high symbol rate, the number of operations
per symbol can become a stringent constraint. This motivates
the second contribution of the paper, that is the introduction
of techniques that allow to reduce the complexity of the full
trellis where, with full trellis, we mean a trellis parametrized
in such a way that it achieves virtually optimal performance.
The block diagram of the hybrid non-parametric/parametric

iterative demodulation and SISO decoding receiver that we
propose is shown in Fig. 1.

The outline of the paper is as follows. In Section II the
notation and the channel model are given. Section III deals
with the achievable information rate of general channels
with memory, and presents formulas for the information rate
achieved by modulations based on the specific bit mapping
that will be adopted in the Section devoted to simulation
results. In Section IV ideal demodulation, that is, information-
rate achieving demodulation, and the practical demodulation
schemes of [15] and CBC, are illustrated. Section V is devoted
to complexity reduction of the trellis-based algorithm, while
in Section VI simulation results for the achievable information
rate and for the bit error rate (BER) performance of the
proposed iterative demodulation and decoding scheme and of
competitor schemes are presented. Finally, conclusive remarks
are given in Section VII.

II. N OTATION AND CHANNEL MODEL

Let uk
i indicate the vector(ui, ui+1, · · · , uk) with uk

i ∈ Uk
i .

When k < i we assume thatuk
i is void. Let U indicate

a stationary and ergodic process,U = (U1, U2, · · · ), whose
generic realization is the sequence(u1, u2, · · · ). WhenUk

i is
a continuous set,p(uk

i ) is used to indicate the multivariate
probability density function ofUk

i evaluated inuk
i , while

when Uk
i is a discrete setp(uk

i ) indicates the multivariate
mass probabilityPr(Uk

i = uk
i ) and |Ui| denotes the number

of elements inUi.
Assuming that the chromatic dispersion has been com-

pensated before demodulation and that laser phase noise is
constant during a symbol interval, thek-th output of the phase
noise channel is

yk = xke
jφk + wk, k = 1, 2, · · · , (1)

wherej =
√
−1 is the imaginary unit,Φ is the phase noise

process,W is a complex-valued additive white Gaussian noise
(AWGN) process with two-dimensional varianceSNR−1, and
the input modulation processX is made by points drawn from
a two-dimensionalM -ary constellationX carved out from the
grid of two-dimensional integersZ2, scaled in order to have
a unitary average input power. For the first-order continuous-
state Markov phase processΦ we take a discrete-time Wiener
process folded in the range[0, 2π):

φk = [φk−1 + γvk−1] mod 2π , k = 1, 2, · · · (2)
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where the frequency noiseV is a sequence of independent and
identically distributed Gaussian random variables with zero
mean and unit variance, the step sizeγ is a real scalar, and
φ0 is uniformly distributed in[0, 2π). The phase process (2)
is obtained by sampling at symbol frequency the phase of a
continuous-time complex exponential{ejφ(t)} whose power
spectral density is the Lorentzian function

L(f) = 4γ2T

γ4 + 16π2f2T 2
,

where T is the symbol repetition interval andf is the
frequency. The parameterγ2 is often expressed as

γ2 = 2π∆νT,

where∆ν is the full-width half-maximum bandwidth of the
spectral line.

The state transition probability of the hidden phase is

p(φk|φk−1) =

∞
∑

i=−∞

g(φk−1 + 2iπ, γ2;φk), (3)

where g(µ, σ2;x) indicates a Gaussian probability density
function of x with meanµ and varianceσ2. The channel
probability is

p(yk|φk) =
∑

xk∈X

p(xk, yk|φk)

=
∑

xk∈X

p(xk)p(yk|φk, xk), (4)

where the last step is due to independence betweenXk and
Φk, and from the channel model (1), since the additive noise
is Gaussian and with circular symmetry, one has

p(yk|φk, xk) = gc(xke
jφk , SNR−1; yk), (5)

wheregc(µ, σ2;x) indicates a two-dimensional Gaussian prob-
ability density function with circular symmetry over the com-
plex plane spanned byx with meanµ and two-dimensional
varianceσ2.

III. A CHIEVABLE INFORMATION RATE

Consider a transmission scheme where the source is the vec-
tor XN

1 of N independent random variables, and the channel
output isY N

1 . The achievable information rate between the
source and channel’s output can be written by chain rule as

I(X ;Y ) , lim
N→∞

1

N
I(XN

1 ;Y N
1 )

= lim
N→∞

1

N

N
∑

k=1

I(Xk;Y
N
1 |Xk−1

1 ). (6)

The above formula is very general and can be used as a starting
point when one studies the information rate transferred through
a channel with memory. In (6), the information extracted
aboutXk takes advantage from the knowledge of past source
symbolsXk−1

1 . A scheme that allows to make use of past
source symbols is the joint equalization and decoding scheme
proposed in [43] for the inter-symbol interference channel,
which, in principle, could be used also in the phase noise

channel. However, practical use of this scheme, that is based
on interleaving codewords with interleaving depth equal tothe
memory of the channel, is limited by the high latency that it
introduces, which turns out to be too high in many practical
systems.

When demodulation and decoding are disjoint, demodula-
tion cannot exploit the knowledge of past symbols, that is, the
conditions appearing in the argument of the mutual informa-
tion in the right side of (6) are dropped. In many cases, one
uses preliminary decisions taken from some signal processing
made onY N

1 in place of the actual past source symbols, but we
know that this approach can lead to unsatisfactory performance
when the error probability on preliminary decisions is high.
Whatever use we make ofY N

1 , renouncing to the observations
Xk−1

1 one renounces to some information rate, as it is apparent
from the following:

I(Xk;Y
N
1 |Xk−1

1 ) = H(Xk|Xk−1
1 )−H(Xk|Y N

1 , Xk−1
1 )

= H(Xk)−H(Xk|Y N
1 , Xk−1

1 ) (7)

≥ H(Xk)−H(Xk|Y N
1 ) (8)

= I(Xk;Y
N
1 )

where the inequality is because conditioning does not increase
entropy.

Bit Mapping

Consider the case of disjoint demodulation and decoding
wherem= log2 M independent bits are mapped onto a constel-
lation with M points, and letBm

1;k = (B1;k, B2;k, · · · , Bm;k)
be the vector of bits mapped ontoXk. In the following, we
will consider a mapping scheme that is based on the partition
Z2/4Z2. In this mapping, the generic constellation pointX
is decomposed as

X = 4X ′ +X ′′,

whereX ′′ is 16-QAM with Gray mapping,X ′ is (M/16)-
QAM with Gray mapping, and the minimum squared Eu-
clidean distance inX ′ andX ′′ is 6(M2−1)−1, thus obtaining
unitary power forX . The four bits that select the point inX ′

are coded by a unique error correcting code and their LLRs
are independently computed from the demodulated signal,
while the bits ofX ′′ are left uncoded and are demodulated
after the decision of the error correcting code [44], [45]. The
information rate brought by this LLRs computation scheme is

4
∑

i=1

I(Bi,k;Y
N
1 ) +

m
∑

i=5

I(Bi;k;Y
N
1 |B4

1;k) (9)

≤ I(Bm
1;k;Y

N
1 ) = I(Xk;Y

N
1 ), (10)

where the inequality can be demonstrated by observing that
intra-symbol chain rule is not exploited in the first sum, and
that it is only partially exploited in the second sum. Actually,
although source bits are assumed here to be independent,
they are not conditionally independent givenY N

1 . However, in
many practical systems, (9) is close to (10). Numerically one
finds that the penalty payed by the first sum is negligible to all
practical purposes, at least on the AWGN channel. Moreover,
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with a redundancy below 1bit/2D,1 the error probability on the
uncoded bits given zero errors on the coded bits is virtually
zero at the SNR corresponding to the constrained capacity,
hence

I(Bi;k;Y
N
1 |B4

1;k) ≈ 1, i > 4,

meaning that also the penalty payed by the second sum
compared to the case where intra-symbol chain rule is fully
exploited is negligible.

Consider the four coded bits, that is the first sum in (9). The
achievable information rate can be evaluated by Monte-Carlo
integration as

lim
N→∞

1

N

N
∑

k=1

4
∑

i=1

log2
p(bi;k|yN1 )

p(bi;k)
. (11)

The probability of the bits given the received signal is com-
puted from the probability of constellation points as

p(bi;k = 0|yN1 ) =
∑

xk∈X :bi;k=0

p(xk|yN1 ). (12)

The second sum in (9) is treated in a similar manner, the only
difference being that the four coded bits are now given as a
condition.

IV. D EMODULATION

Ideal demodulation, which exploits the conditionsXk−1
1

appearing in the conditional entropy (7), can be performed
as

p(xk|yN1 , xk−1
1 ) =

∫ 2π

0

p(φk, xk|yN1 , xk−1
1 ) dφk

=

∫ 2π

0

p(φk|yN1 , xk−1
1 )p(xk|yk, φk) dφk

(a)∝
∫ 2π

0

p(yk−1
1 , xk−1

1 |φk)p(φk, y
N
k )p(xk|yk, φk) dφk (13)

∝
∫ 2π

0

p(φk|yk−1
1 , xk−1

1 )

p(φk)
p(φk|yNk )p(xk|yk, φk) dφk

∝
∫ 2π

0

p(φk|yk−1
1 , xk−1

1 )p(φk|yNk )p(xk|yk, φk) dφk, (14)

where∝ indicates that a factor independent ofxk and φk

has been brought outside the integral and cancelled, the
product p(yk−1

1 , xk−1
1 |φk)p(φk, y

N
k ) in step (a) is obtained

from p(φk|yN1 , xk−1
1 ) by passages similar to those of [42],

the last step of (14) holds becausep(φk) is uniform, and

p(xk|yk, φk) =
p(yk|φk, xk)p(xk)

p(yk|φk)
.

The forward and backward probability distributions of the
phase appearing inside the integral (14) are iteratively com-
puted by Bayesian tracking:

p(φk+1|yk1 , xk
1)

∝
∫ 2π

0

p(φk|yk−1
1 , xk−1

1 )p(yk, xk|φk)p(φk+1|φk) dφk,

1It is shown in [46] that, when the redundancy is 1bit/2D, the gap from
the constrained capacity of the AWGN channel in the bandwidth constrained
region is about 0.1 dB. Hence, the potential benefit of addingredundancy
greater than 1bit/2D is negligible.

p(φk|yNk ) ∝ p(yk|φk)

∫ 2π

0

p(φk+1|yNk+1)p(φk|φk+1) dφk+1,

where theblind channel probabilityp(yk|φk) is computed
from (4) by taking forp(xk) a uniform distribution onX ,
while the data-aided channel probabilityp(yk, xk|φk) =
p(yk|xk, φk)p(xk) is computed by taking for the probability
distribution of input datap(xk) an indicator function that is
non-zero only for the input symbol visited by the realization.

When past input data are not available one is forced to resort
to non-data-aided demodulation, that is similar to (14), but the
conditionsxk−1

1 are dropped:

p(xk|yN1 )∝
∫ 2π

0

p(φk|yk−1
1 )p(φk|yNk )p(xk|yk, φk) dφk. (15)

In iterative demodulation and decoding, demodulation is based
on (15), but, after the first decoding, one can use the prob-
ability distribution p(xk) coming from the decoder asex-
trinsic information in (4) (not to compute theintrinsic term
p(xk|yk, φk) inside the integral (15)) to get the transition
metric of forward and backward recursions.

In practice, the continuous-state channel model is in-
tractable. To cope with the continuous-state model one can
compute a non-parametric approximation to the wanted prob-
ability distribution by introducing an auxiliary channel where
the state space is discretized into bins, leading to a trellis-
based representation of the evolution of the phase in the
discrete-state space, where trellis’ states are the centroids of
the bins, see for instance [15], [29] for details. However, trellis-
based demodulation can be complex, and the complexity of
demodulation increases by a factor equal to the number of
iterations. Therefore we propose trellis-based demodulation
at the first demodulation step followed by the classical CBC
algorithm.

The CBC algorithm, where the probability distribution of
the hidden phase given the observation is modelled as a
Tikhonov distribution2, is less complex than the trellis-based
technique. In CBC, the incoming phase distribution is obtained
by tracking the parameter of the Tikhonov distribution. To
make the paper self-contained, we recall here the main steps
of CBC. The two-step forward recursion for the tracked
parameter is

afk = afk−1 + 2
yk−1α

∗
k−1

SNR−1 + β2
k−1 − |αk−1|2

, (16)

afk =
afk

1 + γ2|afk |
, (17)

wherec∗ denotes the complex conjugate ofc and

αk =
∑

xk∈X

xk p(xk),

β2
k =

∑

xk∈X

|xk|2 p(xk).

2Also known as Von Mises distribution.



S. PECORINOet al.: BOOTSTRAPPING ITERATIVE DEMODULATION AND DECODING WITHOUT PILOT SYMBOLS 5

The parametric approximation to the wanted probability dis-
tribution is computed as

p(xk|yN1 ) ∝ e−|xk|
2SNRI0

(∣

∣

∣
afk + abk + 2SNR ykx

∗
k

∣

∣

∣

)

, (18)

whereabk is obtained from a backward recursion similar to
the forward one andI0(·) is the zero-th order modified Bessel
function of first kind. To prevent numerical problems that
occur when the argument of the Bessel function becomes too
large, one can use the exponential approximation

I0 (z) ≈
ez√
2πz

, z ≫ 0, (19)

leading to

p(xk|yN1 ) ∝ e−|xk|
2SNR+|af

k
+ab

k+2SNR ykx
∗

k|−λ

√

2π
∣

∣

∣
afk + abk + 2SNR ykx∗

k

∣

∣

∣

, (20)

where the role ofλ, which is up to the designer, is that
of keeping under control the exponent of the exponential
function. At the first iteration of the iterative demodulation
and decoding algorithm, extrinsic information about the input
symbols is not available, hence the parametersαk andβk are
computed by assuming uniform distribution forp(xk). If the
mean value of constellation’s symbols is zero, thenαN

1 is
a vector ofN zeros, hence from the numerator of (16) one
realizes that the algorithm cannot bootstrap.

V. REDUCED COMPLEXITY TRELLIS-BASED

FORWARD/BACKWARD DEMODULATION

In trellis-based demodulation, the continuous phase is dis-
cretized into |S| bins, where the discrete states, takes its
values in the set of bins’ centroids:

S = {−(|S| − 1)∆,−(|S| − 3)∆, · · · , (|S| − 1)∆} , (21)

where
∆ =

π

|S| (22)

is half the bin width. For the sake of simplicity, we limit here
ourselves to uniform and time-invariant quantization. Thestate
transition probability is

p(sk|sk−1) =

∫

R(sk
k−1

)

p(φk|φk−1)

∆
dφk dφk−1, (23)

where R(skk−1) indicates the two-dimensional quantization
region whose centroid isskk−1. Sincep(sk|sk−1) depends only
on the differencesk − sk−1, it takes its values in a set of
|S| numbers that can be pre-computed by equation (23). The
probability p(yk|sk, xk) is similar to (5) with the centroid of
the binsk in place of the continuous phaseφk.

A. Reducing the State Transition Frequency

For small step sizeγ, an approximation to the wanted
distribution can be computed by introducing an auxiliary
discretized phase noise process obtained by mergingn steps

of the random walk. This leads to the following auxiliary state
transition probability

p(sk|sk−1) =

∫

R(sk
k−1

)

p(φkn|φ(k−1)n)

∆
dφkn dφ(k−1)n,

(24)
with

p(φkn|φ(k−1)n) =

∞
∑

i=−∞

g(φ(k−1)n + 2iπ, nγ2;φkn). (25)

The auxiliary channel probability is obtained by approximating
phase noise to a constant between timekn and timekn+n−1:

p(ykn+n−1
kn |sk) =

∑

x
kn+n−1

kn
∈Xn

p(ykn+n−1
kn , xkn+n−1

kn |sk)

=
∑

x
kn+n−1

kn
∈Xn

n−1
∏

i=0

p(ykn+i, xkn+i|sk)

=

n−1
∏

i=0

∑

xkn+i∈X

p(ykn+i, xkn+i|sk)

=
n−1
∏

i=0

∑

xkn+i∈X

p(ykn+i|xkn+i, sk)p(xkn+i), (26)

where

p(ykn+i|xkn+i, sk) = gc(xkn+ie
jsk ,SNR−1; ykn+i).

A transition on the trellis corresponds to a block ofn source
symbols, and, fori = 0, 1, · · ·n− 1, the probability distribu-
tion of the i-th symbol in thek-th block is computed as

p(xkn+i|ynN1 ) ∝
∑

sk∈S

p(sk|ykn−1
1 )p(sk|yNn

kn )p(xkn+i|ykn+i, sk), (27)

where the forward and backward probabilities are recursively
computed by the state transition probability (24) and by the
channel probability (26). By reducing the state transition
frequency one reduces the number of serial operations per
second. This is crucial for feasibility of the serial algorithm
in high-speed processing implemented in optical receivers.
Anyway, if further reduction of serial operations per second is
needed, it can be achieved by parallelizing the processing of
codewords at the expense of latency.

B. Reducing the Computation per State Transition

By looking at the phase evolution in time domain, at
time instantk only a small range of the phase domain has
non-negligible probability, and the range with non-negligible
probability can be predicted from the distribution at timek−1
and tracked by a feedback loop. Based on this observation,
we propose a state reduction technique where the set of trellis
statesS ′ is a subset of the setS of (21) centered around phase
zero, that is

S ′ = {−(|S ′| − 2)∆,−(|S ′| − 4)∆, · · · , (|S ′| − 2)∆} ,
(28)

where∆ is the same as (22) and|S ′| ≤ |S| is even and up to
the user.
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Assuming thats0 is known and starting fromµ0 = s0,
p(s′0 = 0) = 1, for k = 1, 2, · · · , N the forward recursion is

p(s′k|uk−1
1 ) =

∑

s′
k−1

∈S′

p(s′k|s′k−1)p(s
′
k−1|uk−1

1 ), (29)

µk = µk−1 + arg max
s′
k
∈S′

p(s′k|uk−1
1 ), (30)

uk = yke
−jµk , (31)

p(s′k|uk
1) ∝ p(uk|s′k)p(s′k|uk−1

1 ), (32)

and the distributionp(s′k|uk
1) for s′k outside the binned range

is set to zero. Basically, between the classical predict (29) and
update (32) steps of Bayesian tracking, we introduce equations
(30) and (31) whose scope is that of tracking the hidden phase
to maintain the phase errorφk − µk inside the binned range.
Note that, sincep(s′k|s′k−1) depends only on the difference
[s′k − s′k−1]mod 2π, the distributionp(s′k|uk−1

1 ) in the left
hand side of (29) is proportional to the convolution between
the state transition probability, which is constant and canbe
pre-computed, and the distributionp(sk−1|uk−1

1 ). Therefore,
for number of states greater than 32, (29) can be efficiently
computed as: fast Fourier transform (FFT) of the state metrics
p(s′k−1|uk−1

1 ), product in frequency domain by the FFT of the
constant vector of state transition probabilities, inverse FFT.

Assuming thatsN+1 is known, the backward recursion is
performed in a similar way. To put together the contributions
coming from forward and backward recursions, the correspon-
dence between the absolute phase and the states of the trellis
must be recovered. Specifically, the wanted probabilities of the
actual statesk are obtained from those of the states′k by the
variable transformation

sk = [s′k + µk]mod 2π, (33)

of course using the forwardµks for the forward recursion and
the backwardµks for the backward one. The state reduction
technique proposed here fails when the set of states with
nonzero probability obtained from the forward recursion has
zero overlap with the set of states with nonzero probability
obtained from the backward recursion. When this happens,
for instance due to a cycle slip occurred in one of the two
recursions, (27) does not provide a meaningful distribution.

Another saving can be made on the discrete-state version
of (4) which, for QAM with large number of points, can be
unnecessarily complex. Actually, at intermediate-to-high SNR
only Np constellation points give non-negligible contribution
to the sum. To further simply signal processing, we suggest to
associate with each constellation point a look-up table (LUT)
that contains the coordinates of nearest constellation’s points.
After this, only the hard decision on the de-rotated signal
in (31) and the points in the LUT associated with the hard-
decision are considered in (4), thus avoiding the search of the
nearest constellation points to the received signal.

VI. SIMULATION RESULTS

In the simulation results presented in this Section16-QAM
and64-QAM are considered.
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(a) SNR=10 dB
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(b) SNR=16 dB

Fig. 2: Achievable information rate versus∆νT for the phase noise channel
with 16-QAM and two values of SNR. Dashed line: pure AWGN
(∆νT =0). Solid line with squares: full trellis, forward data-aided
recursion. Dash-dotted line: full trellis with forward/backward non-
data-aided recursions. Solid line: reduced complexity trellis with
forward/backward non-data-aided recursions. Dashed linewith circles:
Circular QAM with Viterbi-Viterbi carrier phase estimation [7].

Figures 2 and 3 report the achievable information rate
versus normalized full-width half-maximum bandwidth∆νT
for various types of demodulation and two values of SNR
per modulation. In addition to the information rate of the pure
AWGN channel (∆νT = 0), for each pair SNR/modulation five
curves are drawn. Two out of five curves refer to a full version
of the trellis with∆ = π/512 andn = 1. The state transition
metric of the full trellis is based on 16 points with16-QAM
and on 49 points with64-QAM. One of the two curves is
obtained with the data-aided forward recursion and no non-
data-aided backward recursion. Although the non-data-aided
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(a) SNR=17 dB

∆ν T
10-6 10-5 10-4 10-3

I(
X

;Y
)

3.5

4

4.5

5

5.5

6
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Fig. 3: Achievable information rate versus∆νT for the phase noise channel
with 64-QAM and two values of SNR. Dashed line: pure AWGN
(∆νT =0). Solid line with squares: full trellis, forward data-aided
recursion. Dash-dotted line: full trellis with forward/backward non-
data-aided recursions. Solid line: reduced complexity trellis with
forward/backward non-data-aided recursions. Dashed linewith circles:
Circular QAM with Viterbi-Viterbi carrier phase estimation [7].

backward recursion would, at least theoretically, improvethe
information rate, it happens that, with strong phase noise,
cycle slips affect non-data-aided backward tracking, leading
to numerical problems that appear when one tries to compute
the product inside the integral (14). For this reason we report
only the information rate extracted by the data-aided forward
recursion, which is virtually optimal because the non-data-
aided recursion is much weaker than the data-aided one, there-
fore in practice it can be ignored. The second curve with full
trellis is obtained with non-data-aided forward and backward
recursions. Figures 2 and 3 show that the two demodulation

TABLE I: Parameters of the trellis used to get the performance represented
by the solid line curves in Figs. 2-5.

16-QAM 64-QAM

Half bin width, ∆ π/16 π/64
Number of bins,|S′| 8 8

Number of nearest constellation points,Np 16 9
Number of merged steps,n 73 73

methods give virtually indistinguishable results with low-to-
intermediate phase noise, while, with strong phase noise, the
performance of non-data-aided demodulation suddenly drops
after a threshold that depends on SNR, while the perfor-
mance of data-aided demodulation degrades smoothly. At the
threshold, non-data-aided demodulation starts to be affected by
cycle slips, and, above the threshold, the only way to prevent
cycle slips is of adding pilot symbols. The information rate
extracted by the non-data-aided forward/backward trelliswith
reduced complexity is obtained with the dramatic reduction
of complexity of the full trellis reported in Table I. The
phase range spanned by the reduced trellis is(−π/2, π/2)
and(−π/8, π/8) for 16-QAM and64-QAM, respectively. We
observe that the complexity reduction operated on the trellis
affects the cycle-slip threshold, while the performance inthe
cycle-slip-free region is virtually unaffected by complexity
reduction. The gap between the threshold of the reduced-
complexity trellis and the threshold of the full trellis canbe
bridged by acting on the design parameters that have been
introduced in the section devoted to complexity reduction.As
a competitor of the reduced-complexity trellis, in Figs. 2 and
3 the information rate extracted by the Viterbi-Viterbi carrier
phase estimator with circular QAM modulation proposed in
[7] has been reported. For each value of∆νT the duration of
the sliding-window filter of [7] has been optimized. Note that,
despite the strong complexity reduction reported in Tab. I,the
threshold of trellis-based tracking outperforms the threshold
of [7] at low SNR, that is at the SNR of interest for coded
systems.

To show the impact of the results presented in Fig. 2
on the iterative demodulation and decoding algorithm, we
design a coded system with a binary low-density parity-check
(LDPC) code with(n, k) = (4088, 3066) derived from the
LDPC code with rate7/8 in [47] by using the dummy bit
insertion technique described in [48]. We hasten to point out
that deeply investigating coding methods for channels affected
by phase noise is out of the scope of the present paper, which
is focused on demodulation. One pilot symbol is inserted
at the beginning and at the end of every block.16-QAM
exploits Gray mapping of all the encoded bits, leading to a
spectral efficiency of 3 bits per QAM symbol. Motivated by
the discussion in Section III,64-QAM is based on theZ2/4Z2

mapping, where four bits per symbol are encoded and two bits
are left uncoded, leading to a spectral efficiency of 5 bits per
QAM symbol. (The choice of a redundancy of one bit per
dimension pair is discussed in footnote 2.) The normalized
full-width half-maximum bandwidth of the spectral line∆νT
is 1.3 ·10−5 for 16-QAM and3.7 ·10−5 for 64-QAM. The first
demodulation and decoding step is performed by a reduced-
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Fig. 4: BER versus SNR after the first demodulation and decoding step,
no pilot symbols. (a)16-QAM, phase range spanned by the trellis
(−π/2, π/2). Solid line: |S′| = 8, n = 73. Dashed line:|S′| = 32,
n = 73. Dashed line with circles:|S′| = 16, n = 2. Solid line with
triangles:|S′ | = 128, n = 2. (b) 64-QAM, phase range spanned by
the trellis (−π/8, π/8), and number of nearest constellation points
Np = 9. Solid line: |S′| = 8, n = 73. Dashed line:|S′| = 32,
n = 73. Dashed line with circles:|S′| = 8, n = 14. Solid line with
triangles:|S′ | = 128, n = 2.

complexity trellis with non-data-aided forward and backward
recursion and5 iterations of the LDPC decoder. The BER
after the first demodulation and decoding step is reported
in Fig. 4 for different parameters of the reduced-complexity
trellis. A trellis with complexity greater than the one used
to get the results marked with the solid line with triangles
does not improve performance. From the results reported in
Fig. 4 one observes that64-QAM is much more sensitive
than 16-QAM to n, the number of merged steps. After the
first demodulation and decoding step, parametric demodulation
and soft-output LDPC decoding are iterated as depicted in the
block diagram of Fig. 1. The results of Fig. 5 are obtained with
trellis parameters reported in Table I. In Fig. 5, the limit SNR
with the given constellation with the pure AWGN channel and

SNR [dB]
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B
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R

10-6

10-5

10-4

10-3

10-2

10-1

(a) 16-QAM

SNR [dB]
16 16.5 17 17.5 18

B
E

R

10-6

10-5

10-4

10-3

10-2

10-1

(b) 64-QAM

Fig. 5: BER versus SNR. Dashed line: performance limit of AWGN chan-
nel. Dash-dotted line: performance limit of AWGN and phase noise
channel. Dashed line with triangles: pure AWGN. Solid line:hybrid
iterative demodulation and decoding without pilot symbols. Dotted
line with crosses: full trellis with data-aided forward recursion and
non-data-aided backward recursion. Solid line with circles: iterative
demodulation and decoding of [3] with pilot rate 1/25.

the phase noise channel is drawn. Also, Fig. 5 reports the BER
versus SNR for different demodulation methods with phase
noise and the reference curve for the pure AWGN channel.
For the phase noise channel, Fig. 5 reports the BER with ideal
demodulation based on a finely discretized version of (14),
the proposed hybrid iterative method of Fig. 1 with reduced-
complexity trellis at the first demodulation stage with the
complexity reduction of Table I, and the competitor method of
[3] with pilot rate 1/25 initialized by the unconstrained Wiener
filter studied in [13]. The parameter of iterative demodulation
and decoding of the proposed method and of [3] are reported
in Table II. It is apparent from Fig. 5 that, although the
proposed method does not make use of pilot symbols, it out-
performs the adversary method based on pilot symbols. Also,
we observe that, despite the dramatic complexity reduction,
the performance with reduced complexity trellis is virtually
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TABLE II: Iterations performed by the proposed hybrid iterative demodula-
tion and decoding algorithm.

16-QAM 64-QAM

Number of demodulation and decoding iterations 3 2
Number of iterations of the LDPC decoder for

each iteration of demodulation and decoding 5 5
Number of iterations of the LDPC decoder

after the last demodulation 50 50

optimal. Actually, we have found that trellis complexity can
be reduced without any appreciable performance degradation
until cycle slips stars appearing. Moreover, the dramatic com-
plexity reduction applied on the trellis makes the computation
of our proposed method affordable also in high-speed data
transmission.

VII. C ONCLUSION

The paper has shown that there exists a threshold that
divides the operation of iterative demodulation and decoding
in two regions: low-to-intermediate phase noise and strong
phase noise. Focusing on the region of low-to-intermediate
phase noise, the paper has shown that the iterative process
can bootstrap also without pilot symbols, provided that non-
parametric demodulation, such as trellis-based demodulation,
is adopted before the first decoding iteration. Complexity
reduction techniques are proposed to mitigate the complexity
of the forward/backward recursions on the trellis. The perfor-
mance of iterative demodulation and decoding turns out to be
virtually unaffected by complexity reduction, provided that it
is adequate to guarantee cycle-slip-free operation of the first
demodulation stage.
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