
Performance Estimation of Embedded Software with Confidence Levels

Marco Lattuada, Fabrizio Ferrandi

Politecnico di Milano

Dipartimento di Elettronica e Informazione

Via Ponzio, 34/5

20133 – Milan (Italy)

{lattuada,ferrandi}@elet.polimi.it

Abstract — Since time constraints are a very critical aspect of

an embedded system, performance evaluation can not be post-

poned to the end of the design flow, but it has to be introduced

since its early stages. Estimation techniques based on mathemati-

cal models are usually preferred during this phase since they pro-

vide quite accurate estimation of the application performance in

a fast way. However, the estimation error has to be considered

during design space exploration to evaluate if a solution can be

accepted (e.g., by discarding solutions whose estimated time is too

close to constraint). Evaluate if the possible error can be signifi-

cant analyzing a punctual estimation is not a trivial task. In this

paper we propose a methodology, based on statistical analysis,

that provides a prediction interval on the estimation and a con-

fidence level on meeting a time constraint. This information can

drive design space exploration reducing the number of solutions to

be validated. The results show how the produced intervals effec-

tively capture the estimation error introduced by a linear model.

I. INTRODUCTION

Performance estimation is a key aspect of the design of em-

bedded systems: the designer must guarantee that the produced

design meets the required performance constraints. Evaluation

of the performance only on the latest stages of a design flow

is not possible: a late detection of a not met time constraint

would require to rerun a large part of the design flow delay-

ing the release of the final system. Several techniques allow

to evaluate the performance of a system. Techniques based on

running on real systems or on simulators are usually not suit-

able to be integrated in an embedded system design flow since

they are too slow to be adopted in design space exploration

[1]. Also Worst Case Execution Time (WCET) techniques [2]

can not be easily integrated in a design space exploration auto-

matic flow: even if they can be implemented in automatic anal-

ysis tools, they still require designer interaction (e.g., setting

the bounds of loop iterations). For these reasons, performance

estimation techniques based on mathematical models are usu-

ally preferred. The error introduced by performance estima-

tion techniques on some applications can be significant: the

produced solutions have still to be validated with exact tech-

niques. The computed predictions can however be useful to

select good candidate solutions, reducing the number of vali-

dations to be performed. Solutions whose predicted time does

not meet time constraints have to be rejected since will likely

not meet the constraints. Solutions whose predicted time meets

the constraints have instead to be further analyzed by examin-

ing the difference between the predicted time and the constraint

time. Evaluating how big this difference should be is critical: if

we accept design solutions whose predicted time is too close to

the constraint, there is a significant probability that they do not

actually meet the constraint requiring much more validations

and reruns of the design flow in case of violating solutions. On

the contrary, a too conservative choice (e.g., discarding also

solutions not so close to the time constraint) can increase the

requirements in terms of power and resources of the final solu-

tion.

Performance estimation techniques usually provide only the

punctual prediction of the time of an application: deciding if

the application likely meets a time constraint is delegated to

the designer. In this paper we propose a performance esti-

mation methodology for single processing element (e.g., GPP,

DSP), based on linear regression, aimed at estimating the exe-

cution time of a sequential application or of a single task. The

methodology does not compute only the punctual prediction of

the execution time, but provides for each new analyzed applica-

tion whose unknown execution time is Y and whose predicted

execution time is ŷ:

• a prediction interval PI = [l, u] of given confidence level

1−α, i.e., an interval such that the probability P [l < Y <

u] = 1− α and ŷ = l+u
2 ;

• the confidence level CL on meeting a time constraint t,

i.e., the probability P [Y < t].

According to the confidence level, the solution can be accepted,

can be redesigned if it does not sufficiently guarantee to meet

the constraints or, on the contrary, can be redesigned reducing

power and resources usage.

Prediction intervals and constraints checks provide only a

confidence level which identifies the probability that the ac-

tual execution time is in that interval or that the time constraint

is met: to assure to meet the constraints exact techniques have

still to be used. Confidence levels however provide the designer

a mechanism to control the trade-off between design time and

quality of design solutions: a larger confidence level will pro-

duce more conservative solutions in less time, a smaller con-

fidence level will produce better solutions in terms of power

and resources, but potentially requiring more runs of the de-

sign flows.



This paper is organized as follows. Section II presents the

related work while Section III describes the proposed method-

ology. Section IV discusses the experimental results and finally

Section V concludes this paper.

II. RELATED WORK

Linear regression is a well known technique exploited for

performance estimation in embedded systems; the methodolo-

gies based on it mainly differ for the abstraction level of the

application analysis.

Suzuki et al. [3] for example propose a methodology which

predicts the execution time of an application starting from high-

level C language statements. Detailed characteristics of the tar-

get architecture and effects of the compiler optimizations can

not been taken into account, so estimation can be applied only

to a limited set of applications. Moving down in abstraction

levels or in the compilation flow improves the accuracy of the

proposed models since it allows to take into account more de-

tails of compiler or target architecture: Lavagno et al. [4] for

example use virtual instructions instead of source instructions

for estimation. Virtual instructions are produced compiling the

application source code to a generic intermediate representa-

tion with all the significant operations of a RISC processor.

The source code is then regenerated from this intermediate rep-

resentation annotated with timing information of each virtual

operation obtained with linear regression. In this way, some

compiler optimizations are explicitly taken into account, but

details of the target architecture are still ignored.

To take into account most of the aspects of the compiler and

of the target architecture, techniques based on analysis of as-

sembly code have been proposed. Wang et al. [5] propose a

technique that, analyzing the assembly code, takes into account

the compiler optimizations applied on the structure of the Con-

trol Flow Graph. This type of techniques allows to consider

details of both compiler optimizations and target architecture

producing very accurate models, but it requires detailed infor-

mation about the target architecture assembly.

All these methodologies produce punctual prediction:

Bjureus et al. [6] propose instead a technique for the construc-

tion of prediction intervals, named confidence intervals in their

work. The execution time of the application is computed as the

sum of the contributions of each operation composing it. Since

execution time of each operation is expressed by a stochastic

variable, the overall result is a stochastic variable too whose

mean is the sum of the means of the operations and whose vari-

ance is the sum of the variances of the operations. Probability

distributions of the single operations have to be built by hand

by the designer, so this technique can be applied only when the

designer has a very deep knowledge of the target architecture.

On the contrary, the methodology proposed in this paper re-

quires the same knowledge required to build the linear model,

so it can be applied also without knowledge of the target archi-

tecture exploiting source code analysis.

Probability distributions have been introduced also in WCET

analysis: Bernat et al. [7] introduce the notion of probabilis-

tic hard real time system. These systems still have to meet in

principle all the deadlines, but an high probabilistic guarantee

suffices. Worst case execution time of the single basic blocks

is described as a probabilistic variable: final execution time

is produced combining these probability distribution. Even if

it relaxes some constraints of the Worst Case Execution Time

analysis, this methodology still requires accurate static analy-

sis to build the execution time profiles of the single basic block.

For this reason, these analyses are still time consuming and re-

quire direct interactions with the designer. The methodology

we propose aims at building a prediction interval or computing

the confidence level on meeting of a constraints considering av-

erage execution time of the application and not the worst case

execution time. These results can be however useful to reduce

the set of possible candidate solutions to be examined with a

Worst Case Execution Time technique.

III. PROPOSED METHODOLOGY

The proposed methodology computes prediction intervals

and confidence levels on meeting time constraints of new an-

alyzed applications exploiting models built with linear regres-

sion technique. For this reason, it requires that the execution

time of an application can be approximated as a linear com-

bination of some numerical features describing the application

itself. There are not restrictions on the numerical features nor

on the target processing element: analysis can be performed at

whatever abstraction level and on whatever processing element.

The methodology is mainly composed of two phases:

1. Model Building: the model is built exploiting linear re-

gression techniques and a set of applications (training set)

whose execution time is known;

2. Performance Prediction: a new application a is analyzed

in order to compute:

• punctual prediction ŷxa
of execution time (Equa-

tion 3),

• prediction interval PI with a given confidence level

(Equation 13) and

• confidence level CL on meeting a time constraint

(Equation 16).

In the following, the two different phases of the methodology

are detailed. Note that in the rest of the paper capital letters will

be used to identify stochastic variables while small letters will

be used to identify values assumed by them; overlined letters

will be used to identify vectors.

A. Model Building

The starting point of the proposed methodology is the build-

ing of the performance model with regression analysis. Regres-

sion analysis refers to mathematical techniques for the analysis

of the relationships among data consisting of a dependent vari-

able Y and one or more independent variables Xi. The depen-

dent variable Y is modeled as a function of the k independent

variables Xi, the parameters βi and a normally distributed error

term E ∼ N (0, δ2) with the standard deviation δ unknown:

Y = f(X, β,E) (1)



Section III B shows as the probability distribution of the es-

timation error Exa
on a single application a with numerical

features vector xa can be used to compute PI and to evaluate

the confidence levels on meeting time constraints.

In the performance estimation problem, the dependent vari-

able Y corresponds to the execution time of the application

while the independent variables Xi are a set of numeric fea-

tures which well describe the performance characteristics of

the application. Since we are considering a linear model, we

have:

Y = β0 +
∑

i∈1:k

βi ·Xi + E (2)

Selection of suitable Xi can be a critical aspect of building

a performance model: not only the accuracy of the produced

model depends on them, but also the size of the prediction in-

tervals. In particular, their width depends on the standard devi-

ation of the model error as Equation 14 will show. For this rea-

son, the more the features well describe the performance of an

application, the smaller the prediction intervals will be. Some

performance effects, which are due to particular architectural

aspects such as presence of caches, can not be easily described

by a linear model, so even with the most significant features a

prediction error occurs. In the same way, also the choice of the

training benchmarks (e.g., applications whose execution time

is known and that are used to build the model) can be a crit-

ical element. In particular, they must be representative of the

new possible applications: the more the new applications differ

from the training ones, the larger their prediction intervals will

be.

Given the numerical features extracted from the training

benchmarks and their execution times, least squares method

is applied to compute the parameters βi of the model. These

values are the only output of this phase in methodologies based

on punctual predictions. On the contrary, to compute the pre-

diction intervals, we need to save further data of the particular

chosen training set:

• x =



1 x1,1 · · · x1,k

...
... ·

...

1 xn,1 · · · xn,k


: the matrix of the values

of the independent variables Xi (numerical features); n is

the number of benchmarks in the training set;

• y =



y1
· · ·
yn


: the vector of the values of the dependent

variable Y (execution times);

• RSS = y′(In− (x
′

x)−1x
′

)y: the residual sum of squares

(In is the identity matrix of size n).

B. Performance Prediction

The built performance model and the computed data are

used to predict the performance of new applications.

Punctual Prediction of Execution Time

Given the model Y = β0 +
∑

i∈1:k βi · Xi + E, the

prediction Ŷ = β0 +
∑

i∈1:k βi · Xi (i.e., the model without

the error) and a new application a whose features vector is xa,

we can compute the punctual prediction ŷxa
:

ŷxa
= β0 +

∑

i∈1:k

βi · xa,i (3)

Prediction Interval with a Given Confidence Level

Given the model Y = β0 +
∑

i∈1:k βi · Xi + E, a new

application a whose numerical features vector is xa, the

interval PI , centered in the punctual estimation ŷxa
and in

which the actual execution time of the application Yxa
will fall

with a probability 1−α, is called 1−α Prediction Interval. To

compute the bounds of PI , we need to compute the probability

distribution of the error Exa
introduced by the prediction

model on the application a:

Exa
= Yxa

− Ŷxa
(4)

Note that E 6= Exa
: the probability distribution of the generic

error of the model is different from the probability distribution

of the error on a particular application a.

Since Yxa
and Ŷxa

are independent variable with normal dis-

tribution [8]:

Yxa
∼ N

(
β0 +

∑

i∈1:k

βi · xa,i, δ
2

)
(5)

Ŷxa
∼ N

(
β0 +

∑

i∈1:k

βi · xa,i, δ
2 · xa

′(x
′

x)−1xa

)
(6)

their difference, which is the error Exa
, is a normal distributed

variable with mean 0 and variance equal to the sum of the vari-

ances:

Exa
= Yxa

− Ŷxa
∼ N

(
0, δ2 ·

[
1 + xa

′(x
′

x)−1xa

])
(7)

Exa

δ ·
√
1 + xa

′(x
′

x)−1xa

∼ N (0, 1) (8)

δ is unknown, but we can create a new stochastic variable

using its estimator RSS. Dividing variable of Equation 8 by√
RSS

δ2(n−k) and since:

RSS

δ2
∼ χ2

n−k (9)

where χ2
n−k is the chi-square distribution with n − k degrees

of freedom, we obtain:

Exa√
RSS
n−k

·
√
1 + xa

′(x
′

x)−1xa

∼ tn−k (10)

where tn−k is the Student’s t-distribution with n − k degrees

of freedom.

Fixed the numerical features vector xa of the application a,

s =

√
RSS

n− k
·

√
1 + xa

′(x
′

x)−1xa (11)



is a constant, so we can replace it and the error Exa
in Equa-

tion 10 :

Exa√
RSS
n−k

·
√
1 + xa

′(x
′

x)−1xa

=
Yxa

− Ŷxa

s
∼ tn−k (12)

We have obtained a relationship between the actual execu-

tion time Yxa
and the predicted execution time Ŷxa

. Given the

percentile t∗ = t1− 1

α
,n−k (i.e., the 1 − 1

α
percentile of the t-

student with n− k degrees of freedom), we have:

P

[
−t∗ <

Yxa
− Ŷxa

s
< +t∗

]
= 1− α

P
[
Ŷxa

− t∗ · s < Yxa
< Ŷxa

+ t∗ · s
]
= 1− α

so, the prediction interval PI for Yxa
of 1−α confidence level

is:

PI = [ŷxa
− t∗ · s, ŷxa

+ t∗ · s] (13)

The size of the prediction interval is:

2 · t∗ ·

√
RSS

n− k
·

√
1 + xa

′(x
′

x)−1xa (14)

This size depends on three factors:

• the confidence level (i.e., 1 − α) expressed by the per-

centile t∗: the larger the confidence level, the larger the

interval size;

• the error of the prediction model (i.e., RSS
n−k

): the larger the

error, the larger the interval size;

• the distance between the features of the analyzed appli-

cation a and the features of the training set applications

(expressed through xa
′(x

′

x)−1xa): the less is this differ-

ence, the smaller the interval size.

Confidence level on meeting time constraint

Starting from the stochastic variable of Equation 12, the

confidence level CL on meeting a time constraint can be

computed. In particular given a time deadline t, we want

to measure the probability that actual ending time of the

application a is before the deadline:

CL = P [Yxa
< t] = P

[
Yxa

− Ŷxa

s
<

t− Ŷxa

s

]
(15)

Z =
Yxa−Ŷxa

s
is a tn−k, so

CL = P [Yxa
< t] = FZ

(
t− ŷxa

s

)
(16)

FZ is the cumulative distribution function of Z ∼ tn−k.

IV. EXPERIMENTAL EVALUATION

To evaluate the proposed methodology, we apply it in the

performance estimation of the LEON3 processor. LEON3

processor[9] is a softcore 32-bit microprocessor compliant with

the SPARC V8 ISA licensed under GNU GPL and currently

developed by Gaisler Research.

Section IV A describes the experimental setup, then Sec-

tion IV B presents the experimental results about prediction

intervals. Section IV C finally presents a case study of analysis

of meeting time constraints.

A. Experimental Setup

We implement the proposed methodology in PandA [10], a

framework for the HW/SW codesign based on GNU GCC [11].

Performance estimation models are built combining host pro-

filing information with GCC RTL internal representations as

described in [12]: we retrieve for each type of RTL instruction,

how many times instructions of that type have been executed.

These counters are used as input of the performance models

(i.e., as the Xi variables described in Section III). Real exe-

cution times of the analyzed applications (i.e., the Y variable)

have been obtained with TSIM [13], a cycle accurate simulator

of the LEON3 processor.

The models that we build from the RTL representation can

not explicitly describe the effects of all the compiler optimiza-

tions since we extract them before the end of the compilation

flow. To mitigate this issue, different performance models have

been built to model the effects on application performance of

different optimizations sets. In particular, we build perfor-

mance models for applications compiled without optimizations

(i.e., -O0), and with two level of optimizations (-O1, -O2).

We have chosen two sets of RTL based features for building

the performance models: All and Sel. All is composed of all

the RTL operation counters; Sel is a subset of them obtained

by removing by hand counters of operations not suitable for

the building of performance models. Examples of RTL oper-

ations not suitable for performance model building are opera-

tions present in a limited set of benchmarks (e.g., divisions) and

operations whose counters can be derived from other counters

(e.g., register writings). We build six different models (3 opti-

mization sets × 2 features sets) as shown in left part of Table I.

To build the models and to compute the predictions described

in Section III, we use R [14], a free software environment for

statistical computing and graphics. The analyzed benchmarks

(more than 600) have been extracted from the following bench-

mark suites: DSP Stone [15], NAS Parallel Benchmark [16],

OmpSCR [17], Powerstone [18], Splash 2[19] and the GNU

GCC testsuite [11].

To evaluate the accuracy of the produced models, we apply

the K-fold cross-validation technique with K = 5. This tech-

nique, aimed at proving that the prediction error of a model

does not depend on the particular choice of the training and

testing sets, consists of randomly splitting the dataset in K sub-

sets; the model building process is then repeated K times: at

each iteration i, all the subsets but the i-th are used as training

set and i-th subset is used as testing set to evaluate the predic-

tion error. At the end the overall error is computed as the av-

erage error obtained during the K iterations. Cross-validation



TABLE I

CHARACTERISTICS OF THE ANALYZED MODELS. Features Set IS THE SET

OF THE FEATURES USED TO BUILD THE MODEL, OL IS THE

OPTIMIZATION LEVEL CONSIDERED, Error IS THE PREDICTION ERROR

ON THE WHOLE SET OF BENCHMARKS WHEN IT IS USED AS TRAINING

SET, CV Error IS THE CROSS-VALIDATION ERROR.

Model Features Set OL Error CV Error

All-0 All O0 7.61% 34.51%
All-1 All O1 10.04% 37.85%
All-2 All O2 15.24% 45.55%
Sel-0 Sel O0 8.81% 9.28%
Sel-1 Sel O1 10.53% 10.72%
Sel-2 Sel O2 16.46% 17.10%

error obtained when All features are used is larger because they

tend to overfit the training benchmark datasets. On the con-

trary, cross validation error for models which consider only

significant features (Sel) is quite close to the error obtained ex-

ploiting the whole features set.

B. Experimental Results

We evaluate the proposed methodology by checking for each

model if it actually forecasts the interval where execution time

of unseen applications will fall. For each model, we adopt an

approach similar to the K-fold cross-validation method previ-

ously described: we randomly divide the analyzed benchmarks

in 5 subsets and we run the methodology five times. During

each run, we select a different benchmark subset as validation

set: all the other benchmarks are used as training set to build

the linear model.

For each benchmark of the validation set, we build the pre-

diction intervals of level 90%, 95%, 99%, then we check if the

prediction intervals include the real execution time of the appli-

cation. For each validation set and for each prediction interval

level, we count how many benchmarks have the execution time

in the corresponding prediction interval. Finally, combining

the information obtained on each validation set, we compute

the percentage of these benchmarks with respect to the overall

data set: the results are reported in columns BPI of Table II.

The results show how the obtained percentages are quite

close to the expected ones; moreover, there are not any signif-

icant differences between models obtained with different fea-

tures sets nor considering different optimizations. Neverthe-

less, the significance of the information provided by the predic-

tion intervals is not the same for all the models. Compare for

example the All-0 model and the Sel-0 model: even if they have

almost the same accuracy in modelling the performance of the

applications of the whole dataset, they have a significantly dif-

ferent cross-validation error. The first indeed, having too many

parameters, tends to model also the rumor introduced by non

performance significant features. The average prediction inter-

vals built on them (reported in columns Avg. of Table II) are

significantly larger to implicitly describe this difference. For

example, considering the 99% prediction intervals, the average

size of the second model (36.09%) is much smaller than the

first (84.97%): in the first case we are saying that given the pre-

dicted time ŷ of a benchmark, the actual execution time will be

averagely in the interval [0.82 · ŷ, 1.18 · ŷ] with 99% probability,

in the second we have to consider an interval [0.58 · ŷ, 1.42 · ŷ]
to get the same probability. In this way, the prediction inter-

vals are both correct, but smaller prediction intervals have to be

preferred since allow to accept also candidate solutions whose

execution time is closer to time constraints. Moreover, if the

prediction interval is too large, it can become quite useless for

the performance analysis. In columns Max. of Table II, the

maximum size of prediction interval of the benchmarks is re-

ported: a prediction interval of 524.15% is equivalent to say

that the actual execution time of the application is in the inter-

val [0, 2.62 · ŷ]. Such a big interval does not provide any useful

information to designer which will have to accept only very

conservative solutions or have to lower the desired confidence

level.

Prediction models built for higher optimization levels, since

the analyzed features are not able to describe all the effects

of the optimizations performed by the GNU GCC on the final

code, present higher estimation error. For this reason, their pre-

diction intervals are larger.

The presented results show how the size of the prediction in-

tervals depend on the accuracy of the performance model on

which they are built. Moreover, they provide also some cross-

validation information: the smallest prediction intervals are in-

deed obtained on those models that not only well model the

performance of the benchmarks of the training set, but that are

also able to well predict the execution time of new applications.

C. A Case Study of Analysis of Time Constraint

In this Section we show how the confidence level CL on

meeting a time constraint can help the designer in limiting the

number of executions of WCET analysis. In particular, we con-

sider an implementation of the jpeg encoder customized for

encoding of 800x600 pictures and we check if its execution

requires less than 100 · 106 cycles. Before applying WCET

analysis, we check if the current implementation is a good can-

didate solution or if we can expect in advance that it will not

meet the constraint.

The punctual estimation ŷxjpeg
obtained with model Sel0 is

76.491 ·106 cycles: considering its distance from the constraint

and the low cross prediction error of the model (9.28%), we

would expect that the implementation actually meets the con-

straint. On the contrary, computing the confidence level CL on

meeting the time constraint with Equation 16, we obtain a rel-

atively low level of confidence: 78.32%. This means that the

analyzed solution is not so good: there is a not small probability

(21.68%) that the actual execution time of the application does

not meet the constraint, and so a significant probability that the

application does not meet the constraint according to WCET

analysis. Since WCET analysis can be very time consuming

and we do not have a very good expectation on its outcome,

we would not apply it to the application as it is but we would

optimize the application before.

We now show the correctness of the previous considerations

by simulating on TSIM the application and by analyzing it with

aiT[20]. Actual execution time of the analyzed application is

much closer to the constraint (95.452 · 106) and the obtained

WCET is 112.473 · 106. So, even if according to punctual



TABLE II

RESULTS OBTAINED WITH THE PROPOSED METHODOLOGY. FOR EACH MODEL AND FOR EACH PREDICTION LEVEL WE REPORT: BPI, THE NUMBER OF

BENCHMARKS WHOSE REAL EXECUTION TIME IS IN ITS OWN COMPUTED PREDICTION INTERVAL, Avg. AND Max, THE AVERAGE AND THE MAXIMUM

RATIO BETWEEN PREDICTION INTERVAL SIZE AND PREDICTED EXECUTION TIME.

90% Interval 95% Interval 99% Interval

Model BPI Avg. Max. BPI Avg. Max. BPI Avg. Max.

All-0 90.47% 35.12% 333.88% 95.63% 54.54% 398.13% 98.33% 84.97% 524.15%
Sel-0 90.83% 19.35% 80.00% 96.21% 25.01% 93.34% 98.41% 36.09% 136.03%
All-1 90.97% 39.52% 345.09% 95.18% 55.52% 345.09% 99.56% 82.03% 454.31%
Sel-1 89.17% 24.79% 86.67% 95.28% 29.63% 97.96% 98.68% 36.90% 142.11%
All-2 93.89% 53.21% 346.94% 95.70% 72.23% 403.43% 97.91% 90.01% 550.42%
Sel-2 90.31% 31.16% 82.25% 94.74% 35.23% 96.14% 98.61% 43.21% 123.38%

estimation the proposed implementation seemed a promising

solution, we have to discard the implementation as correctly

suggested by confidence level CL.

V. CONCLUSIONS

In this paper we presented a performance estimation method-

ology which, extending punctual techniques based on linear re-

gression, allows to compute the prediction interval of the esti-

mated execution time and, given a time constraint, a confidence

level on meeting that time constraint. Both the characteristics

of the applications used to build the model and the character-

istics of the new application are taken into account in building

the prediction intervals and the confidence levels on constraints

meeting, producing less uncertainty for applications expected

to be better predicted. Extending linear regression technique,

the proposed methodology can be applied each time the perfor-

mance of an application can be modeled as linear combination

of some numerical features.

The results show how the proposed methodology is effec-

tively able to capture the estimation error potentially introduced

by the model, building prediction intervals whose size reflects

the cross validation error of the model itself.

REFERENCES

[1] Choonseung Lee, Sungchan Kim, and Soonhoi Ha. A systematic design

space exploration of mpsoc based on synchronous data flow specification.

J. Signal Process. Syst., 58:193–213, February 2010.

[2] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,

Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,

Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter

Puschner, Jan Staschulat, and Per Stenström. The worst-case execution-

time problem. overview of methods and survey of tools. ACM Trans.

Embed. Comput. Syst., 7:36:1–36:53, May 2008.

[3] K. Suzuki and A. Sangiovanni-Vincentelli. Efficient software perfor-

mance estimation methods for hardware/software codesign. In DAC ’96:

33rd Design Automation Conference, pages 605–610, Jun, 1996.

[4] J. R. Bammi, E. Harcourt, W. Kruijtzer, L. Lavagno, and M. T. Lazarescu.

Software performance estimation strategies in a system-level design tool.

In CODES 2000: the Eighth International Workshop on Hardware/Soft-

ware Codesign., pages 82–86, 2000.

[5] Zhonglei Wang, Kun Lu, and A. Herkersdorf. An approach to improve

accuracy of source-level tlms of embedded software. In Design, Automa-

tion Test in Europe Conference Exhibition (DATE), 2011, pages 1 –6,

march 2011.

[6] Per Bjuréus and Axel Jantsch. Performance analysis with confidence

intervals for embedded software processes. In Proceedings of the 14th

international symposium on Systems synthesis, ISSS ’01, pages 45–50,

New York, NY, USA, 2001. ACM.

[7] Guillem Bernat, Antoine Colin, and Stefan M. Petters. Wcet analysis of

probabilistic hard real-time systems. In Proceedings of the 23rd IEEE

Real-Time Systems Symposium, RTSS ’02, pages 279–, Washington, DC,

USA, 2002. IEEE Computer Society.

[8] S.M. Ross. Introduction to probability and statistics for engineers and

scientists. Elsevier Academic Press, 2004.

[9] Leon 3 Processor. http://www.gaisler.com.

[10] The PandA framework. https://trac.ws.dei.polimi.it/panda.

[11] GCC - GNU Compiler Collection. http://gcc.gnu.org.

[12] Marco Lattuada and Fabrizio Ferrandi. Performance modeling of embed-

ded applications with zero architectural knowledge. In Proceedings of the

eighth IEEE/ACM/IFIP international conference on Hardware/software

codesign and system synthesis, CODES/ISSS ’10, pages 277–286, New

York, NY, USA, 2010. ACM.

[13] Tsim leon simulator. http://www.gaisler.com.

[14] Ross Ihaka and Robert Gentleman. R: A language for data analysis and

graphics. Journal of Computational and Graphical Statistics, 5(3):299–

314, 1996.

[15] V. z̆ivojnović, J. M. Velarde, C. Schläger, and H. Meyr. DSPSTONE: A

DSP-oriented benchmarking methodology. In ICSPAT ’94: International

Conference on Signal Processing and Technology, 1994.

[16] David Bailey, Tim Harris, William Saphir, Rob Van Der Wijngaart, Alex

Woo, and Maurice Yarrow. The nas parallel benchmarks 2.0. Technical

report.

[17] A. J. Dorta, C. Rodriguez, F. de Sande, and A. Gonzalez-Escribano. The

openmp source code repository. In PDP, pages 244–250, 2005.

[18] A. Malik, B. Moyer, and D. Cermak. A low power unified cache ar-

chitecture providing power and performance flexibility (poster session).

In ISLPED ’00: Proceedings of the 2000 international symposium on

Low power electronics and design, pages 241–243, New York, NY, USA,

2000. ACM.

[19] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-

2 programs: characterization and methodological considerations. In

ISCA, pages 24–36, 1995.

[20] ait: worst-case execution time analyzers. http://www.absint.com/ait.


