
Performance Estimation for Task Graphs

Combining Sequential Path Profiling and Control

Dependence Regions

Fabrizio Ferrandi, Marco Lattuada, Christian Pilato, Antonino Tumeo

Politecnico di Milano, Dipartimento di Elettronica e Informazione

Via Ponzio 34/5, Milano, Italy

{ferrandi,lattuada,pilato,tumeo}@elet.polimi.it

Abstract—The speed-up estimation of a parallelized code is
crucial to efficiently compare different parallelization techniques
or task graph transformations. Unfortunately, most of the times,
during the parallelization of a specification, the information that
can be extracted by profiling the corresponding sequential one
(e.g. the most executed paths) are not properly taken into account.
In particular, correlating sequential path profiling with the cor-
responding parallelized code can help in the identification of code
hot spots, opening new possibilities for automatic parallelization.
For this reason, starting from a well-known profiling technique,
the Efficient Path Profiling, we propose a methodology that stat-
ically estimates the speed-up of a parallelized specification, just
using the corresponding hierarchical task graph representation
and the information coming from the dynamic profiling of the
initial sequential specification. Experimental results show that
the proposed solution outperforms existing approaches.

I. INTRODUCTION

Today, Multiprocessor Systems-on-Chip (MPSoCs) are the

de-facto standard for embedded system design [1]. Perfor-

mance analysis [2] is a key step of the design process for

such systems. Recording a program behavior and analyzing its

performance allow new possibilities for code transformations

by identifying hot spots or bottlenecks. This is an important

procedure in multiprocessor systems, and becomes fundamen-

tal with embedded architectures, where program performance,

memory occupation and code compactness are critical aspects.

Profiling is one of the most known and studied techniques for

performance analysis, used for hand-tuning of programs or

for various smart compilation techniques. Common compilers

implement control flow profiles, which are gathered through

code instrumentation or statistical sampling of the program

counter. In particular, once the application is translated in form

of graph, these profiles can refer to vertices (basic blocks) or

edges (branch transitions) and count how many times these el-

ements are executed. The optimization process can thus focus

on the most time consuming parts of the applications. Even if

these profiles are widely adopted, they are not so accurate

in the estimation of the mostly executed paths (sequences

of branch transitions). Path profiling [3] is a well-known

technique to obtain the frequency of the paths, improving the

profiling information with a limited instrumentation overhead.

Nevertheless, these profiling techniques have been scarcely

investigated in parallel applications, currently represented by

extending standard languages with annotations that describe

parallelism, like OpenMP [4]. Normally, the programmer

explicitly divides the application in tasks and then analyzes the

resulting performance, through the use of proper analysis tools.

Usually, profiling information is exploited only to estimate

the performance of the single tasks, without considering the

correlations among them. The estimations are then composed

to obtain the best, average or worst performance estimation

of the whole task graph. However, without considering the

correlations, performance analysis tools are not able to gather

important information on code hot spots and load balancing.

In this paper we propose a solution to estimate the per-

formance of a parallelized specification by exploiting the

basic blocks correlations existing among the different tasks.

In particular, we adopt the path profiling technique to identify

the correlations on the related sequential code and we project

this information on the Control Dependence Regions [5] of

each path. We also define a more efficient representation of the

paths, called Control Region Path. Furthermore, we adopt the

Hierarchical Task Graph (HTG) [6] as a representation for par-

titioned applications. In HTGs, a vertex may have associated

another HTG in a hierarchical way, resulting more powerful

than Direct Acyclic Graphs (DAGs), where feedback edges

are not allowed. The hierarchy allows the representation of

typical parallel embedded applications (e.g., loop-partitioned

and real time), which are naturally described with cycles. The

contributions of this paper can be summarized as follows:

- it proposes a methodology for the speed-up estimation of

parallel code starting from the information gathered from the

related sequential one;

- it applies this methodology to cyclic task graphs, extending

the classes of applications that can be approached;

- it extends the Efficient Path Profiling (EPP) [3] with a

new solution, the Hierarchical Path Profiling (HPP), which

better identifies the basic blocks correlations, in particular

when cycles are involved.

The remainder of this paper is organized as follows. Section

II is about the related work. Section III gives some preliminary

definitions while Section IV presents the motivation of this

work. The proposed methodology is detailed in Section V and

the experimental results are presented in Section VI. Finally,

Section VII concludes the paper.

II. RELATED WORK

One of the main purposes of profiling is the identification

of the most executed paths inside a program, where the

optimization algorithms will focus. There are several classes

of profiling techniques which allow getting this type of infor-

mation. Among them, we find edge profiling [7] and whole

program profiling [8]. Edge profiling is a simple technique,

but not necessarily cheap in terms of execution overheads

and instrumentation code size, which only aims at recording

information about how many times each branch transition

occurs. From this information the path executions can be

approximately estimated. On the other hand, whole program

profiling usually gives very exact information about paths

execution but with a bigger execution overhead cost. Path

profiling, which counts the sequence of edges and basic blocks,

is a trade-off between these two techniques. One of the most

important work about path profiling is the Efficient Path

Profiling [3] which will be detailed in Section III-B. This basic

algorithm has been extended by different authors to support

inter-procedural paths [9] and inter-iteration paths [10].

In [11] performance estimation for real-time embedded

systems is discussed. This work considers best and worst case

execution exploiting the concept of path-based analysis, but

without leveraging the effectiveness of path decomposition

proposed by [3]. Furthermore, it mainly considers the estima-

tion of sequential applications. Several static timing analysis

techniques, targeting the estimation of performance for em-

bedded systems, are described in [12]. The target architecture

considered is based on a single processor, and almost all

the techniques discussed have high computational complexity,

since they target the verification of real-time systems with hard

or soft constraints. Furthermore, the presented average-case

performance estimation techniques are limited by the number

of paths generated, since they do not exploit any techniques

for path decomposition.

Bammi et al. [13] propose a technique to estimate the

performance of embedded applications without the need of a

cycle accurate processor model. An instrumented source code,

annotated with timing information, is generated by analyzing

the object code, and then compiled and executed on the host

to get an estimation of its performance on the target architec-

ture. This technique allows obtaining performance estimations

much faster than solutions based on Instruction Set Simulators

(ISSs) [14], [15], [16], which cannot be easily exploited for the

(fast) trade-off analysis required by an optimizing compiler.

We adopt a similar approach to profile the code, but instead

of analyzing the object code, we start from GIMPLE [17], the

intermediate representation used by GNU GCC [18]. Being a

higher intermediate representation, GIMPLE allows reducing

the instrumentation overhead.

Fine grain instrumentation is also used in [19] to obtain ac-

curate execution time and memory statistics. Similarly to [13],

it is faster than ISS-based techniques, but still too slow with

respect to the performance analysis tools used for exploration

of parallelization. Our estimation technique, instead, statically

and efficiently estimates the task graph performance through

path profiling. Thus, such performance analysis tools could

obtain better results by including this methodology.

In [20], synchronization operations are speculatively an-

ticipated if they are on the most executed paths. In this

case, path profiling information has been used to optimize

communication between the threads, rather than performing

estimation of parallelized specifications. It is straightforward

to extend our methodology to also consider communication.

Profiles can also be used to estimate trip counts of

loops [21]. Common loop-oriented optimization techniques

may have benefits from a proper estimation of this number.

Real time constraints analysis also benefits from trip counts

estimations [22]. Considering paths, our solution is also able

to compute this kind of information.

III. PRELIMINARIES

In this section we introduce the basic elements to understand

our estimation procedure for parallelized code. We describe

the intermediate representations used by our methodology, we

briefly present path profiling and, finally, we discuss the model

of concurrency that has been adopted.

A. Intermediate representation

The proposed methodology works on the following inter-

mediate representations, widely used in compilers:

- the Control Flow Graph (CFG) [23], a directed graph

GCFG = (N, ECFG) which is an abstract representation of

paths (sequences of branches) that might be traversed during

the execution of a function;

- the Control Dependence Graph (CDG) [5], a directed

graph GCDG = (N, ECDG) representing control dependences

of basic blocks; that is if a basic block can control whether or

not another basic block will be executed.

- the Control Dependence Regions (CDR) [5], a partitioning

of the basic blocks in equivalence classes; two basic blocks

are in the same region if they have the same set of control

dependences in the CDG;

- the Loop Forest [24], a representation of the hierarchy of

the loops contained into the CFG;

where N represents the basic blocks contained into the

initial specification. The function γ : Ci = γ(BBj) returns

the identifier of the Control Dependence Region Ci associated

with the basic block BBj .

Given the example of Fig. 1, its CFG is represented in

Fig. 2. Its CDG and the control dependence regions which each

basic block belongs to are instead shown in Fig. 3, where, for

example e1,2 represents that BB2 is executed iff BB1 has been

executed and the value of the condition was true. On the other

hand, operations in BB4 have not any control dependences

with BB1, BB2 and BB3, and they can be executed in parallel

if the data dependences are respected. Only one reducible loop,

with BB5 as header, is shown in the example. For the sake of

simplicity, in the rest of the paper a loop will be identified with

its header number (i.e. L5). Basic blocks BB5, BB6, BB7,

BB8 and BB9 are considered to belong to L5 and the related

int fun_0(int c1, int c2, int c3,
int * array, int size) {

int index, a, b, c;
1: a = c2 + c1; // BB1
2: index = 0; // BB1
3: if(c1) // BB1
4: fun_1(&a); // BB2

else
5: a *= 2; // BB3
6: a += b; // BB4
7: c = 1; // BB4
8: while(index < size) { // BB5
9: array[index] = index; // BB6

10: if (c3) // BB6
11: fun_2(array[index]); // BB7

else
12: array[index]++; // BB8
13: index++; // BB9

}
14: b = a + c1; // BB10
15: if(c2) // BB10
16: fun_3(&c); // BB11

else
17: c*=2; // BB12
18: return array[0] + a + b + c; // BB13

}

Fig. 1. Sequential implementation of the example function fun_0. On each
line, the operation has a progressive number on the left side and the number
of the basic block which the operation belongs to on the right side.

Entry

1

2 3

4

5

6

7

8

9 10

11 12

13

Exit

T

F

T

F
F

T

F

T

Entry

1

2 3

4

5

6

7

8

9 10

11 12

13

Exit

Fig. 2. The CFG of fun_0 (on the left) and the related PG (on the right)

level of the hierarchy. The entire function itself is considered

as the main loop L0. Finally, since we interface the GNU GCC

compiler [18], our intermediate representations are based on

GIMPLE [17].

B. Path Profiling

Before defining Path Profiling, we need to introduce the

concept of path. Let GCFG = (N, ECFG) be a CFG. The

path Pp is defined as the sequence:

Pp = {BB1, BB2, . . . , BBn} (1)

where BBi ∈ N and the pair of basic blocks 〈BBi, BBi+1〉
has the corresponding edge ei,i+1 ∈ ECFG. Note that two

basic blocks contiguous in a path are also contiguous in the

execution trace which the path is extracted from. As described

above, since the CFG represents all the paths that might be

traversed during a program execution, it is possible to count

the frequency of each path with an appropriate profiling of this

representation. This technique is usually called path profiling.

Ball and Larus [3] proposed an algorithm to efficiently pro-

file the execution frequency of paths in CFGs. This algorithm

is known as Efficient Path Profiling (EPP) and it uses the

Entry - C0

1 - C1 4 - C1 5 - C1 10 - C113 - C1 Exit - C1

2 - C2 3 - C3 6 - C4 9 - C4 11 - C7 12 - C8

7 - C5 8 - C6

T
F

T
T

T
F

T
F

Fig. 3. The Control Dependence Graph of the function fun_0.

concept of state to model the valid paths (i.e., paths which are

counted). These paths are only the ones that connect Entry

to Exit. CFGs with loops are managed by substituting each

back-edge ejk with two new edges connecting basic block

Entry with BBk and basic block BBj with Exit. The graph

so obtained is named as Path Graph (PG). Figure 2 shows the

CFG associated to the example and the related Path Graph.

C. Model of Execution

In this work, we target embedded Multiprocessor Systems-

on-Chip (MPSoCs) composed of different processing elements

that communicate through a shared memory. We adopt ex-

plicit fork and join operations as model of concurrency. This

programming model requires that each task spawning threads

(called fork task) has a corresponding join task, which can be

executed only after all the created threads have completed their

execution. This concurrency model is well supported by the

OpenMP [4] standard and the corresponding programs can run

on such shared memory MPSoCs with a minimal operating

system layer. Architecture properties are important for the

correct performance evaluation of a specification as well as for

path profiling. We take into account the architecture properties

during the mapping of the GIMPLE nodes (that are language

and processor independent) to the target assembler statements.

Following an approach similar to the ones proposed in [13],

[19], [25], we use an analytical model that, given the list of

assembler statements associated with a GIMPLE node, is able

to return an estimation of the number of cycles required by

the target processors. We know to introduce some error in this

estimation. However, we can accept this kind of approxima-

tions since the accuracy of such operation estimation is usually

high, as shown in the literature, and we are focusing on a fast

estimation technique to be used in task optimization.

Similarly to [6], we adopt the Hierarchical Task Graph

(HTG) as the intermediate representation of a parallel program.

In particular, the HTG is a directed graph whose vertices can

be: simple (i.e. a task with no sub-tasks), compound, (i.e.

a task that consists of other tasks in a HTG, for example

higher level structures such as subroutines), loop (i.e. a task

that represents a loop whose iteration body is a HTG itself).

The hierarchical task graph can be extracted from the control

flow graph of a sequential program by identifying the edges

through data and control dependences analysis. This results in

an acyclic graph, where the task can be classified as: fork (i.e.

TABLE I
CLOCK CYCLES REQUIRED FOR THE OPERATIONS IN FUN_0.

Op n. cycles Op n. cycles Op n. cycles

o1 10 o7 10 o13 10
o2 10 o8 10 o14 10
o3 10 o9 10 o15 10
o4 20,500 o10 10 o16 20,500
o5 10 o11 1,010 o17 10
o6 10 o12 20 o18 40

tasks with multiple successors), join (i.e. tasks with multiple

predecessors), normal (i.e. all the remaining tasks).

IV. MOTIVATION

Given the profiling of a sequential specification, it can

be difficult to estimate the speed-up introduced by one of

its possible parallelizations, even admitting some approxi-

mations and supposing that architectural effects (task cre-

ation/destruction/synchronization and communication) can be

predicted and modeled as additive. For example, consider the

function in Fig. 1, executed 10 times. The number of cycles

required by each operation in the sequential specification is

analyzed following an approach similar to [13], [19], [25] and

an example is shown in Table I. For the sake of simplicity,

in the rest of the example we assume that the execution

time of the sub-functions fun_1, fun_2 and fun_3 is

fixed and not data-dependent. Nevertheless, this information

is not sufficient to compute a good estimation of the speed-up

obtained by one of its possible parallelizations (e.g. the one

shown in Fig. 4 whose corresponding task graph is shown

in Fig. 5). In fact, there are several issues that should be

considered when estimating how long the execution of the

task graph takes. First, the number of loop iterations have to

be accurately estimated, since, as in this case, it heavily affects

the execution time of the task where the loops are contained

(i.e., Task2). A more precise information about the average

loop iterations number can be obtained using edge profiling

techniques, but this information is not sufficient yet to produce

correct estimation results. In fact, the speed-up of the function

depends on how the values of conditions (i.e., c1 and c2) are

correlated, activating or not the execution of functions fun_1

and fun_3.

In particular, let us consider the two following situations:

A) c1 and c2 always have opposite values; this means that

the basic blocks executed in the same path are BB2 and BB12

or BB3 and BB11.

B) c1 and c2 always have the same values (true or false);

this means that the basic blocks executed in the same path are

BB2 and BB11 or BB3 and BB12.

Let us also assume that the probability of condition c1

being true is 0.50 and Task2 has an estimated execution

time of 10,520 cycles (the loop is executed 10 times and the

condition c3 is always true).

In the first situation the execution of the sequential specifica-

tion requires 31,130 cycles. The execution of the parallel code

requires 20,580 cycles if c1 is true, 20,560 otherwise. The

average parallel execution time is 20,570, so the real speed-

up is µA = 1.5133. In the second situation the execution of

int fun_0(int c1, int c2, int c3,
int * array, int size) {
int index, a, b, c;
//TASK0
#pragma omp parallel sections num_threads(3) {

//TASK1
#pragma omp section {

1: a = c2 + c1; // BB1
3: if(c1) // BB1
4: fun_1(&a); // BB2

else
5: a *= 2; // BB3
6: a += b; // BB4
14: b = a + c1; // BB10

}
//TASK2
#pragma omp section {

2: index = 0; // BB1
8: while(index < size) { // BB5
9: array[index] = index; // BB6
10: if (c3) // BB6
11: fun_2(array[index]); // BB7

else
12: array[index]++; // BB8
13: index++; // BB9

}
}
//TASK3
#pragma omp section {

7: c = 1; // BB4
15: if(c2) // BB10
16: fun_3(&c); // BB11

else
17: c*=2; // BB12

}
}
//TASK4

18: return array[0] + a + b + c; // BB13
}

Fig. 4. Parallel implementation of the function fun_0

Entry

Task0

Task1 Task2 Task3

Task4

Exit

Fig. 5. Task Graph associated with the parallelization proposed in Fig. 4

the sequential specification requires in average 31,130 cycles

(51,620 if c1 is true, 10,640 otherwise). The parallel execution

time is in average 15,570 cycles (20,580 if c1 is true, 10,560

otherwise), so the real speed-up is µB = 1.9994.

Unfortunately, in these cases the techniques like edge profil-

ing or EPP are not able to detect this difference. In particular,

TABLE II
RESULTS OF EPP APPLIED TO THE FUNCTION FUN_0 EXECUTED

10 TIMES.

Path BBs A B

P0 En,1,2,4,5,6,7,9,Ex 5 5
P1 En,1,2,4,5,6,8,9,Ex 0 0
P2 En,1,2,4,5,10,11,13,Ex 0 0
P3 En,1,2,4,5,10,12,13,Ex 0 0
P4 En,1,3,4,5,6,7,9,Ex 5 5
P5 En,1,3,4,5,6,8,9,Ex 0 0
P6 En,1,3,4,5,10,12,13,Ex 0 0
P7 En,1,3,4,5,10,12,13,Ex 0 0
P8 En,5,6,7,9,Ex 100 100
P9 En,5,6,8,9,Ex 0 0
P10 En,5,10,11,13,Ex 5 5
P11 En,5,10,12,13,Ex 5 5

consider the information about frequencies extracted by EPP

and reported in Table II. For example, in the first situation,

the path En, 1, 3, 4, 5, 10, 11, 13, Ex is not counted because

the loop L5 is executed for at least one iteration (i.e., BB5

and BB10 are not contiguous in the execution trace). The

only paths considered by EPP are En, 1, 3, 4, 5, 6, 7, 9, Ex and

En, 5, 10, 11, 13, Ex. In conclusion, when a loop iteration is

executed at least once between two conditional statements, the

EPP algorithm looses the correlations among the paths before

and after the loop, giving the same results for both the cases.

Therefore, all the methodologies that use this information

would estimate the same speed-up.

V. PROPOSED METHODOLOGY

The proposed methodology aims at providing a static esti-

mation of the speed-up introduced by parallelization. It can

be divided into three steps. Firstly, a path profiling of the

sequential specification is performed, considering the loop

hierarchy. Secondly, the profiling results are organized into

a more compact representation based on the control depen-

dence regions. Thirdly, the speed-up of the parallelized code

is statically estimated, efficiently combining the information

obtained from this representation on the related HTG.

A. Hierarchical Path Profiling

In this section we describe the profiling technique, the

Hierarchical Path Profiling (HPP), that extends the EPP and

is able to maintain the correlation between what happens

before and after a loop. The HPP has some analogies with

Structural Path Profiling (SPP) [26], in particular regarding

the loop hierarchy. However, in HPP the paths can cross loop

boundaries, while in SPP they cannot.

The HPP is applied to the PG described in Section III-B,

with a different definition of valid path. In particular, a path

Pp = {Entry, BBi, BBi+1, . . . , BBj , Exit} is valid if it

starts from Entry and ends in Exit, like in EPP [3], BBi and

BBj are connected by a back-edge (i.e., eji ∈ ECFG) or they

belong only to the loop L0. According to this definition, in

the proposed example, the path En, 1, 2, 4, 5, 6, 7, 9, Ex is not

valid anymore, since there is not the edge e9,1 into the CFG

and BB9 belongs to L5. The path En, 5, 6, 7, 9, Ex is still

valid, since there is the edge e9,5 in the CFG.

Then, all the HPP paths are clustered with respect to the

loop which they belong to. In particular, the path Pp is said to

belong to the loop Ll and, thus, to the cluster HPl, if Ll is the

innermost loop which BBi (i.e., the first basic block besides

Entry) belongs to. For example, the path En, 5, 6, 7, 9, Ex

is contained into HP5. We partially relax also the assumption

that each consecutive pair of basic blocks of a path have to

be contiguous in the execution trace. In this way, differently

from EPP, the path En, 1, 2, 4, 5, 10, 11, 13, Ex can effectively

be extracted from the execution trace also when the loop has

been executed for, at least, one iteration.

To apply HPP we classify PG edges into four categories:

- Starting Path: they connect a basic block outside a loop

with a loop header; e4,5 is the only edge in the example;

- Ending Path: the edges which directly connect a basic

block to Exit (i.e., the edges e13,Ex and e9,Ex);

- Exit Loop: they connect a basic block inside a loop with

a basic block outside a loop (i.e., the only edge e5,10);

- Normal: all the other edges.

Algorithm 1 Pseudo-code of Hierarchical Path Profiling

1: current loop = L0

2: BBlast = En
3: curr path = {En}
4: while ending of function execution do
5: BBnew = get currently executed basic block
6: if eBBlast,BBnew ∈ StartingPath then
7: current loop = Lnew

8: append BBnew to curr path
9: add curr path to idle paths

10: curr path = {En}
11: else if eBBlast,Ex ∈ EndingPath then
12: append Ex to curr path and increment its frequency
13: a new path p = En starts
14: else if eBBlast,BBnew ∈ ExitLoop then
15: update current loop
16: idle path of the current loop becomes curr path
17: end if
18: BBnew is appended to curr path
19: BBlast = BBnew

20: end while

The proposed algorithm operates as described in Algorithm 1.

Considering the example of Figure 2 and the situation in which

c1 and c2 are both true, it behaves as follows. When the

function execution begins, we start a new path pi = En (line

3). The path is updated (line 18) with the executed basic

blocks until we reach BB5. At this point the current path

is En, 1, 2, 4. Since e4,5 is a Starting Path Edge (line 6),

when the execution of BB5 starts (i.e., BBnew = BB5), pi

becomes idle (line 9) and a new path pj starts (line 10), also

including the current basic block (line 18). At this point we

have pj = En, 5, which is updated until the execution of BB9.

Since e9,Ex is a Ending Path edge (line 11), the current path

pj = P8 = En, 5, 6, 7, 8, 9, Ex is then terminated (line 12),

and its frequency incremented by one. Subsequently, a new

path pj starts (line 13) and it behaves as described above for

all the ten iterations of the loop. At the end, when the execution

of BB10 starts (i.e., e5,10 ∈ ExitLoop is traversed), pi returns

active as pi = En, 1, 2, 4, 5, 10, deleting the current path

(line 16). The path is updated until we reach e13,Ex, which

is a Ending Path edge (line 11), incrementing the frequency

of the path pi = P2 = En, 1, 2, 4, 5, 10, 11, 13, Ex. Then,

the algorithm stops, since the execution of the function is

terminated.

The presence of idle paths is one the most important

differences between EPP and HPP. In each instant, EPP allows

only one path to be live. At the opposite, the number of

live paths in HPP is the nesting level of the current loop.

Algorithm 1, which analyzes a basic block at each iteration,

is linear with the number of basic block executed into the

trace. In Table III we show the results obtained by applying

the HPP technique to the example of Fig. 1, for the two cases

TABLE III
RESULTS OF HPP ON THE FUNCTION FUN_0. Pi REPRESENTS THE PROFILED PATHS. RELATIVE AND ABSOLUTE FREQUENCIES ARE

REPORTED OR THE TWO PROPOSED CASES, HP THE HIERARCHICAL CLUSTER WHICH EACH PATH BELONGS TO, CRPS THE RELATED

CRP, AND PCi,t THE CONTRIBUTIONS OF TASK T TO EACH PATH.

Absolute Relative
HP Pi Basic Blocks CRPs A B A B PCi,0 PCi,1 PCi,2 PCi,3 PCi,4

HP0

P2 En,1,2,4,5,10,11,13,Ex HC0,0, HC0,1, HC0,2, HC0,7 0 5 0.0 0.5 0 20,540 10,520 20,520 40
P3 En,1,2,4,5,10,12,13,Ex HC0,0, HC0,1, HC0,2, HC0,8 5 0 0.5 0.0 0 20,540 10,520 30 40
P6 En,1,3,4,5,10,11,13,Ex HC0,0, HC0,1, HC0,3, HC0,7 5 0 0.5 0.0 0 50 10,520 20,520 40
P7 En,1,3,4,5,10,12,13,Ex HC0,0, HC0,1, HC0,3, HC0,8 0 5 0.0 0.5 0 50 10,520 30 40

HP5

P8 En,5,6,7,9,Ex HC5,1, HC5,4, HC5,5 100 100 1.0 1.0 0 0 1,050 0 0
P9 En,5,6,8,9,Ex HC5,1, HC5,4, HC5,6 0 0 0.0 0.0 0 0 60 0 0

HC0,i

Entry - C0

1 - C1 4 - C1 5 - C1 10 - C113 - C1 Exit - C1

2 - C2 3 - C3 6 - C4 9 - C4 11 - C7 12 - C8

7 - C5

HC5,i

8 - C6

T
F

T
T

T
F

T
F

Fig. 6. Representation of the hierarchical control dependence regions HCl,i

of the function fun_0, clustering the basic blocks belonging to the same
control equivalent region Ci of the loop Ll.

discussed in Section IV. Comparing the HPP results with the

ones obtained by EPP and shown in Table II, it can be noticed

that HPP is able to maintain the correlation between what

happens before and after the execution of L5 (i.e., between

the execution of basic blocks BB2 and BB11).

B. Control Region Paths

Once the HPP profiling has been performed and the paths

have been hierarchically clustered, we project the control

dependence regions onto the paths. In particular, let Ll be a

loop, we define the Hierarchical Control Dependence region

(HC) as:

HCl,i = { BBj | Ci = γ(BBj) ∧ ∃Pp ∈ HPl : BBj ∈ Pp }

For the example shown in Fig. 1, the hierarchical control

dependence regions are represented in Figure 6. In particular,

the dashed lines represent the regions for the loop L5 and

the filled ones for the loop L0. Note that BB5, being the

header of L5, is included both into HC0,1 and HC5,1. In fact,

regardless the loop is executed or not, at the higher level of

the hierarchy, the header BB5 (i.e., the test of the condition)

is always executed at least one time. Therefore, each region

HCl,i contains all the basic blocks of Ll that are dependent

on the same value of the control condition. Thus, when this

value has been evaluated, the region and all the related basic

blocks will be executed for sure. Thus, we can represent each

path (i.e., sequence of basic blocks) of the loop Ll as the set of

control regions to be executed, i.e., the Control Region Paths.

In particular, let Pp ∈ HPl be a path of loop Ll, the Control

Region Path (CRP) CRPp associated with path Pp is defined

as:

CRPp = {HCl,i|∃BBj ∈ Pp : Ci = γ(BBj) ∧ Pp ∈ HPl}

Since the function γ is surjective for each loop Ll of the

hierarchy, the size of the control region path CRPp results

equal or smaller than the size of the corresponding path Pp.

This produces a more compact representation of the paths,

without loosing any information. The CRPs of the example in

Fig. 1 are shown in Table III.

C. Static Task Graph Execution Time Estimation

Let GCFG = (N, ECFG) be the CFG of a sequential

specification and HTG0 = (V, E) be the HTG related to one

of its parallelization. HTG0 is recursively analyzed with the

procedure described by Algorithm 2.

In particular, the methodology analyzes all the tasks of

HTGl = (Vl, El) in topological order and starts by com-

puting, for each CRPi in HPl, the contribution CCl,i,t (line

4) given by task vt ∈ Vl to each region HCl,i:

CCl,i,t =
∑

∀s:os∈vt∧os∈BBh∧BBh∈HCl,i

cs (2)

where cs is the number of cycles required by the operation

os ∈ vt. Then, the contribution PCp,t (line 19) given by task

vt to the path Pp is computed as:

PCp,t =
∑

∀i:HCl,i∈CRPp

CCl,i,t (3)

i.e., the sum of all the contributions of the regions that belong

to Pp.

Note that if HCl,i contains the header of a loop Ln completely

contained into the task vt (lines 5-13), the Equation 3 is also

applied to the CRPs of the loop Ln and the execution time

LCn (line 12) associated with the loop Ln can be estimated

as:

LCn = Nn ∗

∑
Pq∈HPn

PCq,t ∗ fq∑
Pq∈HPn

fq

(4)

where fq is the frequency associated with the path Pq and Nn

is the average number of iterations for the loop Ln.

Thus, the related CCl,i,t is updated (line 13) as follows:

CCl,i,t = CCl,i,t + LCn (5)

In fact, when HCl,i contains the basic block BBn, which

represents the header of a loop Ln nested in Ll, the execution

of HCl,i must consider the additional cycles due to the loop

Ln. This process continues, as described above, until the

contributions of the task have been computed for all the paths

in HPl (lines 3-20). Defined ACCp,t as the execution time

needed to execute the operations of the path Pp in the tasks

from Entry to vt ∈ Vl (and assumed ACCp,Entry = 0 ∀Pp),

the task vt contributes (line 21) as follows:

ACCp,t = max
vu∈pred(vt)

ACCp,u+PCp,t+ct ∀Pp ∈ HPl (6)

where vu ∈ pred(vt) is a predecessor of vt in HTGl (i.e.,

eut ∈ El) and ct is the overhead that can be associated with the

creation/destruction/synchronization of task vt. Note that Eq. 6

can also be applied to task graphs that are not compliant with

the fork/join model. In fact, this model of execution only refers

to the programming model supported by the target architecture

and not to a limit of the methodology. The overall task graph

execution time for HTGl (line 24) is then computed as a

weighted average of the contributions given by all the paths:

HTCl = Nl ∗

∑
Pp∈HPl

ACCp,Exit ∗ fp∑
Pp∈HPl

fp

(7)

Since Ll (represented by HTGl) is nested in Lj (eventually

L0), and HTGl is associated only to one task vl ∈ Vj , the

contribution CCj,i,l (line 16) is then updated:

CCj,i,l = CCj,i,l + HTCl (8)

Thus, the analysis can recursively continue until the computa-

tion of HTC0, associated to L0 and representing the estima-

tion of the parallelized specification, has been completed.

Let Es be the performance of the original specification, the

estimated speed-up introduced with the parallelization is then

computed as:

µ =
Es

HTC0
(9)

Algorithm 2 Pseudo-code of estimate(HTGl(Vl, El))

1: for all task vt ∈ Vl do
2: for all Pp ∈ HPl do
3: for all HCl,i contained into CRPp do
4: compute the region contribution CCl,i,t

5: if BBn ∈ HCl,i and Ln completely nested in vt then
6: for all HCn,i associated to Ln do
7: compute the region contribution CCn,i,t

8: end for
9: for all Pq ∈ HPn do

10: compute the path contribution PCq,t

11: end for
12: compute the loop execution cost LCn

13: update the CCl,i,t with LCn

14: else
15: if BBn ∈ HCl,i and HTGn is associated to vt then
16: update CCl,i,t with HTCn =estimate(HTGn)
17: end if
18: end if
19: compute the path contribution PCp,t

20: end for
21: update the cost of the path ACCp,t

22: end for
23: end for
24: compute the overall task graph execution time HTCl

As shown by the Algorithm 2, the procedure for estimating

HTGl(Vl, El) is composed by an outermost loop repeated |Vl|
times. For each task, all the paths at the current level of the

hierarchy are analyzed and they can contain, in the worst case,

at least one operation for each hierarchical control dependence

region. Therefore, the analysis 3-20 is repeated, in the worst

case, |C| times (i.e., the number of control regions contained

into the specification) and the analysis 2-22 is repeated |P |
times, where |P | is the number of paths. The complexity of

the estimation for task graph HTGl is, thus, O(|Vl|·|P |·|C|)).
Applying the methodology to the example presented in Fig.

1 and Fig. 4, we obtain the results reported in the right side

of Table III. First, we compute PCp,t for all the paths and

all the tasks. The execution time required by loop L5 has

been estimated as LC5 = 10, 500 (the only path executed is

CRP8). Therefore, PCi,2 = 10, 520 for all the Pi ∈ HP0.

The sequential execution time Es is 31, 130. Note that it can

also be computed by using the proposed methodology and

considering all the operations in the same task va ∈ V0.

Finally, we can compute the speed-up for the two situations

presented in Section IV:

A) the paths executed are P3 and P6, so the execution time

estimated for the parallel version is:

Ep = HTC0 =
20, 580 ∗ 0.5 + 20, 560 ∗ 0.5

0.5 + 0.5
= 20, 570

and the related speed-up is:

µA =
31, 130

20, 570
= 1.5133

B) the CRPs executed are P2 and P7, so the execution time

estimated for the parallel version is:

Ep = HTC0 =
20, 580 ∗ 0.50 + 10, 560 ∗ 0.50

0.50 + 0.50
= 15, 570

and the related speed-up is:

µB =
31, 130

15, 570
= 1.9994

In conclusion, the proposed methodology, differently from

EPP, is able to correctly estimate the speed-up in the two

situations discussed in Section IV.

VI. EXPERIMENTAL RESULTS

The proposed methodology has been implemented in C++

inside PandA [27], a hardware/software co-design framework

based on the GNU GCC compiler [18].

The considered target architecture is an embedded MPSoC

composed by eight ARM920 processors with a shared mem-

ory. Each processor has 16KB of instruction cache and 8KB

of data cache. The data cache is write-through and adopts a

write-update coherency policy. We slightly modified the SimIt-

ARM cycle-accurate simulator [14] to model such architecture.

In particular, since SimIt-ARM does not support multi-core

simulation, we modified it to support concurrent tasks execu-

tion on different cores with private caches. Communication

costs are not addressed in this work, but the extension is

straightforward (i.e., by modifying Eq. 6). In this section we

compare the two profiling techniques discussed in this paper

(EPP and HPP) from the point of view of the instrumentation.

TABLE IV
BENCHMARK CHARACTERISTICS. LINES IS THE NUMBER OF SOURCE CODE LINES, FUN THE NUMBER OF FUNCTIONS (EXCEPT THE

SYSTEM AND MATH LIBRARY ONES), LOOP THE NUMBER OF LOOPS, FD THE MAXIMUM DEPTH OF THE LOOP FORESTS, IF THE

NUMBER OF CONDITIONAL CONSTRUCTS, DATASET THE BENCHMARK DATASET AND CYCLES THE NUMBER OF CYCLES SPENT FOR

THE SEQUENTIAL EXECUTION ON THE SIMIT SIMULATOR WITH DIFFERENT OPTIMIZATION LEVELS.

Cycles
Benchmark Lines Fun Loop FD If Dataset -O0 opt. level -O2 opt. level

basicmath 402 3 20 6 10 large 8.58 · 1010 6.63 · 1010

blowfish 588 9 15 4 10 (test) 6.70 · 1011 4.82 · 1011

corners detection 2928 23 50 4 179 large 2.10 · 109 1.01 · 109

Delayline 2033 52 60 3 25 (w/o inputs) 1.10 · 106 9.91 · 105

dijkstra 352 12 13 2 14 large 8.93 · 109 5.56 · 109

fft 855 23 11 1 37 (test) 4.22 · 1010 3.66 · 1010

fft6 1133 34 32 3 37 (test) 1.05 · 1010 1.02 · 1010

fmm 4417 94 117 2 257 input.16384 9.45 · 1011 7.67 · 1011

graphsearch 2327 43 44 2 94 exampleGraph 01 4.70 · 105 4.67 · 105

jacobi1 892 20 14 3 30 (test) 8.17 · 1011 5.97 · 1011

JPEG encoder 1688 19 71 3 67 input small 5.27 · 108 4.74 · 108

openmpbench 564 13 30 3 4 (w/o inputs) 1.93 · 1010 1.72 · 1010

smoothing 2928 23 50 4 179 input small 2.93 · 109 1.20 · 109

stringsearch 3076 12 22 2 19 (w/o inputs) 1.77 · 106 1.59 · 106

water-nsquared 2076 16 62 5 45 input 9.55 · 1011 7.37 · 1011

Then, we compare the methodology presented in Section V

against three other common speed-up estimation models and

the real speed-up obtained by the execution of the source code

on the simulator on a set of manually partitioned applications

extracted from MiBench [28], from Splash 2 [29] and from

OmpSCR [30], that are three free suites of representative

benchmarks for embedded and parallel computing. The bench-

marks and their characteristics are reported in Table IV.

A. Path profiling

Both the EPP and the HPP techniques have been im-

plemented inside our framework, without any optimizations.

The results related to instrumentation and paths counting

are reported in Table V. The instrumented source code is

generated starting from the GIMPLE code at the end of the

target independent optimization flow. For this reason, different

results (see Inc.&Init. and NP) are obtained when changing

the optimization level of the GNU GCC compiler. This also

means that the estimation takes into account the middle-

end optimizations, when activated. Then, we executed the

instrumented code for 100 times and averaging the resulting

execution times. The profiling has been performed on a host

linux machine with the Intel Xeon X5355 CPU (4 cores at

2,33 GHz with 4 MB of L2 cache per couple of cores).

Starting from the same path graph, both the techniques

count a path each time they reach the end of a function or

of a loop. This results in the same number of path counter

writes (write) for the two methods. The number of paths

(NP) obtained with HPP is instead lower with respect to

EPP. In fact, HPP performs a different path composition when

loops are involved. As described above, EPP considers the path

which enters in the loop and the path which exits from it as two

distinct paths, when at least one iteration is performed, while

HPP fuses these two paths into a single one. Finally, the instru-

mentation overhead introduced in both the techniques (oh diff)

ranges from 20% to 200%. This is not a limitation, since we

profile on a host system much faster than the target architecture

or its cycle-accurate simulator. However, these number cannot

be directly compared to Ball and Laurus’ implementation.

Their performance analysis tool, in fact, instruments (SPARC)

binary executables, reducing the overheads by performing

data-flow analysis to exploit the architectural registers. Our

tool, instead, implements the two techniques completely in

software, acting on the architecture independent intermediate

representation before the object code generation and producing

an architecture agnostic instrumentation. Table V shows that

HPP has an overhead systematically lower than EPP. In fact,

since HPP uses a different definition of valid paths, we have

been able to reduce the number of activated paths, reducing

the data structure needed to store them.

B. Speedup estimation

In this section we compare the real speed-up obtained by

simulating with SimIt the sequential and parallelized source

codes to the following estimation models:

- Case A: the contribution of each task is based on its worst

case execution time [11] and the average number of iterations

for not countable loops has been set to 5, similarly to [31];

- Case B: the contribution of each task is based on an

average execution time [11] where the branch probabilities are

considered equiprobable. The number of iterations has been set

as in Case A;

- Case C: the number of iterations and the branch probabil-

ities are based on the results obtained by a dynamic profiling

with EPP;

- Case D: this case refers to the methodology proposed in

this paper and detailed in Section V.

These methods have been applied to the benchmarks in

Table IV with different levels of compiler optimizations. The

results are reported in Table VI. Note that there is not any

methodology able to exploit all the information coming from

the EPP preserving the HTG structure since EPP identifies

paths which cross the boundaries of the single task graph.

However, EPP results can still be used to easily estimate the

branch probabilities and the number of iterations and can be

used as inputs by the Algorithm 2 described in Section V.

Since the target compiler for ARM processors may perform

target dependent optimizations, some inaccuracies could occur.

TABLE V
COMPARISON OF THE EPP AND HPP TECHNIQUES. INC. & INIT. COUNTS THE INCREMENTS AND INITIALIZATIONS OF VARIABLES,
WRITE THE PATH COUNTER WRITES, NP THE ACTIVATED PATHS, OH DIFF IS THE DIFFERENCE BETWEEN HPP AND EPP OVERHEADS.

-O0 opt. level -O2 opt. level
EPP HPP oh EPP HPP oh

Inc.& Init. NP Inc. & Init. NP write diff (%) Inc. & Init. NP Inc. & Init. NP write diff (%)

basicmath 1.260 · 107 37 1.255 · 107 23 2.745 · 106
−2.5 1.260 · 107 39 1.255 · 107 25 2.745 · 106

−2.2
blowfish 2.115 · 105 57 1.786 · 105 38 6.725 · 104

−0.8 2.114 · 105 57 1.785 · 105 38 6.705 · 104
−6.6

corners detection 1.473 · 106 102 1.473 · 106 76 2.095 · 105
−4.7 1.516 · 106 150 1.517 · 106 124 2.095 · 105

−5.9
DelayLine 8.228 · 103 68 8.749 · 103 41 2.294 · 103 0.0 8.221 · 103 66 8.741 · 103 40 2.292 · 103 0.0
dijkstra 7.998 · 107 39 7.998 · 107 28 2.050 · 107

−1.9 8.016 · 107 43 8.016 · 107 26 2.041 · 107
−1.7

fft 4.865 · 108 44 4.865 · 108 26 1.509 · 108
−0.5 4.942 · 108 43 4.942 · 108 25 1.509 · 108

−2.1
fft6 7.025 · 108 71 7.227 · 108 48 1.963 · 108

−2.1 7.025 · 108 72 7.227 · 108 48 1.963 · 108
−0.1

fmm 4.635 · 108 399 4.647 · 108 281 1.075 · 108
−1.7 4.635 · 108 399 4.649 · 108 279 1.074 · 108

−0.5
graphsearch 2.325 · 103 63 2.331 · 103 46 4.050 · 103

−1.0 2.466 · 103 62 2.577 · 103 45 3.500 · 102
−3.3

jacobi1 3.000 · 108 37 3.000 · 108 28 1.000 · 108
−0.4 3.000 · 108 37 3.000 · 108 28 1.000 · 108

−0.4
JPEG encoder 5.994 · 105 133 6.014 · 105 75 1.509 · 105

−4.6 5.995 · 105 131 6.015 · 105 74 1.509 · 105
−2.2

openmpbench 7.032 · 108 64 7.033 · 108 38 2.341 · 108
−1.9 7.032 · 108 64 7.033 · 108 38 2.341 · 108

−3.2
smoothing 5.703 · 106 35 5.587 · 106 22 1.741 · 106

−8.7 5.703 · 106 35 5.587 · 106 22 1.741 · 106
−7.1

stringsearch 1.085 · 106 21 1.088 · 106 13 3.542 · 105
−0.5 1.085 · 106 24 1.088 · 106 15 3.542 · 105

−0.7
water-nsquared 1.954 · 108 164 1.963 · 108 99 3.814 · 107 0.0 1.953 · 108 162 1.963 · 108 98 3.812 · 107

−5.0

However, we have verified that their impact is similar on both

the parallelized and the sequential code. So we can confirm

that the speed-up ratio estimation is not affected. Analyzing

the results in Table VI with respect to the benchmark char-

acteristics shown in Table IV, we can make the following

considerations. In basicmath and blowfish, the profiling-based

techniques obtain far better results when no optimizations

are applied. On the other hand, the differences become neg-

ligible when the code is restructured by the optimizations.

One of the reasons is the introduction of loop optimizations

by the compiler. Nevertheless, the profiling techniques reach

an accurate estimation in both the cases. In the smoothing,

fmm and Delayline benchmarks, the technique based on EPP

information (C) obtains very poor results compared to the

other techniques. In these benchmarks there are several control

constructs and loops, and EPP looses all the correlations

among the paths, leading to a highly inaccurate estimation. The

HPP-based technique (D), instead, is able to correctly model

such cases. The Delayline and the fmm benchmarks are very

interesting when analyzing the quality of the parallelization.

In fact, the approaches A, B and C estimates the presence of

a speed-up in the parallelized code. However, when such code

is executed on the simulator, we see that the parallelization is

not efficient at all, and no speed up is obtained (µSimIt = 1).

In both these cases, the proposed technique correctly estimates

the lack of any speed-up. This means that our methodology

may be highly suitable during the design space exploration,

allowing the designer to obtain a fast preliminary evalua-

tion on different parallelization approaches without requiring

multiple, time-consuming simulations or executions on the

target platform. In smoothing, the control constructs are very

unbalanced (i.e., some branches have a larger probability to

be taken) and the approach based on worst case (A) is able

to model this situation, obtaining results that are very close to

the proposed methodology. However, code restructuring due

to optimizations changes the situation, and only the proposed

methodology (D) is able to accurately model it. Note that,

in general, when the branch probabilities are unbalanced, the

approach based on the worst case (A) behaves better than the

probabilistic one (B). Graphsearch and JPEG are examples

for this scenario. In jacobi1 and openmpbench, the number of

control constructs and loops is very limited. Again the branch

probabilities are very unbalanced and the approach based on

the worst case obtains the best results (A). However, the error

of the proposed methodology is still acceptable (less than

the 13%). In fft6, the effect of the control is negligible and

the speed up of the parallelized code is correctly predictable

by all the models with a very limited error. In dijkstra,

instead, the branch probabilities of the control constructs are

almost equiprobable. Consequently, the approach based on

equiprobable branches accurately models such situation. In

all the remaining cases, the profiling techniques C and D

systematically outperform the probabilistic ones. On these

benchmarks, they obtain very similar results.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper we proposed a methodology that effectively

combines a new path profiling technique, the Hierarchical Path

Profiling (HPP), with the information coming from the control

dependence regions to obtain the static speed-up estimation of

a parallel code, represented by a Hierarchical Task Graph. We

applied our methodology to a set of common benchmarks for

embedded and parallel computing, showing that it produces

more accurate estimations than other standard approaches.

Such a solution may be integrated in future auto-parallelizing

compilers or performance analysis tools for MPSoCs to obtain

a fast evaluation of the quality of the parallelization.

Future works will focus on the integration of all the opti-

mizations proposed in literature to reduce the instrumentation

overhead, on the analysis of the correlations among the opera-

tions and on the effects due to the target architecture (e.g. hits

and misses on instruction and data caches or communication)

to further improve the estimation accuracy.

ACKNOWLEDGMENT

Research partially funded by the European Community’s

Sixth Framework Programme, hArtes project. The authors

wish to thank Satnam Singh, Microsoft Research, and the

reviewers for their suggestions in improving this work.

TABLE VI
COMPARISONS AMONG THE DIFFERENT SPEED-UP ESTIMATION MODELS AND THE ONE OBTAINED BY SIMULATION. µSimIt IS THE

SPEED-UP COMPUTED BY THE SIMIT SIMULATOR, µi ARE THE SPEED-UPS RELATED TO THE CASES UNDER DISCUSSION.

Benchmark Opt µSimIt µA diff (%) µB diff (%) µC diff (%) µD diff (%)

basicmath -O0 1.599 1.987 24.3 1.987 24.3 1.639 2.5 1.639 2.5
-O2 1.585 1.605 1.3 1.605 1.3 1.606 1.3 1.606 1.3

blowfish -O0 1.856 1.237 33.4 1.401 24.5 1.799 3.1 1.799 3.1
-O2 1.865 1.801 3.4 1.799 3.5 1.798 3.6 1.798 3.6

corners detection -O0 1.781 1.878 5.4 1.680 5.7 1.800 1.1 1.800 1.1
-O2 1.750 1.401 19.9 1.698 3.0 1.790 2.3 1.790 2.3

Delayline -O0 1.000 1.691 69.1 1.510 51.0 1.291 29.1 1.000 0.0
-O2 1.000 1.583 58.3 1.435 43.5 1.271 27.1 1.000 0.0

dijkstra -O0 1.602 1.977 23.4 1.686 5.2 1.716 7.1 1.716 7.1
-O2 1.594 1.915 20.1 1.662 4.3 1.705 7.0 1.705 7.0

fft -O0 1.410 1.054 25.2 1.072 24.0 1.366 3.1 1.366 3.1
-O2 1.450 1.037 28.5 1.072 26.1 1.366 5.8 1.366 3.1

fft6 -O0 1.965 1.957 0.4 1.965 0.0 1.966 0.1 1.966 0.1
-O2 1.952 1.943 0.5 1.956 0.2 1.956 0.2 1.956 0.2

fmm -O0 1.000 1.305 30.5 1.124 12.4 1.452 45.2 1.000 0.0
-O2 1.000 1.220 22.0 1.104 10.4 1.396 39.6 1.000 0.0

graphsearch -O0 1.802 1.373 23.8 1.164 35.4 1.689 6.3 1.689 6.3
-O2 1.541 1.335 13.4 1.156 25.0 1.421 7.8 1.421 7.8

jacobi1 -O0 1.560 1.461 6.3 1.237 20.7 1.364 12.6 1.364 12.6
-O2 1.494 1.415 5.3 1.208 19.1 1.341 10.2 1.341 10.2

JPEG encoder -O0 2.912 2.094 28.1 1.723 40.8 2.650 9.0 2.650 9.0
-O2 3.021 2.084 31.0 1.549 48.7 2.673 11.5 2.673 11.5

openmpbench -O0 2.022 2.017 0.2 2.054 1.6 1.941 4.0 1.941 4.0
-O2 2.021 2.013 0.4 2.047 1.3 1.932 4.4 1.932 4.4

smoothing -O0 1.778 1.660 6.6 1.273 28.4 3.887 118.6 1.897 6.7
-O2 1.754 1.291 26.4 1.012 42.3 3.887 121.6 1.897 8.2

stringsearch -O0 1.074 1.991 85.4 1.991 85.4 1.081 0.7 1.081 0.7
-O2 1.072 1.991 85.7 1.991 85.7 1.080 0.7 1.080 0.7

water-nsquared -O0 1.297 1.242 4.2 1.227 5.4 1.276 1.6 1.276 1.6
-O2 1.401 1.259 10.1 1.283 8.4 1.369 2.3 1.369 2.3

Maximum 85.7 85.7 121.6 12.6
Mean 23.1 22.9 16.3 4.1

Standard deviation 23.6 23.2 30.4 3.7

REFERENCES

[1] W. Wolf, “The future of multiprocessor systems-on-chips,” in DAC,
2004, pp. 681–685.

[2] L. Thiele, “Performance analysis of distributed embedded systems -
tutorial session,” in EMSOFT, 2007, p. 10.

[3] T. Ball and J. R. Larus, “Efficient path profiling,” in MICRO-29, 1996,
pp. 46–57.

[4] M. Sato, “OpenMP: parallel programming API for shared memory
multiprocessors and on-chip multiprocessors,” in ISSS, 2002, pp. 109–
111.

[5] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Trans. Program. Lang. Syst.,
vol. 9, no. 3, pp. 319–349, 1987.

[6] M. Girkar and C. Polychronopoulos, “Automatic extraction of functional
parallelism from ordinary programs,” IEEE Trans. on Parallel and
Distributed Systems, vol. 3, no. 2, pp. 166–178, Mar. 1992.

[7] T. Ball and J. R. Larus, “Optimally profiling and tracing programs,”
ACM Trans. Program. Lang. Syst., vol. 16, no. 4, pp. 1319–1360, 1994.

[8] J. R. Larus, “Whole program paths,” SIGPLAN Notice, vol. 34, no. 5,
pp. 259–269, 1999.

[9] D. Melski and T. W. Reps, “Interprocedural path profiling,” in CC, 1999,
pp. 47–62.

[10] S. Tallam, X. Zhang, and R. Gupta, “Extending path profiling across loop
backedges and procedure boundaries,” in CGO, 2004, pp. 251–262.

[11] R. Ernst and W. Ye, “Embedded program timing analysis based on path
clustering and architecture classification,” in ICCAD, 1997, pp. 598–604.

[12] S. Malik, M. Martonosi, and Y. S. Li, “Static timing analysis of
embedded software,” in DAC, 1997, pp. 147–152.

[13] J. R. Bammi, W. Kruijtzer, L. Lavagno, E. Harcourt, and M. T.
Lazarescu, “Software performance estimation strategies in a system-level
design tool,” in CODES, 2000, pp. 82–86.

[14] W. Qin and S. Malik, “Flexible and formal modeling of microprocessors
with application to retargetable simulation,” in DATE, 2003, pp. 556–
561.

[15] X. Zhu and S. Malik, “Using a communication architecture specification
in an application-driven retargetable prototyping platform for multipro-
cessing,” in DATE, 2004, pp. 1244–1249.

[16] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri,
“MPARM: Exploring the Multi-Processor SoC Design Space with

SystemC,” Journal of VLSI Sig. Proc. Syst., vol. 41, no. 2, pp. 169–
182, 2005.

[17] L. J. Hendren, C. Donawa, M. Emami, G. R. Gao, Justiani, and
B. Sridharan, “Designing the McCAT Compiler Based on a Family
of Structured Intermediate Representations,” in 5th Int’l Workshop on
Languages and Compilers for Parallel Computing, 1993, pp. 406–420.

[18] GNU Compiler Collection, “GCC, version 4.3, http://gcc.gnu.org/.”
[19] T. Kempf, K. Karuri, S. Wallentowitz, G. Ascheid, R. Leupers, and

H. Meyr, “A sw performance estimation framework for early system-
level-design using fine-grained instrumentation,” in DATE, 2006, pp.
468–473.

[20] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry, “Compiler op-
timization of scalar value communication between speculative threads,”
in ASPLOS-X, 2002, pp. 171–183.

[21] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: principles, techniques,
and tools. Addison-Wesley Longman Publishing Co., Inc., 1986.

[22] C. Healy, M. Sjödin, V. Rustagi, D. Whalley, and R. V. Engelen,
“Supporting timing analysis by automatic bounding of loop iterations,”
Real-Time Systems, vol. 18, no. 2-3, pp. 129–156, 2000.

[23] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: principles, techniques,
and tools. Addison-Wesley Longman Publishing Co., Inc., 1986.

[24] V. C. Sreedhar, G. R. Gao, and Y. Lee, “Identifying loops using DJ
graphs,” ACM Trans. Prog. Lang. Syst., vol. 18, no. 6, pp. 649–658,
1996.

[25] M. Oyamada, F. Wagner, M. Bonaciu, W. Cesario, and A. Jerraya,
“Software Performance Estimation in MPSoC Design,” 2007, pp. 38–43.

[26] T. Yasue, T. Suganuma, H. Komatsu, and T. Nakatani, “An efficient
online path profiling framework for java just-in-time compilers,” in
PACT, 2003, pp. 148–158.

[27] “PandA framework, http://trac.ws.dei.polimi.it/panda.”
[28] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and

R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in WWC, 2001, pp. 3–14.

[29] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: characterization and methodological considera-
tions,” in ISCA, 1995, pp. 24–36.

[30] A. J. Dorta, C. Rodriguez, F. de Sande, and A. Gonzalez-Escribano,
“The OpenMP Source Code Repository,” in PDP, 2005, pp. 244–250.

[31] T. A. Wagner, V. Maverick, S. L. Graham, and M. A. Harrison, “Accurate
static estimators for program optimization,” in PLDI, 1994, pp. 85–96.

