
The PAPAGENO parallel-parser generator

Abstract. The increasing use of multicore processors has deeply transformed
computing paradigms and applications. The wide availability of multicore sys-
tems had an impact also in the field of compiler technology, although the re-
search on deterministic parsing did not prove to be effective in exploiting the
architectural advantages, the main impediment being the inherent sequential na-
ture of traditional LL and LR algorithms. We present PAPAGENO, an automated
parser generator relying on operator precedence grammars. We complemented
the PAPAGENO-generated parallel parsers with parallel lexing techniques, ob-
taining near-linear speedups on multicore machines, and the same speed as Bison
parsers on sequential execution.
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1 Introduction
Parsing, or syntactic analysis, plays a fundamental role in a wide variety of computing
applications, from compilation to browsing of structured and semi-structured data, from
natural language processing to genomics, etc. In the last years all these fields have expe-
rienced increasingly demanding requirements in terms of time and energy consumption
or size of the data sets to be processed, which urged for new effective parsing solutions.
Some attempts have been made to devise new parsing algorithms, or obtain relevant
speedups from the classical deterministic ones, by leveraging on the computing capa-
bility offered by modern multiprocessor architectures, but they had almost no success
except for a few overly specific cases (as e.g. for ad-hoc parsers for XML and HTML).

The classical parsing algorithms used for deterministic context-free (DCF) lan-
guages as LR and LL, in fact, can be efficiently implemented (in linear-time) on serial
machines, but they do not speedup on multicore architectures because of their inherent
left-to-right sequential nature: if an input string is split into several parts, handled by
different processors, the parsing actions may require communication among the differ-
ent processing nodes, with considerable additional overhead. Although this work is no
place for a comprehensive survey, we point out the works of Mickunas and Schell [1]
and the more recent ones of [2] as an example of such issues.

Recently we focused on a subclass of DCF the Operator precedence languages
(OPLs), and their grammars (Operator precedence grammars, OPGs) which have been
defined by Robert Floyd a few decades ago [3] and represent a precursor of LR lan-
guages. OPLs have some limits in terms of expressive power and they had been soon
overtaken by parsing techniques based on the more expressive LR family: still, OPGs
are adequate for many common programming languages [4]. The remarkable – and un-
til now unnoticed – aspect of OPLs, is that differently from the larger class of DCF
languages they enjoy a property of local parsability, which makes them suitable for ef-
ficient parallel parsing. Local parsability means that parsing of any substring of a string
according to an OPG depends only on information that can be obtained from a local
analysis of the portion of the substring under processing and is, thus, not influenced by
parsing of other substrings [5, 6].



In this work we present a generator of deterministic parallel parsers (PAPAGENO)
for syntactic grammars specified as OPGs, which exploits their local parsability prop-
erty. To our knowledge, PAPAGENO is the first general-purpose practical generator
of efficient deterministic parallel parsers. It features significant speedups in parsing of
both general programming languages and standard data representation languages. In
this work we improve the tool features presented in [5, 6] through the effective cou-
pling of the parallel parsing with a parallel lexical analysis. Moreover, we show that
it is possible, exploiting a moderately tailored parallel lexical analysis, to describe the
Lua programming language with OPGs.

2 Parallel parser generation with PAPAGENO
We first recall the essentials of OPGs and of the corresponding bottom-up parsers (more
details in [4, 5, 7]).

A grammar rule is in operator form if its right hand sides (r.h.s.) have no adjacent
nonterminals; an operator grammar (OG) contains only such rules. Without loss of
generality, we can also assume that the rules of the grammar have no repeated r.h.s. and
renaming rules are absent.

OPGs exploit three binary partial relations on the set of terminal symbols, named
precedence relations, which can be automatically derived from the rule set of the gram-
mar: between any two terminals the equal in precedence ( .=), yields precedence (l),
takes precedence (m) relations may hold. An OPG is defined as an OG where between
any pair of terminal symbols there is at most one precedence relation. Precedence re-
lations are inspired by the notion of precedence between the operators of arithmetic
expressions: in the same way as e.g. the precedence of product over sum controls the
parsing and evaluation of an arithmetic expression, similarly the relations between the
terminal symbols guide deterministically the parsing of a string.

Precedence relations, in particular, determine the local parsability property of OPGs:
in any partially reduced string, any segment delimited by a pair l and m, where .

= holds
between consecutive terminal characters within it (possibly separated by a nontermi-
nal), corresponds to the r.h.s. of a grammar rule. Parsing of the sentence can arbitrarily
start from any position in the string: when the parsing algorithm identifies a segment
with this pattern by examining the precedence relations, it can reduce it to the corre-
sponding l.h.s. (which is unique if the grammar has no repeated r.h.s.) and the reduction
by means of the chosen rule will never be affected or invalidated by the processing of
other portions of the whole string.

A very efficient parallel parsing algorithm can be devised. An input string can be
split in different parts, each parsed in parallel by independent processors. The choice
of the positions where splitting the string is totally arbitrary, differently from other
proposed parallel parsing algorithms which require that each substring starts at the be-
ginning of suitable (language-dependent) syntactic units (e.g. loops, blocks, etc.). The
partial parsing trees generated by the different processors can then be pairwise com-
bined with constant-time transformations and reduced into the final tree, possibly with
a further or – rarely – multiple parallel passes, depending on the structure of the trees.

3 Tool structure, performances and applications
PAPAGENO offers a practical tool to automatically generate parallel parsers starting
from the description of a grammar in a GNU Bison-like syntax. It has been conceived
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Fig. 1. Typical development flow of a parser, employing PAPAGENO. The human operator stages
are marked in green, while the PAPAGENO automated staged are marked in blue.

to be a drop-in replacement to Bison-generated parsers, allowing to exploit the benefits
of automatically generated parallel parsers with a minimum codebase re-engineering
effort. The generated parser can thus be combined with a scanner generated by GNU
Flex in the same way a Bison generated parser does, and does not rely on any external
libraries, except the common C library.

The parallel workers are implemented exploiting POSIX threads, and have been suc-
cessfully benchmarked with Linux and MacOS X implementations. To prevent thread
interlocking due to the memory allocation performed via the libc allocation func-
tions, the generated parser adopts a pooled allocation strategy to handle both the parsing
stack involved in the process and the construction of the AST. As it is frequent to check
whether the current symbol under analysis is a terminal or a nonterminal, its belong-
ing to one of the two sets is bit-packed within the same integer value representing the
symbol, thus yielding a fast checking strategy by means of bit-masks. To ease portabil-
ity, the position of the packed bit is designer-tunable, while the tool provides a suitable
default value for x86(64) and ARM architectures.

In order to optimize r.h.s. matching at reduction time, the r.h.s. of the grammar rules
are stored in a prefix trie, so that the recognition of the correct reduction is performed
in linear time with respect to the longest r.h.s. of the grammar and is fully independent
from the grammar size. To prevent a performance loss from the scarce spatial local-
ity of a trie, the data structure is effectively linearized into a constant vector at parser
generation time, thus yielding efficient memory accesses upon look-up.

We have been able to successfully generate a full JSON parallel parser, together with
a straightforward lexer, proving the practicality of parallel parsing through OPGs of data
description languages. Contrary to common belief, we note that the parallelization of
the lexing phase becomes relevant when dealing with operator precedence parsing, as
the running times of the parser and the lexer are comparable for lightweight syntax
languages such as JSON.

We have also been able to tackle the parsing of the Lua programming language,
assuming some sensible, and much widespread, programming practices are employed
when writing Lua sources. Parsing Lua through OPGs has been possible thanks to a
proper lexing stage which allows a more natural expression of the grammar in operator
precedence form through token renaming, in a fashion similar to the one proposed by
Floyd for an ALGOL-like language in [8], and by De Bosschere for Prolog in [9]. We



note that this enriched lexer can still be parallelized effectively: we achieved near linear
improvements in our current tests.

The overall parser design workflow with PAPAGENO is summarized in Figure 1.
The figure shows the novel and enriched role of lexical analysis w.r.t. to classical com-
pilers: the lexical analysis in fact, besides being carried over in parallel, has also the
goal of producing an intermediate code that is better suited for an operator precedence
parsing.

4 State of the project
The current state of PAPAGENO provides a working tool to generate parallel parsers
starting from the grammar description. The violations to the constraint on the absence
of repeated right hand side rules in the grammar is pointed out to the parser designer
and an automated r.h.s. elimination algorithm is run to assist developers. Currently, we
provide the JSON sequential lexer and parallel parser with the codebase as a working
example to ease the understanding of the toolchain. Interested users should thus be able
to express their preferred language in an OPG compliant syntax with a limited effort.
The number of parallel parsing threads can be chosen at parsing run-time, simply pro-
viding it as an input parameter to the parsing function, allowing efficient adaptation to
the target platform capabilities. Moreover, we perform fully parallel lexing of JSON and
Lua, obtaining further speedups. The generated parsers were tested on x86 64, ARM
926, and ARM Cortex-A architectures retaining the same performance across all the
platforms. We are planning to enlarge the set of languages supported by OPGs and the
corresponding lexical specifications. Further improvements involve a more methodical
approach to the parallelization of the lexing stage, and the integration with incremental
parsing methods such as [10], which are particularly well suited to our operator prece-
dence parallel parsing algorithm, is also considered. The codebase of PAPAGENO is
available at: https://github.com/PAPAGENO-devels/papageno
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The PAPAGENO parallel parser generator - Demo
Outline

Abstract. The tool demonstration of the PAPAGENO parallel parser generator
will provide a practical walkthrough of the tool use. To this end, we will imple-
ment a full parser for arithmetic expressions during the demo. We will showcase
also the improvements in computation time provided by the effective paralleliza-
tion of the lexing phase on JSON and Lua sources, with respect to a serial ap-
proach.

Keywords: Parser generation, Parallel Parsing, Operator Precedence Grammars

1 Introduction

In this demo we will present a typical use of the PAPAGENO tool, aimed at imple-
menting a simple arithmetic expression grammar. To this end, we will describe how the
PAPAGENO tool is embedded in the common parser development toolchain, which is
sketched in Figure 1.
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Fig. 1. Typical usage of the PAPAGENO toolchain, starting from a grammar and lexical specifi-
cation, obtaining the parsing library. Specifications provided by the user are marked in yellow,
generated C source code is marked in green.

PAPAGENO is designed to be a Bison replacement, minimizing the developer effort
to transition to a parallel parsing approach. Consequentially, it fills the parser genera-
tor spot in the common development flow, providing a direct interface to Flex gener-
ated lexical analyzers. PAPAGENO generates C sources for the pthread-based library
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while keeping an understandable format of the generated code, allowing the developer
to fine tune it, should the need arise. The tool provides a simple interface which allows
the developer to select the directories where the parser implementation and headerfiles
are generated, allowing a quick integration into existing projects. In this demo we will
follow the common development workflow for a sample grammar, showing how it is
possible to perform parallel parsing effectively and efficiently. We will take as our run-
ning example grammar the one of the common arithmetic expressions, having sum and
product as arithmetic operators, parentheses, and integer numbers as operands. Briefly,
the productions of the grammar are S → E,E → E + T | T, T → T × F | F, F →
(E) | integer.

2 Implementing a compliant lexer

In this section we show the key points to implement a lexer for the simple language of
arithmetic expressions.

The developer can choose to implement a sequential or a parallel scanner to per-
form lexical analysis of the input file. In the first case, the developer has to provide a
specification of the lexicon with the syntax of a Flex program. The specification file
is divided into three sections (definition section, rules section, developer subroutines)
separated by lines consisting of two percent signs %%. The first section has to include
the following definition of the structure chosen to represent a token, where the token
field denotes the token identifier and the semantic value field denotes its value:

%{
# i n c l u d e ” g rammar tokens . h ”
s t r u c t l e x t o k e n {

g r t o k e n t o k e n ;
void ∗ s e m a n t i c v a l u e ;

} ;
e x t er n s t r u c t l e x t o k e n ∗ f l e x t o k e n ;
%}

Fig. 2. Data structure used to represent a token in the specification file for Flex.

The only difference with the common Flex specification format is that the semantic
values of the tokens are stored as memory zones referenced by a pointer, instead of
resorting to the common contract via the definition of a union.

The rule section contains the regular expression based definition for the tokens of
the lexical grammar.
A sequential C scanner is then directly generated by Flex from the specification file.
The lexing action simply builds the token list by calling the yylex routine on the input
file until the end of the file is reached or an error occurs.

The developer willing to implement a parallel scanner has to provide an interface
to the lexing process that initially splits the input file into different segments and then
runs on each of them a parallel worker to perform the scanning. The splitting of the
file into parts must not split any lexeme across distinct segments. For the arithmetic
expressions grammar, where possible lexemes are numbers, arithmetic operators and
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parentheses, the splitting points of the input file can be easily chosen. It is sufficient
to split anywhere outside a number, by first selecting equal-sized segments to divide
the file and then shifting their cutting points until a non-digit character is met. For
more complex lexical grammars, it may be not possible to analyze a bounded context
around the initial cutting points to guarantee that the edges of the segments do not cut
any lexeme in the middle. However the developer can handle efficiently this problem
by allowing the cutting points unaligned with the tokens, while properly encoding the
valid lexing actions for the fragment in a compact fashion.

After the splitting the file, each segment is processed by an independent worker:
the parallel workers are generated as reentrant lexers through the proper Flex option.
Care should be taken though, to buffer the allocation of the semantic values of the
tokens to prevent interlocking on malloc calls coming from different threads. After
each worker has completed the scanning of its file segment, the complete token list is
built by concatenating the partial ones of the workers.

Except for our simple grammar example, parallelization of the lexical analysis has
to deal with various issues. For instance, the lexical grammars may include arbitrary
length tokens, delimited by a special character (e.g. double quotes to delimit a string).
This lexical feature implies that splitting the input character stream may incur in the
need to sweep a large part of the input before a proper splitting point is determined.
To this end, a viable alternative is to ignore this issue during the input splitting and ef-
fectively generate two tokenized streams, according to the assumption of being or not
in the middle of an arbitrary length token. Once all the lexer threads have finished, it
is possible to disambiguate which tokenized streams are the correct ones, thus joining
them together with a minimal cost. Practical experiments with grammars including ar-
bitrary length tokens, such as the ones of JSON and Lua have shown that this process
is effectively lightweight and leaves the actual call to the Flex generated lexer as the
lexing hotspot.

3 Implementing a sample parser

In this phase, the tool demonstration will tackle the implementation of a parser for the
arithmetic expression grammar. Implementing a parser employing PAPAGENO for its
generation requires the developer to describe the syntactic grammar of the language
with a syntax similar to the one employed by Bison. The grammar description file is
split into three sections, employing a double % marker on a single line as separation
marker between them. The first section of the grammar description is composed by a
C code preamble where helper functions can be declared by the developer. The helper
functions will be placed in the same compilation unit as the generated parser core. The
second section of the grammar description contains the list of terminal and nonterminal
symbols as reported in Figure 3. The %axiom keyword denotes the axiom nonterminal
of the grammar. The third section of the grammar description is the one containing
grammar productions, described in a Bison-like syntax: the l.h.s. and r.h.s. of the rules
are separated by a colon, and the alternatives for the r.h.s. are separated by a pipe.
Each rule is endowed with a semantic action, specified as a C code block where the



4

%axiom S
%nonterminal S
%nonterminal E
%nonterminal T
%nonterminal F
%terminal PLUS
%terminal TIMES
%terminal LPAR
%terminal RPAR
%terminal NUMBER

%%
S : E { } ;
E : E PLUS T { } | T { } ;
T : T TIMES F { } | F { } ;
F : LPAR E RPAR { } | NUMBER { } ;

Fig. 3. Description of the grammar in expressed in the PAPAGENO input format. The semantic
actions associated to the rules are left blank for the sake of clarity.

developer may insert any C code at his will. We note that currently only a single tail
semantic action per grammar rule is supported by PAPAGENO.

The developer can access the semantic values attached to the terminals by the Flex-
generated lexer employing the same familiar dollar-sign convention employed in Bison
syntax. Nonterminal symbols are bound to a semantic value with the same structure
of terminal ones, except for the fact that the semantic value pointer is NULL. In
practice, the semantic values of the elements of the r.h.s. of the grammar are accessible
as $n, where n is the position of the symbol counting from 1. For instance, in the
grammar reported in Figure 3, the pointer to the semantic value of the F symbol in
T : T TIMES F { } is accessible as $3. The semantic action is executed at rule
reduction time, so the developer may safely assume that all the nonterminals belonging
to the rule have been properly reduced.

The interface of the generated parser is a straightforward function call: token node

*parse(int32 t threads, char *file name), which returns a pointer to
the root of the abstract syntax tree built during the parsing action, taking as parameters
the input pathname of the file to be parsed and the number of threads to be spawned.
The parser generated by PAPAGENO splits the input text in as many portions as the
specified number of threads, and, after a first parsing pass, employs a single worker to
perform the recombination of the partially parsed substrings. In case the expected struc-
ture for the AST of the input texts is a deeply nested one, it is possible for the developer
to specify that the recombination action should be performed by more than one thread.
This mode of operation can be selected defining the LOG RECOMBINATION macro
when compiling the parser code: this causes the number of threads to be halvened at
each parsing pass after the first one, allowing a further exploitation of the parallelism
obtained through OPG based parsers. In the demonstration, we will show both modes
of operation for the generated parallel parsers.
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4 Sample semantic actions and running times

After completing the implementation of the parallel parser for arithmetic expressions,
we will show the speed improvements practically trying to parse an arithmetic expres-
sion encompassing the sum of the first 1000 numbers. The target platform employed
for the following examples is a dual core Intel(R) Core 2 Duo L9400 laptop, abso-
lute timings may change on a different demonstration platform. However, the reported
speedups we obtain across both x86 64 and ARM based platform is consistent.

The result of such a parse action with a single thread is the following:

The result is:500500
Pthread 0> Correct parse
Successful parse
Parse action finished:
Lexer: 0.001687 s, Parser 0.010775 s

By contrast, employing two worker threads on a dual core laptop, computation pro-
duces the following result:

Pthread 1> Parsing in progress
Pthread 0> Parsing in progress
The result is:500500
Pthread 2> Correct parse
Successful parse
Parse action finished:
Lexer: 0.001323 s, Parser 0.004634 s

which is showing an effective halvening in the time required for the parsing action.
We will also show that the generated parser handles the runtime change of the num-

ber of worker threads, trying it with a large number of them (e.g. 200), producing an
output similar to the following:

Pthread 194> Parsing in progress
the result is:500500
Pthread 200> Correct Parse
Successful parse
Parse action finished:
Lexer: 0.001346 s, Parser 0.052662 s

showing a natural increase in the parsing time with respect to the previous case,
due to the creation of a largely superfluous amount of extra worker threads. Despite
the very large amount of them, however, the performance penalty is limited, showing a
good scalability of the approach.

After showing the performance results with the simple arithmetic expressions gram-
mar we will show the practical results on JSON inputs, taking as an example a 150 KiB
file, producing the following output in the serial parsing case:
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Pthread 0> result Correct parse
Successful parse
Parse action finished:
Lexer: 0.023729 s, Parser 0.060376 s

while significantly reducing the parsing time with two threads as shown by the
following output:

Pthread 0> result Parsing in progress
Pthread 1> result Parsing in progress
Pthread 2> result Correct parse
Successful parse
Parse action finished:
Lexer: 0.024487 s, Parser 0.037732 s

The final results which will be demonstrated during this tool demo are the ones
achieved on Lua sources by means of both parallel parsing and parallel lexing. For
instance, a serial parsing pass of a 60 KiB Lua file yields:

Pthread 0> result 0
Parse action finished:Successful parse
Lexer: 0.012889 s, Parser 0.016206 s

while a parallel one reports significant improvements in both the lexing and parsing
phase:

Pthread 0> result 1
Pthread 1> result 1
Pthread 2> result 0
Parse action finished:Successful parse
Lexer: 0.006202 s, Parser 0.013914 s


