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Abstract

The hArtes - Holistic Approach to Reconfigurale real
Time Embedded Systems - project has three main objectives:
the development of a toolchain and a methodology support-
ing effective automatic or semi-automatic design of complex
heterogeneous embedded systems, the design of a scalable
heterogeneous and reconfigurable hardware platform and
the validation of the tool chain on a set of innovative appli-
cations in the audio and video field.

This paper presents the ongoing works related to hArtes
at Politecnico di Milano. Our role consists in the develop-
ment of innovative methodologies and algorithms for soft-
ware partitioning and for initial mapping of the result-
ing partitions on reconfigurable multiprocessor platforms.
The development of these methodologies was integrated
in PandA, our framework for hardware-software codesing;
several other related were developed as an aid for the test-
ing of the implemented technologies.

1. Introduction

The hArtes integrated project aims at laying the foun-
dation for a new holistic (end-to-end) approach for complex
real-time embedded system design, with the latest algorithm
exploration tools and reconfigurable hardware technologies.
The proposed approach addresses, for the first time, optimal
and rapid design of embedded systems starting from high-
level descriptions. hArtes will develop modular and scal-
able hardware platforms that can be reused and re-targeted
by the tool chain to produce optimized real-time embedded
products. The results will be evaluated using advanced au-
dio and visual systems that support next -generation com-
munication and entertainment facilities, such as immersive
audio and mobile visual processing. Innovations of the
hArtes approach include: (a) support for both diagram-
matic and textual formats in algorithm description and ex-
ploration, (b) the implementation of a framework that con-
tains novel algorithms for design space exploration, aiming
at the automation of design partitioning, task transforma-

tion, choice of data representation, and metric evaluation
for both hardware and software components, (c) a system
synthesis tool producing near-optimal implementations that
best exploit the capability of each type of processing ele-
ment; for instance, dynamic reconfigurability of hardware
can be exploited to support functionality upgrade or adap-
tation to operating conditions. From the application point
of view, the complexity of future mobile devices is becom-
ing too big to design monolithic processing platforms. This
is where the hArtes approach with reconfigurable heteroge-
neous systems becomes vital.

The role of Politecnico di Milano in the hArtes project
consists in the development of the mechanisms devoted to
the automatic design partitioning and to the initial mapping
of any application on the different processing elements on
the hArtes target platform. This will be realized by exploit-
ing and by further developing the PandA framework. The
PandA framework is a toolchain designed to study different
aspects of hardware-software codesign and, among other
things, it already offers initial support for program paral-
lelization targeted to specific hardware platforms and initial
support for high level synthesis.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces some relevant past approaches in the area
that hArtes project tries to address and some prominent
works in the specific aspects that PoliMi focuses on. Sec-
tion 3 illustrates the hArtes toolchain flow and where PoliMi
solutions are positioned. Section 4 gives some details on
the current developments of PoliMi’s PandA framework for
partitioning and initial mapping of C applications. Finally,
Section 5 concludes the paper.

2. Related works

There already exists a set of approaches which aim at
developing hardware/software co-design tools that also par-
tially address some of the issues relevant in this research.

Some prominent examples from academia are the COS-
MOS tool [10] from TIMA laboratory, SpecC [6] from the
UC Irvine, or the Ptolemy environment [5] and the Po-
lis/Metropolis [3] framework from the UC Berkeley. There



are also some commercial products, such as CoWare’s Con-
vergenSC, N2C [1], and the meanwhile discontinued VCC
environment from Cadence. These approaches reveal sig-
nificant drawbacks since they mainly restrict the design ex-
ploration to predefined library-based components and focus
on simulation and manual refinement.

PoliMi work in hArtes relates to the thread partitioning
of the starting specification and to its initial mapping on the
processing elements of the multiprocessor platform. This
process can be decomposed in three main steps. First, the
parsing of the initial specification to an intermediate graph
representation used to explore the available parallelism is
performed. Second, the partitioning of the intermediate
graph representation into a task graph is executed. A task
graph is a Directed Acyclic Graph (DAG) where each node
describes a potentially concurrent code block. Third, the
tasks are allocated on the available processors. This alloca-
tion is usually realized through a two-step process: cluster-
ing and cluster-scheduling (merging).

Most research works, dealing with partitioning of the
initial specification, adopt specific intermediate representa-
tions. Among them, Girkar et al. [7] propose an intermedi-
ate representation, called Hierarchical Task Graph (HTG),
which encapsulates minimal data and control dependences
that can be used for extraction of task level parallelism.
Most of their work focuses on simplification of the condi-
tions for execution of task nodes. Luis et al. [13] extend this
work by using a Petri net model to represent parallel code,
and they apply some optimization techniques to minimize
the overhead due to explicit synchronization.

Newburn and Shen [14], instead, present a complete
flow for automatic parallelization through the PEDIGREE
compiler. Their tool uses the Program Dependence Graph
(PDG) as intermediate representation and applies a heuris-
tic to create overlapping inter-dependent threads. Their ap-
proach searches the PDG for control equivalent regions (i.e.,
groups of statements depending from the same control con-
ditions) and then partition these regions with a bottom up
analysis. The resulting task graph is finally scheduled on
subsets of processors of a shared memory multiprocessor
architecture.

The clustering and merging phases have been widely
discussed. Usually, these two phases are addressed sepa-
rately. Well known deterministic clustering algorithms are
dominant sequence clustering (DSC) by Yang and Gera-
soulis [18], linear clustering by Kim and Browne [12] and
Sarkar’s internalization algorithm (SIA) [15]. On the other
hand, many researches explore the cluster-scheduling prob-
lem with evolutionary algorithms [9, 17]. A unified view
is given by Kianzad and Bhattacharyya [11], who modify
some of the deterministic clustering approaches by intro-
ducing probability in the choice of elements for the clus-
ters; they also propose an alternative single step evolution-

ary approach for both the clustering and cluster scheduling
aspects.

Our approach starts from an intermediate representation
which is not hierarchical like HTGs and PDGs, but instead
flattens out all the dependence information at the same level.
This produces larger structures but gives the opportunity to
extract more parallelism as it allows more sophisticated ex-
plorations.

3. Project Requirements

hArtes target hardware platforms will be solutions com-
posed by multiple DIOPSIS D940HF chips (each with an
ARM9 processor and a mAgicV DSP) that can be joined
together with multiple FPGAs containing a PowerPC hard
core. This will offer very high computational power for au-
dio and video applications.

Figure 1 illustrates the hArtes toolchain flow. The flow is
separated in several stages, and most of them can be cyclic.
The flow starts with annotated C code. The specification, af-
ter traversing a C2C merger that may add other annotations
obtained in previous passes, is profiled. The profiled code
is then partitioned in tasks taking into consideration the per-
formance data just obtained. The resulting partitioned code,
is further annotated in order to express an initial guess on
the mapping of each task on the processing elements of the
target platform. Each task can then be transformed to opti-
mize it for the specific processing elements on which it has
been mapped. To reduce the amount of hardware required
for an operation, the number of bits used to represent data
needs to be minimized. This goal is addressed by the Data
Representation optimization stage. All these stages provide
new information and can be repeated several times to op-
timize the resulting code. Each task is finally committed
to each processing element before code generation. Code
generation is performed by a specific back end for each tar-
get unit. The ELF objects for the software parts are merged
to generate the executable code, while high level synthesis
is performed and synthesizable VHDL is generated for the
FPGA part.

The target platform supports a Fork/Join, non preemptive
threading model, where a master processor spawns multi-
ple software and hardware threads on the various process-
ing elements (or on the FPGA) and retakes control after all
of them terminate. This model fits well with the widely
adopted OpenMP [16] standard; OpenMP is supported by
many commercial compilers (Microsoft and IBM) and, in
the OpenSource scene, by GCC, starting with the 4.2 re-
lease. The reasons behind the wide diffusion of OpenMP lie
in the fact that it has a very powerful and complete syntax to
express complex models of parallelism (e.g. for loops par-
allelism), but, at the same time, it remains simple and effec-
tive. A subset of the OpenMP pragmas is used in the context
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Figure 1. The hArtes toolchain

of the hArtes project: #pragma omp parallel is used
to express parts of code that potentially runs in parallel and,
inside it, the #pragma omp sections declares the
single parallel parts. Each #pragma omp parallel
block acts as a fork and it implicitly joins the spawned
threads at its end. It is interesting to note that nested
#pragma omp parallel are allowed, giving the pos-
sibility to support fork from children threads.

The annotations for the initial guesses on the mapping of
the tasks extracted by the partitioner will instead adopt an
ad-hoc, indepentent syntax. Using an independent syntax
for mapping makes sense since it is a different problem from
thread decomposition and it is tightly coupled with the tar-
get platform. Moreover, the parallel code produced by our
tools could be in this way tested on different hosts that sup-
port OpenMP, simply ignoring the mapping directives. The
initial task mapping will be implemented through an evolu-
tionary approach guided by the high-level metrics obtained
during the profiling and partitioning phase.

Figure 1 that PoliMi’s work is right in the heart of the
flow, where the partitioning in tasks of the input specifica-

tion is performed. The partitioning and the initial guesses
of mapping will be realised by exploiting and by extend-
ing our PandA framework in order to support the outlined
requirements.

4. Toolchain Description

The PandA tool [4] takes an application, written in C, as
input and produces a parallel version of the application as
output. This tool behaves as a compiler in that it is com-
posed of the frontend, which creates the intermediate rep-
resentation of the input code, the middle-end, an internal
part which manipulates the intermediate representation, and
the backend, which prints executable C code annotated with
OpenMP [16] and mapping directives. The remaining of
this section is devoted to the description of the three parts
composing the PandA tool.

4.1 Frontend

The PandA frontend does not directly read C source
code, but it parses its Gimple-compliant tree-representation
produced by a slightly modified version of GNU GCC com-
piler [2]. In this way it is possible to use the code opti-
mizations performed by this compiler, eliminating the need
to reimplement them in PandA. Note that only the target-
independent optimizations, such as constant folding, con-
stant propagation or dead code elimination, are chosen. In
addition to the code optimizations, GCC also converts each
original C instruction in one or more basic operations and it
substitutes the loop control statements while, do while
and for with constructs of type if and goto.

After parsing the Gimple-compliant tree-representation
a Control Flow Graph (CFG) is created for each C func-
tion present in the source code. Every CFG node represents
zero, one or more C basic operations. During graph con-
struction a first analysis of the specification is performed
and its results are annotated onto the graph. Information
computed by this analysis is basically the type of each oper-
ation and which variables are read/written by each of them.
Moreover at the end of this phase, PandA analyzes the pro-
duced Control Flow Graph to identify the edges which close
a cycle in a path starting from the entry node1. This analy-
sis and the annotations allow PandA to identify and rebuild
cycles in the following phases.

4.2 Manipulation of the Intermediate
Representation

As in traditional compilers, this phase could be consid-
ered the main part of the compilation flow implemented in

1entry node is a symbolic node which represents the begining of the
computation flow in the specification



PandA. This phase is mainly composed of two steps: the
Dependence Analysis and the Parallelism Extraction.

4.2.1 Dependence Analysis

This step consists of the analysis of the Control Flow Graph
and of the tree in order to compute all the dependences be-
tween each pair of operations (nodes). Dependences be-
tween an operation A and an operation B are basically of
three types:

Control Dependence : execution of operation B depends
on the result of operation A or operation B has to be
executed after operation A

Data Dependence operation B uses a variable which is de-
fined by operation A

Anti-Dependence operation B writes a variable which is
previously read by operation A (these dependences
could be avoided by using the Static Single Assign-
ment (SSA) technique)

All the identified dependences are represented into two
different graphs (with or without feedback2 edges). These
graphs are produced for each C function of the original C
specification. To extract as much parallelism as possible
this dependence analysis must be very precise. A false de-
pendence added between two operations indicates that they
cannot be concurrently executed, so it eliminates the pos-
sibility of extracting parallelism among those instructions.
On the other hand, all the true dependences have to be dis-
covered otherwise the concurrent code produced by PandA
could have a different functionality from the original one.
The data dependence analysis is not based only on variables
present in the original specification: a different variable is
created for each field of a record and for each element of
an array. This method significantly reduces the number of
false positive data dependences.

Before computing data dependences and anti-
dependences, alias analysis [8] has to be performed:
this is necessary to correctly deal with pointers. An
interprocedural alias analysis model is used. In this way
an analysis less conservative than those produced by
intraprocedural methods is obtained even if this costs in
terms of computation time.

In addition to the analysis on the original specification,
this phase of the PandA flow also partially manipulates the
intermediate representation. For example PandA applies
further dead code elimination made possible by alias analy-
sis and by loop transformations.

2Feedback edges are the edges connecting operations A and B such that
A and B are part of the same loop and B depends on the result produced
by A in the previous iteration of the loop.

All the created graphs, together with the starting tree pro-
duced by GCC, are used as intermediate representation by
the PandA tool.

4.2.2 Parallelism extraction

This phase aims at the division of the created graphs into
subsets, trying to minimize the depencences among them;
hence this phase is often identified as the partitioning phase.

The first step consists in the analysis of feedback edges in
order to identify the loops and separate each of them from
the other nodes of the graph; from now on, the partition-
ing steps will separately work on each of the identified sub-
graphs: parallelism can be extracted either inside a loop or
by considering the nodes not part of any loop.
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Figure 2. Nodes belonging to different loops
are clustered in different subgraphs.

After computing the loop subgraphs, the core partition-
ing algorithm is executed. In a similar way to what per-
formed in [14] the algorithm starts by examining the con-
trol edges to identify the control-equivalent regions: each of
them groups together the nodes descending from the same
branch condition (True of False) of predicated nodes; nodes
representing switch statements are treated in a similar
way. Data dependences and anti-dependences among the
nodes inside each control-equivalent region are now ana-
lyzed to discover intra-dependent subgraphs: all the ele-
ments inside such subgraphs must be serially executed with
respect to each other.

Each obtained “partition” (subgraph) represents a sin-
gle block of instructions, with none, or minimal interde-
pendence. Partitions that do not depend on each other con-
tain blocks of code that can potentially execute in parallel.



Edges among partitions express data dependences among
blocks of code, thus the data represented by in-edges of a
partition must be ready before the code in that partition can
start. Note that the identified partitions are just a first ap-
proximation of the tasks into which the input program is
being divided.

Since OpenMP [16] is used to annotate the parallelism
in the produced C specification, transformations to the task
graph are necessary in order to make it suitable for the
OpenMP programming model, the Fork/Join programming
model (described in Section 3).
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Figure 3. A task graph not compliant with the
fork/join programming model (on the left) and
one compliant.

The algorithm which transforms a generic task graph
into one compliant with the fork/join programming model
is composed of 3 main phases, which are iterated until the
whole graph is compliant:

1. identification of the non fork/join compliances; they
are always discovered in correspondence of join tasks
(node 5 in the example)

2. computation of the nodes (from now on it will be used
as a synonym for tasks) which need to be merged to-
gether to eliminate the non compliance just identified
(in the example nodes 1, 2, 3 and 5)

3. reconstruction of the corrected task graph

Experiments show that the tasks, created with the pre-
sented algorithm, are usually composed of a limited number
of instructions: on most systems (even the ones contain-
ing a lightweight operating systems) the overhead due to
the management (creation, destruction, synchronization) of
these small tasks could be higher than the advantages given
by concurrent execution. The optimization phase tries to
solve this problem by grouping tasks together. Two differ-
ent techniques are used: optimizations based on control de-
pendences and optimizations based on data dependences.

Control statements, such as if clauses, must be executed
before the code situated beneath them, otherwise we
would have speculation: it seems, then, reasonable to
group together the small tasks containing the instruc-
tions which depend on the same control statement. An-
other optimization consists of grouping the then and
else clauses in the same cluster: they are mutually
exclusive, the parallelism is not increased if they are in
separate clusters.

Data dependent tasks can be joined together when their
weight is smaller than a predetermined number n.
Those tasks, which are also neighbor of the same fork
node, are joined together; if all the tasks of the fork
group are to be joined together, then the whole fork
group disappears and all its nodes (including the fork
and join ones) are collapsed in the same task.

In order to complete the partitioning flow, as imple-
mented in PandA, we need to produce the parallel exe-
cutable C program representing the task graph.

4.3 Backend

OpenMP [16] is a library exposing APIs for the devel-
opment of shared memory multi-threaded applications; its
main strength lies in the fact that preprocessor directives
are used to indicate parallel regions, thus even not OpenMP
enabled compilers can still compile these applications.

As described in the previous paragraph, in order to be
able to use this library, the task graph must strictly adhere
to the fork/join programming model; this feature is used by
the backend during the production of the concurrent C code.
The operations composing this step are:

1. identification of all the fork/join groups; note that dif-
ferent groups may share the fork node (Figure 4(a)) or
the join node (Figure 4(b)).

2. print of the C code; loops are represented through com-
binations of if and goto instructions.

4.4 Initial guesses of mapping

Different approaches can be defined for mapping the ap-
plication onto the target platform. The PoliMi approach for
initial guesses on mapping is based on both standard sta-
tistical and more advanced data mining techniques aimed
at: (i) developing the final partitioning and (ii) acquiring in-
formation regarding the system’s critical areas for the given
class of reconfigurable embedded systems.

As usually done in Data Mining applications, the model
is viewed as a simple black box with an output C repre-
senting the set of cost functions of the input I represent-
ing a certain mapping and partitioning. Starting from the
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set of pairs < Ij, Cj >, statistical and data mining tech-
niques can extract interesting relationships among inputs,
i.e. among elements of partitioning configurations, trying
also to extrapolate the system model. Note that, the number
of pairs < Ij, Cj > usually contains only a small subset
of all the possible input-output configurations. The type of
relations extracted depends on the technique used. For in-
stance, some statistical techniques (e.g. linear regression),
extract relations represented as linear combinations of the
input values; whereas data mining techniques (e.g. regres-
sion trees, neural networks, or learning classifier systems)
are able to extract highly non-linear relations among input-
output configurations.

5. Conclusions and Ongoing Works

The role of Politecnico di Milano in the hArtes project
consists in the production of innovative methods for task
partitioning and initial mapping of a standard C applica-
tion on the hArtes target architecture. Task partitioning is
performed extracting all the parallelism available and then
organizing the code in order to respect the fork/join thread-
ing model selected by the project. The resulting parallel
code is annotated with OpenMP pragmas. Initial guesses
of mapping are obtained through an evolutionary approach
driven by high level metrics collected from profiling and
partitioning. Ongoing works of the project are related to
the optimization of the partitioning phase and to the model-
ing of the target architecture and algorithm selection for the
mapping phase.
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