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Abstract–Monte Carlo particle transport codes used to model detector responses are traditionally run in
analog mode. However, analog simulations of cross-correlation measurements are extremely time-
consuming because the probability of coincident detection is small, approximately equal to the product of the
probabilities of a single detection in each detector. The new implicit correlation method described here
increases the number of correlated event scores, thereby reducing variance and required computation times.
The cost of the implicit correlation method is comparable to the cost of simulating single-event detection for
the lowest absolute detector efficiency in the problem. The new method is especially useful in the nuclear
nonproliferation and safeguards fields for simulating correlation measurements of shielded special nuclear
material.

The new method was implemented in MCNPX-PoliMi for neutron-neutron cross-correlations with a
252Cf spontaneous fission source measured by 14 detectors at various angles. The method demonstrated
good agreement with analog simulation and reference measurement results. Small differences between
nonanalog and analog cross-correlation distributions are attributed to discretization errors that are often
not present in practical applications. Improvement in the figure of merit was greater than a factor of 100 in
all tested cases.

I. INTRODUCTION

Coincidence measurements are useful to detect and

distinguish special nuclear material in the nuclear

nonproliferation and safeguards fields. A coincidence

measurement counts the instances when at least two

radiation detections occur in different detectors within a

specified window of time. The time between coincident

detections is of particular interest because it characterizes

radiation energy spectra for correlated emissions.

A histogram of time differences is a coincidence-delay

curve or cross-correlation distribution. Special nuclear

material consists of fissile material that emits time-

correlated, measurable neutrons from fission events.

Organic scintillator detectors are capable of detecting

and distinguishing fast neutrons and gamma rays through

pulse shape discrimination.1 These scintillators have good

timing properties and are often used to characterize

neutron energy spectra. With pulse shape discrimination

and good timing properties, organic scintillators are well*E-mail: mmarcath@umich.edu
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suited for detecting correlated events and thus for
distinguishing special nuclear material from nonfissile
radiation sources.2–5

The neutrons and photons emitted by a fission event
are time correlated, and the neutrons have initial directions
of flight that are also correlated. Consequently, accurate
coincidence measurement simulations must account for
the initial directions of flight; fission event sampling is
analog, to simulate properly most coincidence measure-
ments. Currently, Monte Carlo particle transport codes
employed for the design and prediction of cross-
correlation measurements using organic scintillators
require fully analog simulations to model detector
responses accurately. Variance reduction techniques that
appropriately model detector response have been devel-
oped, such as geometry splitting,6 but these techniques
still require at least two detections in a fission event for a
coincidence.

Unfortunately, the probability of detecting correlated
radiation particles in separate detectors is often low, and
the presence of shielding exponentially reduces that
probability. The computation time associated with
simulating low-probability coincidence events scales
poorly, approximately with a power equal to the desired
number of coincidences (two detections or more) and
exponentially with the degree of shielding. Simple
measurement geometries for a single detector often
require less than an hour of computing-cluster use,
whereas a coincidence measurement with shielding could
require tens of hours or more to simulate. Such time-
intensive simulations, including many practical measure-
ment scenarios, are detrimental to accurate and efficient
design innovation.

In a two-detector cross-correlation measurement with
a correlated source, e.g., fission, the probability of a
coincident detection is approximately the product of the
probabilities of detection in each single detector. In this
paper, we propose a new implicit correlation Monte Carlo
method, which produces cross-correlation events at
(roughly) the probability of a single detection in the
lowest absolute efficiency detector, effectively reducing
the cost of the simulation to that of a single-detector
problem. The new method presented here uses event
histories in which only a single detection occurs to
produce correlation tally information for spontaneous
fission point sources in MCNPX-PoliMi. By using single-
detection histories to produce correlation tally infor-
mation, the new method is poised to address computa-
tionally intensive correlation measurements, including
those that are shielded.

The remainder of this paper is organized as follows.
Section II describes the MCNPX-PoliMi code and its
built-in spontaneous fission sources. Sections III.A
through III.D outline in general terms the method for a
coincidence measurement tally with the later sections
focusing on the specific application of the method in

MCNPX-PoliMi for a cross-correlation tally. Section IV
describes the reference measurement and simulation
details. Section V presents results and analysis for the
analog, nonanalog, and measurement data with discussion
of computation time and speed-up. We conclude with a
brief discussion in Sec. VI.

II. MCNPX-PoliMi

The PoliMi code extension to the MCNPX Monte
Carlo particle transport code was developed to improve
the ability to simulate coincidence measurements and
subsequent time analyses.7 The MCNPX-PoliMi code
includes built-in correlations for key isotope fissions,
event-by-event tracking, and conservation of energy and
momentum event-by-event.7

MCNPX-PoliMi has the ability to track and record
event information collision-by-collision in specified
detector regions. A printed data file, an excerpt of which
is shown in Table I, contains a list of collision events that
occurred in the specified detector cells. For each collision,
key information is included: history number, particle
number, particle type, collision type, target nucleus,
collision cell, and collision time. Recorded collision
information can be used to model nonlinear detector
responses accurately event-by-event. Also, the neutron
and photon multiplicities for each source fission event can
be recorded.

Several spontaneous fission sources are built-in with
neutron multiplicity distributions, zero through nine in the
case of 252Cf (some sources also have multiplicity-
dependent energy distributions).8 Neutron direction is
sampled from an anisotropic distribution, shown in Fig. 1,
which is oriented about an isotropically sampled light
fission fragment (LFF) direction. Because a majority of
the prompt neutrons are emitted from the fully accelerated
fission fragments, those neutrons carry momentum from
the fission fragments, and thus, an anisotropic neutron
angular distribution is observed in the laboratory reference
frame.9 The neutron angular distribution is dependent on
fragment momentum; thus, the angular distribution is
dependent on fragment masses. The average angular
distribution of neutrons is dependent on the distribution of
fragment masses. MCNPX-PoliMi sampling algorithms
assume constant fragment masses.

III. IMPLICIT CORRELATION METHOD

To illustrate the new implicit correlation method, we
present a simple outline of the processes that produce an
analog coincidence estimate and a nonanalog coincidence
estimate. Consider for simplicity a fission event that emits
exactly two neutrons, where the direction and energy of
each neutron are independently sampled from the same
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distribution function. The measurement system consists of
the point source and two detectors, labeled A and B.

III.A. Analog Coincidence Probability

The source event emits two neutrons, and each
neutron is tracked until death, e.g., absorption, reaching a
low energy, or escaping the defined space. If the tracked
neutron interacts in detector A or B and deposits sufficient
energy, then the interaction is tallied as a detection in that
detector; NA or NB is then incremented. Both neutrons are
transported from the source event, keeping track of all
relevant tallies.

We also consider the following: if one of the two
neutrons is detected in detector A and the other neutron is
detected in detector B, then the coincident detection tally,
NAB, is incremented.

The source event can be sampled many times (say,
M), with subsequent neutron transport to give tallies NA,
NB, and NAB. The probability of detecting a neutron in
detector A is estimated as

PA <
NA

2M
(1)

and in detector B as

PB <
NB

2M
: (2)

Also, the probability of a coincident detection per source
event is estimated as

PAB ¼ NAB

M
: (3)

These probabilities will converge as M ! 1 according to
Poisson variance.

Fig. 1. Neutron angular distribution about the LFF
direction.8
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III.B. Nonanalog Coincidence Probability

Since a coincidence event occurs when (a) the first
neutron is detected in detector A and the second in
detector B or (b) vice versa, we have the identity

PAB ¼ 2PAPB : (4)

Thus, from Eqs. (1) and (2), we have the nonanalog
estimate

PAB < 2
NA

2M

� �
NB

2M

� �
: (5)

III.C. Comparison of Error Estimates

Now we wish to estimate the relative statistical errors
in the two estimates of PAB given Eqs. (3) and (5). In the
following, we assume the number of fission events M is
sufficiently large.

According to the central limit theorem,10 we have,
with probability 0.954,

PAB 2
NAB

M

����
���� , 2sABffiffiffiffiffi

M
p , (6)

where, assuming PAB p 1,

sAB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PABð12 PABÞ

p
<

ffiffiffiffiffiffiffiffi
PAB

p
: (7)

Thus, with probability 0.954,

relative error in Eq: ð3Þ

¼ 1

PAB
PAB 2

NAB

M

����
���� , 2sAB

PAB

ffiffiffiffiffi
M

p

<
2
ffiffiffiffiffiffiffiffi
PAB

p

PAB

ffiffiffiffiffi
M

p ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi
PABM

p

¼ 1ffiffiffiffiffi
M

p
ffiffiffiffiffiffiffiffiffiffiffi
2

PAPB

r
: (8)

Next,

relative error in Eq: ð5Þ ¼ 1

PAB
PAB 2 2

NA

2M

� �
NB

2M

� �����
����

¼ 1

PAB
PAB 2 2 PA 2 PA 2

NA

2M

� �� �����
� PB 2 PB 2

NB

2M

� �� �����

¼ 1

PAB
PAB 2 2 PAPB 2 PA PB 2

NB

2M

� ������
2PB PA 2

NA

2M

� �
þ PA 2

NA

2M

� �
PB 2

NB

2M

� ������
¼ 2

PAB
PA PB 2

NB

2M

� �
þ PB PA 2

NA

2M

� �����
2 PA 2

NA

2M

� �
PB 2

NB

2M

� �����
,

2

PAB
PA PB 2

NB

2M

����
����þ PB PA 2

NA

2M

����
����

�

þ PA 2
NA

2M

����
���� PB 2

NB

2M

����
����
�

: ð9Þ

By the central limit theorem, we have, with probability
0.954,

PA 2
NA

2M

����
���� , 2sAffiffiffiffiffiffiffi

2M
p <

2
ffiffiffiffiffiffi
PA

pffiffiffiffiffiffiffi
2M

p ¼
ffiffiffiffiffiffiffi
PA

2M

r

and

PB 2
NB

2M

����
���� , 2sBffiffiffiffiffiffiffi

2M
p <

2
ffiffiffiffiffiffi
PB

pffiffiffiffiffiffiffi
2M

p ¼
ffiffiffiffiffiffiffi
PB

2M

r
:

Thus, with probability (0.954)2 < 0.9, Eq. (9) gives the
following for M q 1:

relative error in Eq: ð5Þ ¼ 1

PAB
PAB 2 2

NA

2M

� �
NB

2M

� �����
����

,
2

PAB
PA

ffiffiffiffiffiffiffi
PB

2M

r
þ PB

ffiffiffiffiffiffiffi
PA

2M

r
þ

ffiffiffiffiffiffiffi
PA

2M

r ffiffiffiffiffiffiffi
PB

2M

r !
,

where the third term is small and ignored:

<
2

2PAPB

PA

ffiffiffiffiffiffi
PB

p þ PB

ffiffiffiffiffiffi
PA

pffiffiffiffiffiffiffi
2M

p
� �

¼
ffiffiffiffiffi
2

M

r
PA

ffiffiffiffiffiffi
PB

p þ PB

ffiffiffiffiffiffi
PA

p
2PAPB

� �

¼ 1ffiffiffiffiffi
M

p
ffiffiffiffiffiffiffiffiffiffiffi
2

PAPB

r ffiffiffiffiffiffi
PA

p þ ffiffiffiffiffiffi
PB

p
2

� �
: (10)

The right side of the inequality Eq. (10) is always less
than the right side of the inequality in Eq. (8) and is much
less when PA and PB are small. The confidences for the

MARCATH et al.4

NUCLEAR SCIENCE AND ENGINEERING VOL. 181 SEP. 2015

Nuclear Science and Engineering nse14-89.3d 30/6/2015 20:16:37



two bounds are different, but nonetheless, when PA and
PB are small, the nonanalog estimate of PAB [Eq. (5)]
is significantly more efficient than the analog estimate
[Eq. (3)].

Similar results can be obtained for sources with
multiplicities greater than two, but these will not be
derived here. The basic point is that single-detection
statistics of neutron interactions with detectors can be
used to build estimates of correlated detections in multiple
detectors—provided the initial directions and energies of
the fission neutrons can be sampled from the same
distribution function.

In practice, the initial directions, and sometimes the
energies, of neutrons emitted by fission events cannot all
be sampled from the same distribution function. This is
because the distribution functions for the initial neutron
directions and energies can depend on (a) the random
direction of flight of the LFF and (b) the multiplicity of
the fission event (some PoliMi spontaneous fission
sources do not have multiplicity dependent on neutron
energy spectra). However, if the LFF directions are
binned, then all neutrons that emerge from a fission
event—with a specified multiplicity and a LFF traveling
in a specified angular bin—can be initialized using the
same distribution function. In this way, we apply the ideas
described above. All this is discussed in more detailed in
the remainder of this paper.

III.D. Another Quantity of Interest: Time Correlation

Time difference distributions are an information-rich
quantity obtained in coincidence measurements. A cross-
correlation distribution simply refers to a histogram of the
difference in detection times of the two detections in a
coincident event. The histogram may be used to estimate
PAB(DT), the probability of a source event with a
coincident detection time difference DT. To reach a
desired uncertainty, an estimate of PAB(DT) requires more
histories than an estimate of PAB, whereas an estimate of
PAB requires more histories than an estimate of PA and PB.
PAB is useful and straightforward to calculate using
indirect or nonanalog methods; the time difference
distribution of coincidences PAB(DT) contains spectro-
scopic information, but it is more difficult to calculate.

Again we consider a source event that emits two
neutrons, where each neutron is independently sampled
from the same distribution. The measurement system
again consists of two detectors, A and B, and the source.
The source event can be sampled many times, say, M,
with subsequent neutron transport to give tallies NA and
NB as well as a list of detection times TAi and TBj, where i
and j are integer indices.

The detection times TAi and TBj are independently
sampled from identical distributions, since neutrons from
each source event are independently sampled from
identical distributions. Thus, we can (with no bias)

produce a distribution of detection time differences by
sampling a time from each detection time list TAi and TBj
and subtracting.

III.E. Implicit Correlation Method for
Spontaneous Fission

The new implicit correlation method uses single-
detection histories to produce coincidence tally infor-
mation. Consequently, the number of coincidence scores
produced per source event is greater than a corresponding
analog simulation. The method utilizes analog fission
sampling and particle transport in a nonanalog detector
response calculation. To do this, subsets of independent
and identically distributed (IID) histories are formed. If a
set of simulated fission neutrons in the MCNPX-PoliMi
252Cf model (source option 10) has both the same
multiplicity and the same LFF direction in a particular
MCNPX-PoliMi problem, those neutrons are IID within
that set. Within an IID set of neutron histories, each
neutron’s initial direction and energy are sampled from
the same distributions. In this manner, it is possible to
produce IID neutron detection sets by discretizing LFF
direction and sorting neutron histories by the source
neutron multiplicity.

To simulate a spontaneous fission source, the
MCNPX-PoliMi code first samples neutron multiplicity.8

Then, neutron energy is sampled from a multiplicity-
independent Watt distribution for 252Cf; other PoliMi
sources have multiplicity-dependent energy sampling.
Good agreement is observed in comparisons between
simulations using both multiplicity-dependent and inde-
pendent spectra and measurements.11 The multiplicity-
dependent energy 252Cf source was not used here because
the neutron sampling algorithm additionally samples the
number of neutrons that are emitted from each fission
fragment. The neutron directions are sampled indepen-
dently from an energy-dependent anisotropic distribution
oriented about the LFF direction. Figure 1 shows that
neutron directions occur most frequently near the poles of
the LFF direction. Thus, the initial directions of
spontaneous fission neutrons are correlated by the
sampled LFF direction (neutrons are also correlated by
multiplicity in multiplicity-dependent energy distri-
butions). However, neutrons from within a particular
spontaneous fission history can be independently sampled
from identical distributions.

III.F. Removing Correlation in Spontaneous Fission

A discretized LFF direction distribution can produce
results that deviate negligibly from sampling a full
distribution. For a set of neutron histories with constant
LFF direction and a constant multiplicity, all neutrons in
that set are independent and sampled from identical
distributions in energy and direction, due to MCNPX-
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PoliMi sampling procedures for 252Cf (source option 10).
Thus, for a set of neutron histories with the same LFF
direction and multiplicity m, one can randomly sample m
neutron histories from that set to produce a fission history.
The new fission history has been fairly constructed and is
of equal weight as any history produced in an analog
simulation, given the same LFF direction and multiplicity.

When the LFF direction and multiplicity are fixed for
a particular simulation, the neutron histories are correlated
only in time and thus are independent. For a correlation
measurement scenario with two detectors and independent
neutrons, there is also a set of independent detection
histories for each detector. Since the neutrons in each set
are independent, a coincident event can be fabricated by
sampling a history from each detector set. Essentially, the
fabricated history is formed by taking a detection event in
one detector and, through sampling, implying a coincident
detection in the other detector. The implicit coincident
tally weight must be found so as not to bias the solution.
Tally weight is a function of both detector efficiencies and
neutron multiplicity. The estimated probability of detect-
ing a sampled neutron in either detector is calculated from
the set of sorted neutron histories; the estimated neutron
detection probability can then be used to estimate the
probability of coincident detection. The estimated prob-
ability of coincident detection is then used to calculate the
tally weight. The tally from each bin, where multiplicity
and LFF direction were fixed, is multiplied by the
appropriate weight and summed to produce the total
result of sampling a full multiplicity and LFF direction
distribution.

III.G. Tally Weighting

Neutrons from different fission events are unlikely to
cause a coincident detection when the spontaneous fission
rate is low in comparison to the detector response time;
fissions are well separated in time. Also, with low neutron
multiplying sources, coincident detection of neutrons
from different fission events is unlikely; therefore, that
case is ignored.

For a low spontaneous fission rate, the probability
P12(m, p1, p2) of detecting correlated neutrons for a
chosen multiplicity m and chosen LFF direction is a
function of the neutron multiplicity and the neutron
detection probability for each detector pi. The detection
probability for each detector pi is multiplicity independent
because the neutron energy spectrum is multiplicity
independent; however, pi is dependent on LFF direction.
The function that describes the probability P12(m, p1, p2)
is a multinomial distribution with three outcomes:
detection in detector number one, detection in detector
number two, and no detection.12 The probability pi is the
likelihood that a single neutron sampled from appropriate
energy and angular distributions is detected in detector i.
A coincident detection occurs only when at least one

neutron is detected in each detector and a coincident
outcome may occur in a number of permutations. Thus, a
sum is taken over the probability of each event for ni $ 1.
Coincident detections are considered per fission event;
coincident neutron detection in a single detector, where
ni . 1, is treated similarly to a ni ¼ 1 event. A different
treatment of higher-order detector events would not
significantly influence results because the probability of
high-order detections is small when p1 and p2 are small.
The probabilities of a coincident detection P12 for
multiplicity two or three, and general multiplicity m
fission are shown in Eqs. (4), (11), and (12), respectively:

P12ð3; p1; p2Þ ¼ 6p1p2ð12 p1 2 p2Þ

þ 3p1p
2
2 þ 3p21p2 ð11Þ

and

P12ðm; p1; p2Þ ¼
Xm21

n1¼1

Xm2n1

n2¼1

m!

n1!n2! m2 n1 2 n2ð Þ!

£ pn11 p
n2
2 ð12 p1 2 p2Þm2n12n2 : ð12Þ

The advantage of the implicit correlation method can
be estimated by calculating P12 and pi for each detector in
the correlation problem. The approximate speed-up will
be of the order of the smallest pi divided by P12. Further
discussion of computation time and speed-up is included
in Sec. V.C.

If the detection probabilities pi are known for a set of
independent neutrons, then the probability of a coincident
detection can be found using Eq. (12). The detection
probabilities can be readily calculated for sets of
independent particles. The detection probabilities are
calculated in separate simulations in which fissions are
forced to emit only a single neutron (all other distributions
are sampled properly including a multiplicity-independent
energy distribution). By emitting only a single neutron per
history, detector effects are simplified, and reliable
estimates of the detection probabilities can be made.
It is possible to use postprocessing to obtain single-
neutron detection probabilities, thereby removing the
necessity of a separate simulation whose sole purpose is to
calculate those probabilities.

For a set of histories of a chosen multiplicity and LFF
direction, the expected number of correlated detections
kN12l is given by

kN12l ¼ MP12ðm; p1; p2Þ , (13)

where M is the number of fission events. The implicit
correlation tally weight must be adjusted to a factor w to
give the expected number of coincidences:

MARCATH et al.6
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w ¼ MP12ðm; p1; p2Þ
D12

, (14)

where D12 is the total number of implied pairings for
the set.

IV. METHODS

IV.A. Reference Measurement

A reference 252Cf cross-correlation measurement was
used to compare with analog and nonanalog calculation
results. The reference measurement of source 1 is used,
which was manufactured in 1994. It has an intensity of
56 000 fissions/s and at the time of writing was measured
with approximately 14.5% of fissions from 250Cf and the
remainder from 252Cf (Ref. 11). The reference measure-
ment consisted of fourteen 7.62-cm-diameter by 7.62-cm
EJ-309 organic liquid scintillation detectors in a 40-cm-
diameter ring around a 252Cf source on a low-density
foam block, shown in Fig. 2. Adjacent detector pairs
formed an angle of about 26 deg with the source, but only
detector pair angles of 77 and 180 deg are used in this
work. The detection system was sensitive to both gamma
rays and neutrons; detection events were distinguished
using pulse shape discrimination algorithms. Neutron-
neutron cross-correlation time distributions were recorded
for each detector pairing.

IV.B. Simulation Model

Shown in Fig. 3, the simulation model details each
detector, the source, foam block that held the source in
position, air, aluminum table, and concrete floor. Other
minor geometric aspects of the measurement environment
were not modeled. Detector parameters (i.e., threshold,

pulse generation time, and timing resolution) that are the
same as those in the reference measurement scenario were
used in postprocessing to replicate actual detection effects
and responses. The MPPost program was used to
postprocess MCNPX-PoliMi data.13

The source was approximated as exclusively emitting
neutrons and gamma rays through 252Cf spontaneous
fissions. Various built-in isotope spontaneous fission
options were invoked using the IPOL card in PoliMi.
The built-in PoliMi source, IPOL(1) ¼ 10, was used
because neutrons from spontaneous fission model
IPOL(1) ¼ 1 are correlated beyond LFF direction and
multiplicity. The fission model used in the calculations,
samples neutron directions from an anisotropic angular
distribution, Fig. 1, determined by the LFF direction and
samples neutron energy from a multiplicity-independent
Watt distribution.

V. RESULTS AND ANALYSIS

The nonanalog results are compared with analog
results to verify the implicit correlation method. Also,
nonanalog and analog simulation results are compared to
the reference measurement of the neutron-neutron cross-
correlation time distribution for two detector pairs, one at
77 deg and one at 180 deg, to validate the implicit
correlation method implemented in MCNPX-PoliMi.

The analog calculation simulated 1 £ 108 fission
events. Three MCNPX-PoliMi calculations were run for
the nonanalog cases, which each simulated 1 £ 107 fission
events: two to produce histories for implicit correlation in
each angle pair and one to calculate individual detection
probabilities.

Nonanalog calculations were performed for a series
of LFF binning schemes. Each scheme divided angular
space by the azimuthal and polar angles. The binning was
done for 90-, 45-, and 22.5-deg angular bin widths, both

Fig. 2. Photograph of the reference experimental setup.
A ring of 14 organic liquid scintillators, each spaced 26 deg
from the next, surrounded a 252Cf source.

Fig. 3. Top view of the simulation model of the
measurement setup.
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polar and azimuthal; thus, there were 8, 32, and 128 bins,
respectively.

V.A. Correlations for 180-deg Detector Pairs

Figure 4 shows that the neutron-neutron cross-
correlation distribution for a 180-deg detector pair peaks
about zero DT with a width of about 10 ns at half of the
peak maximum. Given the timing resolution is of the
order of a nanosecond for organic scintillator detectors, a
broad peak indicates a wide range of neutron arrival
times; thus, a wide range of neutron energies were emitted
from the source. The detectors are sensitive to approxi-
mately 0.5 through 5 MeV neutron energy deposited (a
40-keVee light output threshold was used in the reference
measurement). The flight time over approximately 20 cm
from the source directly to a detector over the sensitive
range is approximately 24 and 7 ns. However, some high-
energy neutrons that deposit partial energy may arrive
earlier than 7 ns.

In each nonanalog case, the general shape of the
distribution is similar to the analog shape. The nonanalog
case in which the LFF direction is binned on a 90-deg
mesh agrees poorly with the analog cross-correlation
distribution, but agreement improves greatly with decreas-
ing bin width. The reference measurement data agree well
with both the nonanalog and analog simulations.
Discrepancies between the simulated and measured data
are of the order of those reported in Ref. 11.

Using the analog data as a reference, the relative error
between 25 and 5 ns in the nonanalog MCNPX-PoliMi
distributions is less than 25% in the 90-deg mesh case and
less than 10% in the smaller bin cases. Figure 5 shows that
as the bin width decreases, the relative error decreases, as
expected. Further discretization of the LFF direction could
improve results, but more fission histories would be
required to maintain adequate sampling in each bin.

The implicit correlation pairing produces results that
are nearer to an isotropic neutron angular distribution
when the bin widths are large but approach the true

anisotropic distribution as bin widths narrow. Larger bin
widths produce poor agreement with analog calculations
in this measurement scenario; however, smaller bin
widths tend toward too few detection histories per bin,
possibly resulting in undersampling errors. For this
calculation, over 1000 history scores occurred in most
bins in the 90-deg mesh case, a few hundred in the 45-deg
mesh case, and 100 in the 22.5-deg mesh case.

V.B. Correlations for 77-deg Detector Pairs

Due to the anisotropic neutron distribution about the
fission fragment direction, fewer correlated neutron-
neutron counts are observed for detector pair angles
around 90 deg than angles around 180 deg. Thus, angular
correlation between neutrons observed in the measure-
ment is preserved in the simulation results. The shape of
the 77-deg cross-correlation distribution is slightly
broader than the 180-deg case because energy is
correlated to the angle of emission. Neutrons are more
likely to be emitted with lower energy when perpendicular
to the LFF direction resulting in higher DTs, and a broader
cross-correlation distribution at detector pairs near 90 deg.
Additionally, cross-talk is more likely at low detector
angles. Cross-talk counts occur when a neutron scatters
from one detector to another depositing sufficient energy
to cause detections in both; consequently, these counts
have a high DT relative to most true two-neutron
coincident counts.

In each nonanalog case the general shape of the
distribution is similar to the analog, as shown in Fig. 6.
The nonanalog case in which the LFF direction is binned
on a 90-deg mesh agrees poorly with the analog cross-
correlation distribution, but as expected, agreement
improves greatly with decreasing bin width. The reference
measurement distribution is broader than the simulated
distributions. The disagreement may be due to inaccuracy
in the simulation model of fission neutron anisotropy and

Fig. 5. Relative error between nonanalog and analog
neutron-neutron cross-correlation distributions for a 180-deg
detector pair.

Fig. 4. Neutron-neutron cross-correlation distributions for
measurement and simulation of a 180-deg detector pair.
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energy about the fission fragment direction. However,
discrepancies between the simulated and measured data
are of the order of those reported in Ref. 11.

Using the analog data as a reference, the relative error
between 25 and 5 ns in the nonanalog MCNPX-PoliMi
distributions is less than 20% in the 90-deg mesh case and
about a few percent in the smaller bin cases shown in
Fig. 7. As the bin width decreases, the relative error
decreases, as expected.

Error between the nonanalog and analog solutions is
primarily dependent on the angular distribution of
neutrons from the source and not the angle between
detectors. In this measurement, neutrons are observed
with approximately the same angular distribution of
emission from fission; neutrons are unlikely to scatter
between the source and detectors. The angular distribution
of neutrons in Fig. 1 shows that the distribution changes
considerably from the peaks at 1 and 21 to the valley at
0. The nonanalog solution best captures the anisotropy
when the LFF direction is binned on a mesh comparable
to changes across the angular distribution. In a 22.5-deg
mesh, the observed difference in the probability of
neutron emission within a particular bin is at most 25%

whereas a 90-deg mesh has at most 84%. A measurement
with more fission neutron scattering would not require a
fine mesh because as neutrons scatter they are observed to
be more isotropic. Since the implicit correlation pairing
produces results that are nearer to an isotropic neutron
angular distribution, as bin widths decrease the nonanalog
distribution approaches the analog from above. The
number of history scores in each mesh was similar to
those described in the previous section.

V.C. Computation Time

The improvement factor in the simulation variance, a
ratio of the nonanalog to analog figure of merits,14 was
calculated using

FOM ¼ 1

TR2
, (15)

where T is computation time and R is the sample-relative
standard deviation of the mean. The mean improvement
factor in peak cross-correlation bins (210 to 10 ns) was
found to be greater than 100 in every case.

The improvement factor is substantial because single-
neutron detections are used more efficiently than in the
analog computation. An analog calculation requires at
least two neutron detections for a coincident count
whereas in the nonanalog calculation for the majority of
histories, single detections are used. Tables II and III show
the same trend and the same approximate improvement
factors for the two detector angle pairs. As the fragment
direction is binned on a finer mesh, relative standard
deviation increases slightly because there are fewer scores
per angular bin, thereby reducing the improvement factor.

Fig. 6. Neutron-neutron cross-correlation distributions for
measurement and simulation of a 77-deg detector pair.

Fig. 7. Relative error between nonanalog and analog
neutron-neutron cross-correlation distributions for a 77-deg
detector pair.

TABLE II

Improvement Factors for 180-deg Detector Pair for Various
LFF Angular Bin Widths

LFF Direction Bin Width (deg) Improvement Factor

90 431
45 315
22.5 179

TABLE III

Improvement Factors for 77-deg Detector Pair
for Various LFF Angular Bin Widths

LFF Direction Bin Width (deg) Improvement Factor

90 595
45 283
22.5 144
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To estimate the improvement factor, the relative standard
deviation is considered the dominant term in Eq. (15);
computation time scales approximately linearly with the
number of histories. Therefore, the standard deviation of the
coincidence probability estimate for the analog and nonanalog
calculations is considered. Taking a ratio of the relative
error squared [a ratio of Eqs. (8) and (10) squared] gives

½relative error in Eq: ð3Þ�
½relative error in Eq: ð5Þ�
� �2

¼ 2ffiffiffiffiffiffi
PA

p þ ffiffiffiffiffiffi
PB

p
� �2

:

(16)

Equation (16) is a reasonable estimate of the expected
improvement factor for the multiplicity two case and a
reasonable first-order estimate for higher multiplicities.
The probability of neutron detection for an isotropically
emitted neutron in the simulated measurement was
approximately 3 £ 1023. We have from Eq. (16), using
PA ¼ PB ¼ 3 £ 1023, a ratio of relative standard devi-
ations of approximately 330. The estimated improvement
is of the same order as the observed improvement.

VI. CONCLUSIONS

The implicit correlation method accurately produces a
neutron-neutron cross-correlation distribution, including
neutron-neutron angular correlation features, while speed-
ing up convergence time over an analog calculation by
over two orders of magnitude. The improvement in
computation time is of the order of the probability of a
single detection divided by the probability of a correlated
detection; this is large in most practical applications.
In most cases, discretization errors of a few percent were
observed in the peak of the cross-correlation distributions,
but those errors would be decreased in practical problems,
e.g., a shielded source where scattering reduces neutron
anisotropy. Further studies to analyze the implicit
correlation method’s performance in shielded problems
would be useful. Also, further research would seek to
expand this method to spatially distributed spontaneous
fission sources and induced fission problems.
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