
Programming Languages shouldn't be "too Natural"

Dino Mandrioli
Politecnico di Milano

Piazza Leonardo Da Vinci 32
20133, Milano, Italy

+390223993522

dino.mandrioli@polimi.it

 Matteo Pradella

Politecnico di Milano

Piazza Leonardo Da Vinci 32
20133, Milano, Italy

+390223993495

matteo.pradella@polimi.it

ABSTRACT

Despite much research on programming language principles, most often

the design of modern languages ignores such principles which results in

cumbersome, hard to understand, and error-prone code. We substantiate

our claim through a short sampling of the features of some widely used

languages and by referring to other criticisms widely publicized in the

literature. We argue that a major reason of such an unpleasant state of

the art is that programming languages evolve in a way that too much

resembles that of natural languages. We advocate a different attitude in

programming language design, going back to essentiality and rigorous

application of few basic, well-chosen principles.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Contructs and Features

General Terms

Languages, Theory, Human Factors.

Keywords

Programming language principles, best practices, programming

language defects.

1. INTRODUCTION
High level programming languages (PLs) have been motivated by the

wish of abstracting from machine peculiarities and making the

programmer’s job more comfortable; as a consequence, from the very

beginning they were inspired by natural languages (NLs): the ancestors

FORTRAN and COBOL and, even more, ALGOL 60 not only included

keywords borrowed from English but, mainly, they resumed the typical

nested structure of natural language sentences.

NLs, however, exhibit many features which do not prove effective in

programming, where, typically, we want precise, highly reliable

products. They are flexible and tolerant; this allows, for instance, to

understand even syntactically incorrect sentences; they are redundant,

so that in some cases we may appreciate using several paragraphs to

express a concept that could be explained as well with few lines,

possibly just for the pleasure of an elegant reading. These “virtues” of

NLs, however, have also some unavoidable drawbacks: they are deeply

ambiguous, which often causes lack of clarity and misunderstandings

with more or less serious consequences; they evolve in an uncontrolled

and unpredictable way, generating many dialects and fragmentation of

the various communities, as taught by the biblical history of the Babel

Tower.

In this paper we argue that the recent history of PLs, probably pushed

by the technology advances which made defining and implementing

new languages relatively easy, went too far in the path of importing NL

features, with the result of importing also their undesirable properties;

to support our thesis, next we briefly and critically examine the

historical evolution of PLs, then we propose a few simple principles and

guidelines to avoid the risks and defects of many modern PLs.

.

2. A RETROSPECTIVE OF PROGRAMMING

LANGUAGE EVOLUTION
Among the earliest high level languages FORTRAN is the one that

most ignited research on the formal aspects of language syntax. Not by

chance the BNF (Backus-Naur Form) and the context free grammar are

essentially the same formalism born almost independently and

contemporarily within the computer science and the mathematical

linguistic communities. This formalism has been the stage on which the

formal language and automata theory developed fundamental results in

parsing and compiling during the 60s and 70s.

In those years, while the theory of syntax directed parsing and

translation led to powerful and general algorithms to (almost)

automatically generate a compiler from a language definition, plenty of

new languages were defined with the goal of enhancing their quality

and usability, though not always it was clearly understood that often

their quality goals were conflicting, e.g., general purpose vs. efficiency,

expressive power vs. simplicity and ease of use, machine control vs.

abstraction, easy compilation vs. run-time efficiency, … .

Despite the fact that industrial applications almost ignored so much

research -FORTRAN and COBOL, respectively, remained the almost

unique widely used languages within engineering and business

applications- several fundamental milestones were set in those years:

ALGOL 60 is still now considered the ancestor of all block-structured

languages, which lead to the full consequence the idea of defining

complex constructs by nesting simple ones; ALGOL 68 is remembered

as associated with the principle of orthogonality, i.e. deriving any

feature as the combination of few basic ones; Simula 67 and Pascal

ignited type theory which further evolved towards the notion of class

and object-oriented programming; LISP and its followers pursued a

functional style of programming.

Some of them were the result of a joint and coordinated effort of several

communities whereas others were the invention of single researchers or

small groups, but in all cases they were the result of elaborating a few

basic principles and deriving language details as the consequence of

such principles. Many fundamental programming language concepts

were developed during those years, such as dynamic vs. static typing,

strong typing, dynamic vs. static scoping, …: new PLs were designed

by choosing some of them as the driving principle.

Noticeably in the same time IBM developed PL/I with the purpose of

making it the universal language: it was simply a rather unstructured

collection of all then known language features plus a few new ones with

no rational design behind that; despite the great industrial and

commercial power of the industry supporting it, PL/I is now

remembered as a major failure in the history of PLs.

Adding new features to a language may increase its “power” and

flexibility but often at some price in terms of clarity and ambiguity.

Some apparent “enrichments” brought back in the PLs ambiguity

problems typical of NLs: the same syntactic construct could be

reasonably interpreted with different meanings with no precise

indication of a preferred one; as a natural consequence this led to typical

and serious problems of compatibility, portability and, in general,

correctness.

This led various researchers to advocate formal semantics, i.e., the use

of formalisms suitable to give a mathematically defined meaning to

each syntactic construct. Many formalisms of this type have been

proposed in the literature and occasionally some of them have been

applied to real-life PLs; none of them, however, has been widely

accepted by practitioners let alone any kind of official standardization.

This reluctance is probably due to the heaviness of mathematical

formalisms adopted so far to obtain complete definition of PL

semantics. Indeed, whereas the concept of context-free grammar is

inspired by, and very similar to, the way we normally explain the

rationale of NL syntax, semantic formalisms have little similarity with

the way we assign meaning to NL sentences.

The history of PLs exhibits an incredible number of languages and

dialects derived therefrom, as it typically happens with NLs. However,

whereas in the past new languages had little chance to reach a wide

audience, were seldom adopted outside their “birth place”, and even

important ones, such as the ALGOL’s family, remained in the realm of

academic investigation, more recently we saw the phenomenon of many

“suddenly and unexpectedly successful” languages; some of them died

as soon as they were born, but others enjoyed a lasting success and

fame. Two possible reasons for this new phenomenon are the explosion

in terms of technological power, which now allows to “deliver” a

working language in a few weeks, or even days, and the parallel growth

of the user community, which, even restricting it to the programmers’

one, is now orders of magnitude larger than the few specialists of the

50s and 60s.

Let us consider in particular the case of C. With all the due respect to its

historical and technical merits, we believe that it suffers from an

“original sin,” which has then been inherited by most of its descendants:

it has been invented and rapidly realized to help its originators in a

specific, and, in that case, very important job, i.e., replacing the

traditional use of assembly languages during the development of UNIX;

thus, it was designed with exactly that purpose in mind, in particular

supporting the habits of very expert and specialized programmers. A

showy consequence of this feature is the plenty of abbreviations it

exhibits; in many cases such abbreviations are indeed useful and

became common practice with no risk of misuse, such as, e.g., ‘->’ for

‘(...*).’ (but how many seconds are saved by its use?), others are

semantically “safe” after some non obvious clarification, such as the

difference between ++i and i++; but when we go into deeper

semantic issues critical problems arise.

C led to the extreme consequences the “hybridation” between

expressions as “something that delivers a value” and statements as

“something that changes the state” with the goal of obtaining two

results in one shot; but another way of expressing the same concept is

the term side effect, which is often and correctly taught as a major risk

in programming. Despite the long life of C and its systematic and

continuous standardization, still critical ambiguities derive from this

feature such as the “folk example” below.

int main(void) {

int x = 0;

return (x = 1) + (x = 2);

}

The official semantics of the above code is ‘undefined’, which leaves

the implementer free to deliver arbitrary values; in fact some return 3

and some others 4. What if a piece of code such as this becomes part of

a mission critical system?

Most modern PLs owe much to C, including its “original sin.” Since its

birth in fact, many new languages borrowed various syntactic constructs

therefrom and plugged new elements, even major new concepts such as

object orientation, into its syntactic skeleton. This process however

occurred in a very unordered way, despite in many cases more or less

official managing and standardization committees were set up. In our

view it resembles too much the way NLs evolve where often some

“users” -e.g. gangs of boys, TV commercials- introduce new slang

expressions, import terms from other languages, … some of which then

gain larger and larger use, with little or no control on the final effect on

the “purity” of the mother tongue. In the case of PLs this often results in

an accumulation of redundant or even conflicting features in a way that

was already and uselessly blamed a long time ago by T. Hoare in his

Turing lecture [4]. In other words, short term “user satisfaction”

overwhelms rigorous design and evolution planning.

A typical example of such a “wild” language generation and managing

is blatantly offered by PHP, which is almost universally criticized (see,

e.g., [6]) but nevertheless has been widely adopted in important

applications.

In summary, our viewpoint is that the way PLs are invented, developed,

and adopted within user communities now-a-days borrows too much

from NLs; not by chance many new languages are -or at least are born

as- scripting languages, which typically are oriented towards translating

any idea into an immediate action as opposed to organizing a well-

thought design into a structured implementation and documentation.

To better exemplify, Table 1 overviews a few widely used modern

languages from the point of view of the process that manages their

evolution and its consequences. We are bewildered by the fact that a

long history of research on PLs produced sound principles and

techniques for their development but is mostly ignored by modern

practices; the defects that result from this attitude are soon apparent and

properly pointed out in the literature but nevertheless … the bad

practices seem to keep going. On the one hand, the fact that PL

evolution resembles NL one is “natural” since both of them are human-

generated, but on the other hand in many cases the natural human

attitude must be disciplined and “educated”: an old Latin motto states

“errare humanum est, sed perseverare diabolicum.”1

Table 1.

Language Some example known issues

(not a survey)

Java Many non-trivial features (reflection, generics,

lambda, ...) have been added after its birth in an

originally unplanned way.

C++ Some authors present it as a “federation of

languages”. It exhibits many ways of doing the

same thing, often for compatibility with C or older

versions of the language.

JavaScript Exhibits a number of inconsistent choices. It tends

to carry over a computation “no matter what”: see

Example 1 below. There are many ways of doing

the same thing: see, e.g., something basic like

inheritance! Having nullable types is a bad idea [5],

and JavaScript has two kinds of null: null and

undefined.

Python Some basic aspects of the language were changed:

e.g. method resolution order; nested static scope;

unification between classes and types; parameters in

generators. Decorators have been added for

flexibility. There are two partially incompatible

versions of the language, the 2.x family and the 3.x

family. The 2.x family will be discontinued in 2020.

Ruby No formal grammar exists: it must be inferred by

the interpreter source code. Block, Proc, and

Lambda are basically the same thing, and exhibit

puzzling semantic variations: see Example 2 below.

Perl It follows an almost opposite approach w.r.t. the

principles recommended here: his designer L. Wall

often compares Perl to a natural language and

explains his decisions in Perl's design with linguistic

rationale. For instance, the first Perl slogan is

"There's more than one way to do it".

1 To err is human, but to persist in error is diabolical.

Table 2 (Continued)

Example 1 - JavaScript Example 2 - Ruby

> function f(x) { return

x*x*x; }
> f(5)
125
> f(5,3,112)
125
> f([1,2])
NaN
> f(3,"hi!")

27

> f = Proc.new {|x|

x*x*x}
> f.call(7)
343
> f.call(7,6)
343

> g = lambda {|x| x*x*x

}
> g.call(5)
125
> y.call(5,6)

Argument Error: wrong

number of arguments (2

for 1)

3. BACK TO THE PRINCIPLES
On the contrary, we advocate going back to a more rigorous style, as it

should be best practice in all non-trivial engineering activities. Here we

propose a sample of positive recommendations in a deliberately rather

provocative style.

If for any reason you are beginning to think about building your own,

new language, the number one question to ask yourself is: “Do we

really need a new language?” Are you sure that within the enormous

panorama of the existing languages and tools you cannot find anything

that can be adopted for, or possibly adapted to, your goals? Only if the

answer to this question is a well-thought “Yes” proceed with your

endeavor and keep in mind the following guidelines:

I. Learn from the history of PLs; carefully choose a few basic

principles and derive detail decisions therefrom rather

than “piling up” new features with a trial-and-error attitude. Of

course the choice of principles must be taken in a coherent way on

the basis of the goals and application field of the language; e.g.

strong, possibly static typing, could be chosen for PLs devoted to

programming critical and efficient systems, the flexibility of

dynamic or loose typing could be preferred for “exploratory

languages” such as scripting languages.

II. Exploit the precision and rigor provided by formal notations,

possibly not only for syntactic definitions but also for critical and

intricate semantic aspects. A “corollary” of the exploitation of

formal notations is the possibility of applying tools such as

automatic parsers and code generators; even if this

recommendation is sometimes contradicted [1] by the argument

that now-a-days building a compiler for a new language is not

such a burden, we believe that using an automatic tool such as an

LR parser generator compels to define and use syntactic features

in a disciplined way.

III. Most often a language must evolve; thus, plan carefully its

extensibility from the beginning. If a very flexible language is

planned, that must allow for the definition of internal domain

specific languages (DSL) or new constructs, avoid “clever

syntactics hacks” and plan full-fledged facilities (e.g. Lisp

macros) from its inception. For instance, even a recent successful

language, such as Scala, despite its academic pedigree, presents a

(probably too) flexible and ad hoc syntax, with facilities and

special cases for dropping dots and parentheses in method calls, or

swapping the order of object and method names. Such features are

in general a double-edged sword: they can be convenient for

introducing rapidly a DSL, but make the compiler more complex

and are often a source of nasty bugs. Since version 2.10, Scala

contains a Lisp-like macro facility (albeit still experimental),

which will possibly make the previous approach obsolete but a

still present source of complexity.

IV. Avoid or at least minimize redundancy, overloading, short

notations, etc. If you deem a particular feature definitely useful,

rigorously verify that it does not generate ambiguities or conflicts:

e.g., are we sure that allowing for the omission of ‘;’ between

statements in JavaScript is a really useful feature? It makes the

code probably “look nicer”, like in the elegant Python syntax, but

it should be done right: in Python newlines work as separators - if

you don’t want a newline, you must resort to the “despised”

semicolon. On the contrary, the semicolon inference algorithm in

JavaScript is a notorious source of insidious bugs. More

generally: the recent history of important languages show an

incredible amount of freedom left to the programmer;

subsequently we see plenty of criticisms and recommendations for

a disciplined and limited use of most language features (see, e.g.

[2]): wasn’t it better to examine a priori their pros and cons?

Also the freedom left to the implementer should be carefully

evaluated. Besides the above example concerning the C language,

another example that we criticize is the semantics of the in-out

parameter in Ada, where the implementer is left free to adopt

either a by-copy parameter passing technique or a by-reference

one; the two techniques, however, are not semantically equivalent

and this can cause even dramatic effects in some critical cases.

V. Keep the language development process constantly under control.

Do not be afraid of experimenting and re-iterating, but do it in a

rigorous way. Do not rush towards “release 1.0”. An “advisory

board” could be a useful means to achieve this goal. When the

language begins to have a sizable community, it should monitor

user feedbacks and drive language evolution in such a way that

the original principles on which the language is rooted are not

violated. Provide complete, precise, and consistent documentation

throughout the language life; appendices based on formal

specification are useful to disambiguate critical interpretations. Of

course a good process is no guarantee of a good result but, in most

non-trivial cases, is almost a necessary precondition.

To conclude with a bit of optimism, we noticed some encouraging

tendencies. For instance, it is now broadly accepted that requiring

breaks after cases in the classical switch construct, as introduced in C

and later adopted without modifications in C++, Objective-C, Java, and

JavaScript, was a bad idea and a source of a good number of errors (see

for instance the recent Apple’s SSL bug). Many of the newly proposed

languages that have a syntax based on C, e.g., Scala, Go, TypeScript,

Dart, Rust, Swift, fix this issue by using variants or totally different

constructs.

An interesting case is the one of Rust, currently in development at

Mozilla. Rust’s design is based on clean and well-stated principles;

moreover, while going toward version 1.0, some of the features of the

language were indeed removed. So, Rust can be seen as a recent

example of a new language, born and developed within a purely

industrial and practical setting, that is in agreement with our

recommendations.

After decades when many languages rooted in sound principles were

proposed by the academia and ignored by industry and more recent

decades when other “extemporary” languages were generated and

occasionally gained wide acceptance in the practitioners community,

maybe these are first signs of people leaving the “dark side” … .

4. REFERENCES
[1] Bright, W. 2014. So You Want To Write Your Own Language?.

Dr Dobb’s, January 21, 2014.

[2] Crockford, D. 2008. JavaScript: The Good Parts O’Reilly.

[3] Dijkstra, E. W. 1976 A Discipline of Programming, Prentice-Hall,

Englewood Cliffs, NJ.

[4] Hoare, C. A. R.. 1980 The Emperor's Old Clothes, Turing Award

Lecture. Communications of the ACM 24 (2), (February 1981): pp.

75-83

[5] Hoare, C. A. R. 2009 Null References: The Billion Dollar

Mistake, QCon 2009

[6] Munroe, A. 2012 PHP: a fractal of bad design, April 9, 2012

http://me.veekun.com/blog/2012/04/09/php-a-fractal-of-bad-

design/

http://me.veekun.com/blog/2012/04/09/php-a-fractal-of-bad-design/
http://me.veekun.com/blog/2012/04/09/php-a-fractal-of-bad-design/

