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Abstract

This article deals with computational modeling of tissue growth under interstitial

perfusion inside a polymeric scaffold-based bioreactor. The mathematical model is the

result of the application of the volume averaging technique to the fluid, nutrient and

cellular subsystems, and is capable to account for the temporal evolution of local matrix

porosity, as the sum of a time-invariant component (the porosity of the uncellularized

polymer scaffold) and a time-dependent component (due to the growing biomass). The

solution algorithm is based on a block Gauss-Seidel iteration procedure that allows to

reduce each time level of the simulated culture period into the successive solution of

linearized subproblems, whose numerical approximation is carried out using stable and

convergent finite elements. Numerical simulations are carried out to investigate the role

of the design porosity of the scaffold on nutrient delivery and biomass production.
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multi-physics and multi-scale problems, interstitial perfusion, bioreactor,
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1. Introduction.

In this article, we deal with the mathematical modeling and the numer-
ical simulation of in vitro tissue growth, with application to regeneration
of articular cartilage, the smooth white tissue lining the surface of all the
diarthrodial joints in the body, critical in the movement of one bone against
another. In particular, we consider tissue growth inside a scaffold made of
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a polymeric porous foam immersed in a bioreactor device under interstitial
perfusion. Tissue Engineering (TE) techniques based on the interstitial flow
of the culture medium have been recognized to provide a proper biophysical
microenvironment to cells [1–3] compared to both static culture and surface
perfusion systems. Dynamic perfusion has been found to be particularly ef-
fective in improving the delivery of nutrients in the densely cell populated
areas of the construct, promoting cell proliferation and up-regulating the
synthesis of matrix proteins specific to cartilaginous tissue, such as collagens
and glycosaminoglycan (GAG) [4–13]. Fig. 1 gives a schematic picture of
the multi-scale/multi-physics structure of the phenomena occurring inside
a porous matrix for tissue engineering applications.

Figure 1. Multiple scale phenomena take place in a bioreactor system, spanning from
some tens of millimeters to nanometers.

Based on such a representation, the engineered tissue can be analyzed
at different levels of detail, according to the following definitions:

- Macroscale level: it is the scale at which the perfused scaffold is
treated as a continuum and at which the Bioengineer sets the control
parameters (inlet velocity, pressure drop). Its characteristic length
is of the order of some millimeters.

- Mesoscale level: it is the scale corresponding to a collection of a few
pores of the scaffold. Its characteristic length spans from hundreds
of microns to millimeters.

- Microscale level: it is the scale of the single pore of the polymeric
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scaffold, of nominal diameter of 100µm.
- Cellular level: it is the scale at which cells cannot be treated as

a continuum, but must be treated as single discrete entities. Its
characteristic length is of the order of microns.

- Sub-cellular scale level: it is the scale accounting for all the mass
transport and reaction processes that occur at the single cell mem-
brane level. Its characteristic length is of the order of some nanome-
ters.

From the mathematical viewpoint, several computational studies analyze
the problem focusing only on the Macroscale level. Namely, such studies
concern the numerical evaluation of the fluid-dynamical field and/or of the
nutrient (oxygen or glucose) distribution in the construct as if the system
were homogeneous (see, e.g., [14–16]). However, the environment in a TE
construct is a composite constituted of a collection of biomass, interstitial
fluid, polymeric scaffold. Multiphase models allow explicit consideration of
these interactions. Each constituent is considered as a distinct phase within
the multiphase system with corresponding constitutive laws and interac-
tions with neighboring phases; the inherent complexity of this approach can
be conveniently reduced by an averaging process, yielding a single equation
which holds uniformly in the material. Derivation of multiphase models ap-
plied to a wide range of problems in computational biology has been given
extensive treatment by many authors, including for example [17–20]. In the
series of papers by Galban & Locke (see [21] and references therein), a two
phase (fluid and biomass) model for cell growth and nutrient diffusion in a
polymer scaffold with no perfusion is presented. A single, averaged reaction-
diffusion equation for the nutrient concentration in the two phase system
is derived using the volume-averaging method of [19,22] and the effective
diffusion coefficient and reaction rate are calculated as a function of the
local cell volume fraction. This latter is determined (as a function of time)
by considering a cell population balance equation. In the paper by Chung
et al. [23] a two–phase (fluid and biomass) model analogous to the one
of [21] is proposed, with the inclusion of a self–consistent computation of
the fluid-dynamic field via an averaged Stokes–Brinkman model. To reflect
the fact that cell growth into the scaffold reduces the effective pore size,
Chung et al. propose to include the dependency on the cell volume fraction
via a Carman-Kozeny type relation for the permeability.

The present paper takes depart from our earlier work [24], where we have
proposed a macroscopic model obtained from volume averaging procedures
applied to a three-phase (fluid-biomass-scaffold) model. Fluid perfusion and
cell proliferation have been taken into account as well, as in [23].
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With respect to [24], we address here the complete derivation of the
model with emphasis on characteristic nondimensional numbers. Moreover,
we present novel numerical simulations, focused on a parametric study of
the effect of the scaffold porosity.

The paper is organized as follows: in Section 2 we present the mathe-
matical model, a system of non-linearly coupled partial differential equa-
tions which describes, at the macroscopic level, fluid flow throughout the
porous scaffold matrix, nutrient mass transfer and cellular proliferation and
metabolism; in Sect. 3 we describe the computational algorithm used to to
reduce each time level of the simulated culture period into the successive
solution of linearized sub-problems, whose numerical approximation is car-
ried out using stable and convergent finite elements [25]. The computational
procedure is then used in Sect. 4 to carry out a parametric study, as a func-
tion of the uncellularized scaffold porosity, of dynamically perfused tissue
growth in realistic geometries [26].

2. Mathematical model.

In the following, we describe the mathematical model adopted for the
description of tissue growth in the porous construct. The main mathemat-
ical tool we use is the Volume Averaging Method (VAM) [19,21,22], which
is applied separately to the three phases composing the bio–hybrid de-
vice, namely, the interstitial fluid, the nutrient substance (glucose) and the
biomass. The use of the VAM allows to upscale to a macroscopic level the
local properties of each subsystem through the introduction of effective co-
efficients (nutrient diffusivity and medium porosity).

2.1. Flow perfusion with Brinkman frictional correction.

Let Ωsc ∈ Rd, d = 1, 2, 3, be a bounded open domain, fixed in time,
representing a porous scaffold, and T > 0 the temporal duration of the cell
culture process. A schematical representation of a 2D vertical cross-section
of a typical scaffold, of width W and thickness H, is shown in Fig. 2.
In order to carry out the upscaling of interstitial flow throughout the porous
scaffold matrix progressively filled with growing biomass, we associate with
every x ∈ Ωsc an arbitrary, but fixed in time, representative elementary
volume (REV) V = V (x) having x as its centroid and such that the char-
acteristic size of V is the order of the union of some pores, roughly cor-
responding to the Mesoscale. Thus, V is “small” enough with respect to
the characteristic length of the macroscopic scale and “big enough” with
respect to the characteristic length of the cellular scale. We denote by Vfl,
Vsc and Vbio the portions of V occupied by the perfusion fluid, by the scaf-
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Figure 2. Schematical geometry of the scaffold and boundary conditions. Perfusion
medium carrying nutrient is flowing from left to right.

fold porous structure and by the growing biomass, respectively, satisfying
at each fixed time level t ∈ [0, T ] the relation

V (x) = Vsc + Vfl(x, t) + Vbio(x, t).

Clearly, being V and Vsc time-invariant volumes, we expect Vbio to increase
along with the culture process, and, accordingly, Vfl to decrease. Associated
with the above geometrical quantities, we let εs := Vsc/V and εbio := Vbio/V
be the volumetric fractions occupied by the scaffold porous structure and
by the biomass (cells + extracellular matrix), respectively, and we define
the space and time–dependent scaffold porosity

(1) φ(x, t) := Vfl/V = 1− (εs + εbio(x, t)).

The geometrical description of the scaffold porosity, accounting for the back-
ground (uncellularized) polymer solid structure, is motivated by the data
of [26,27], where the range of variation for φ was 59 − 89%, with a ref-
erence value of 77%. A parametric study of the effects of the variations
of the scaffold fraction εs on the interstitial cell growth process will be
discussed in the numerical experiments of Sect. 4. Finally, we indicate by
vpointfl the point fluid velocity, by vfl :=

∫
Vfl

vpointfl /Vfl the average intrinsic

velocity (i.e., the average fluid velocity over the sole fluid volume), and by
v :=

∫
Vfl

vpointfl /V = φvfl the Darcy fluid velocity (i.e., the average fluid

velocity over the whole REV).
Then, we apply the VAM over the REV to the point balance equations for
mass and momentum [28–31], and obtain the following system of macro-
scopic equations for interstitial fluid flow in Ωsc:

(2a) ∂tφ+ divv = 0,
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(2b) ρ
(
∂tv + div

(
(v × v)/φ

))
= divT(v, P ) + b(v, φ) + ρf ,

(2c) T(v, P ) := 2µ ε(v)− PI,

(2d) b(v, φ) := −µφK−1D (φ)v,

where ε(v) denotes the symmetric gradient of v, while P = φPfl is the
Darcy fluid pressure (i.e., after volume averaging over the whole REV), T
is the associated fluid stress tensor, µ being the fluid dynamic viscosity, and
f is a force per unit mass and unit volume in a fluid having density equal
to ρ.

Eq. (2a) represents mass conservation for a pseudo-compressible fluid,
the mass source being due to the fact that the fluid volume fraction is not
constant in time (notice, that, instead the REV does not vary in time).
Eq. (2b) represents momentum conservation: we see that the process of
volume averaging has introduced an extra term b, which expresses, via the
permeability defined below, the total drag force per unit volume exerted
on the fluid particles by the biomass and scaffold surfaces. As the char-
acterization of the frictional term would require the pointwise knowledge
of the microscopic normal stress in V , a closure relation for b is needed
to end up with a computable model. Such closure relation is provided by
Eq. (2d), which represents the Brinkman’s correction to fluid motion due
to the presence of porous matrix structure, where the Darcy permeability
KD is expressed by the Carman-Kozeny relation [19,30,32]

(3) KD(φ) := Kp
φ3

(1− φ)2
,

the Kozeny constant Kp being a reference permeability referred to the un-
cellularized scaffold. Eq. (3) is valid, in principle, for a porous matrix struc-
ture composed of a dilute random array of spherical particles. However,
it has been shown to be able to satisfactorily represent a wider variety of
situations (see for example the tests carried out in [33], Ch. 6). Moreover,
we observe that this formula is proposed here as a preliminary attempt, in
lack of a rigourous theoretical foundation in the field object of the present
work.
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2.2. Nutrient mass transport.

In order to carry out the upscaling of microscale mass transport phe-
nomena, we consider an arbitrary, but fixed, REV V ⊂ Ωsc whose spa-
tial resolution is far below the structural heterogeneities characterizing
the upper scale level (i.e., the scaffold porosity). This allows us to de-
fine by Vβ = Vβ(x, t) and Vσ = Vσ(x, t) the two portions of V associated
with the fluid (β) and solid (biomass+scaffold) (σ) phases, in such a way
that V = Vβ(x, t) + Vσ(x, t). Then, denoting by cmicro = cmicro(x, t) the
microscopic nutrient concentration, and setting cβ :=

∫
Vβ
cmicro/Vβ and

cσ :=
∫
Vσ
cmicro/Vσ the average intrinsic nutrient concentrations in the two

phases, we can define the average nutrient concentration at the Microscale
as

(4) c :=

∫
V c

micro

V
=

∫
Vβ
cmicro +

∫
Vσ
cmicro

V
= φcβ + εbiocσ.

Notice that in Eq. (4) we have used the fact that the scaffold is impermeable
to nutrient mass transport, as reflected by the fraction εbio weighting cσ.
Before carrying out the upscaling, we need to look at a finer level, the sub-
cellular level, in order to account for protein-mediated reactions regulating
nutrient mass transport across the cellular membrane. Because of the ex-
tremely small thickness of the membrane (of the order of nanometers), it
is reasonable to assume that transmembrane phenomena occur on a much
faster time-scale than in the intra and extra-cellular phases, so that the
following local mass equilibrium relation holds [22]

(5) cσ = Keqcβ,

where Keq is a suitable equilibrium coefficient. Using (5) into (4), we ex-
press the average nutrient concentration in the biomass in terms of the sole
average fluid nutrient concentration as c = (φ + Keqεbio)cβ. Then, we ap-
ply the VAM over the REV to the sub-cellular balance equations for mass
transport between β and σ-phases, and we obtain the following system of
macroscopic equations for interstitial nutrient mass transport in Ωsc:

(6a) ∂t
(
(φ+Keqεbio)cβ

)
+ div jnutr(cβ,v) = gnutr(cβ, εbio),

(6b) jnutr(cβ,v) := −Deff∇cβ + vcβ,

(6c) Deff := Dβ
3k − 2φ(k − 1)

3 + φ(k − 1)
, k := Keq

Dσ

Dβ
,
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(6d) gnutr(cβ, εbio) = −
Rmεbiocβ
Km + cβ

.

The equation system (6) expresses the dynamical macroscopic nutrient mass
balance at every point of Ωsc. The nutrient mass flux jnutr comprises a dif-
fusive contribution according to Fick’s law and an advective contribution
due to fluid perfusion, while the reaction source term gnutr, nonlinearly de-
pending on the average nutrient concentration in the β-phase, is the rate of
nutrient mass consumption according to the Michaelis-Menten model [22].
By inspection on Eq. (6c), we see that the process of volume averaging has
introduced an effective diffusion coefficient Deff (described by Maxwell
model [22]), which expresses the upscale contribution of the sub-cellular
scale geometry on the macroscopic transport process. It can be checked
that relation (6c) always yields a strictly positive quantity in correspon-
dance of any value of k ∈ [0,+∞] and φ ∈ [0, 1]. Moreover, we have

lim
φ→ 0+

Deff = KeqDσ = Dσ, lim
φ→ 1−

Deff = Dβ,

consistently with the fact that in the first case there is no extra-cellular
phase, while in the second case there is no intra-cellular phase.

2.3. Cell growth dynamics.

In order to carry out the upscaling of microscale cellular proliferation
and metabolism phenomena, we follow [21,34] and apply the VAM to the
conservation of cell mass associated with a volume Vσ, contained within a
REV V ⊂ Ωsc, obtaining the following system of macroscopic equations
that describes interstitial growth of tissue cells in Ωsc:

(7a) ∂tεbio + div jcell(εbio) = gcell(cβ, εbio),

(7b) jcell(εbio) := −Dcell∇εbio,

(7c) gcell(cβ, εbio) =
( Rgcβ

cβ + ρcell
Kc
Keq

εbio
−Rd

)
εbio.

The equation system (7) expresses the dynamical macroscopic cell material
balance at every point of Ωsc. The diffusive cell mass flux jcell accounts for
cell randow walk throughout the porous matrix, while the reaction source
term gcell, nonlinearly depending on the cell volume fraction εbio, accounts
for the competing mechanisms of cell growth Rg and cell apoptosis Rd
according to the modified Contois model [35].
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2.4. Nondimensionalization and simplification of the model.

In this section, we write the three equation systems (2), (6) and (7) in
non–dimensional form, in order to single out characteristic numbers whose
order of magnitude can be used to simplify in a rigorous way the model.

Given a generic variable u, we associate with u a scaling factor u, in
such a way that u/u is the non–dimensional variable corresponding to u.
We define four independent scaling factors (SF): x (space SF), t (time SF),
u (velocity SF) and c (concentration SF). We set x := H and t := R−1g ,
because we expect the maximum cell growth rate to be the characteristic
time regulating the overall process. We also set u := Uin and c := cin, Uin
and cin being the maximum perfusion velocity and nutrient concentration
at the inlet section of the scaffold domain, respectively. For notational sim-
plicity, we continue to use in the following the same symbol to indicate the
corresponding non–dimensional quantity, unless otherwise specified.

Then, the non–dimensional equations for fluid perfusion in the scaffold
read:

δv ∂tφ+ divv = 0,

Re Da
(
δv∂tv + div

(
(v × v)/φ

))
= div T̃(v, p)− χ(φ)−1v,

T̃(v, p) := 2Da ε(v)− pI, χ(φ) := φ2/(1− φ)2,

(8)

where p := (P − (−ρgey) ·x)/p is the piezometric pressure, g being gravity
acceleration, ey the unit vector oriented from bottom to top in Fig. 2,
and p := µux/Kp, respectively. The quantities Re := ux/ν and Da :=
Kp/x

2 are the Reynolds and Darcy numbers, ν := µ/ρ being the kinematic
fluid viscosity, while the quantity δv := (x/t)/u is the ratio between the
characteristic velocity of cell growth and the characteristic velocity of the
fluid in the scaffold.

The non–dimensional equations for nutrient mass transport are:

δD ∂t
(
(φ+Keqε)c

)
+ div jnutr(c,v) = − R̂mεc

c+ K̂m

,

jnutr(c,v) := −D̂eff∇c+ Peglobv, D̂eff :=
3k − 2φ(k − 1)

3 + φ(k − 1)
,

(9)

where c and ε shortly denote the non–dimensional nutrient concentration in
the fluid phase and the biomass volume fraction, respectively, and having set
R̂m := Rm/(cDβ/x

2) and K̂m := Km/c. The quantity Peglob := (ux)/Dβ

is the Peclèt number associated with the whole scaffold domain, while the
quantity δD := (x2/Dβ)/t is the ratio between the characteristic diffusion
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time of the nutrient in the fluid and the time-scale of the reactions governing
cell growth in the scaffold.

The non–dimensional equations for the cell volume fraction are:

1 ∂tε+ div jcell(ε) =
( c

c+ ηε
− R̂d

)
ε,

jcell(ε) := −D̂cell∇εbio, D̂cell :=
Dcell

x2/t
,

(10)

where η := (Kcρcell)/(Keqc) and R̂d := Rd/t
−1

. The quantity D̂cell is the
ratio between the time-scale of cell growth reactions and the time-scale of
cell random walk through the porous structure of the scaffold.

It is now relevant to numerically evaluate the relative weight of the
constants δv and δD compared to δc := 1, in order to see whether some
model reduction can be carried out. With this aim, we summarize in Tab. 1
the values of the geometrical and bio-physical parameters as proposed in [23]
and in the references cited therein.

Table 1. Model parameters.

Symbol Meaning Value Units

W Scaffold width 1 cm
H Scaffold thickness 0.3 cm

Uin Maximum perfusion velocity 50 µms−1

cin Nutrient concentration at scaffold inlet 4.5 × 10−3 g cm−3

Rg Maximum cell growth rate 1.6 × 10−5 s−1

µ fluid dynamic viscosity 8.3 × 10−3 g cm−1 s−1

ρ fluid density 0.893 g cm−3

Kp Carman-Kozeny constant 10−2 cm2

Dβ Nutrient diffusivity in the β-phase 1.0 × 10−5 cm2 s−1

Dσ Nutrient diffusivity in the σ-phase 0.75 × 10−5 cm2 s−1

Keq Local mass equilibrium coefficient 0.1 Adimensional

Km Saturation coefficient 6.3 × 10−5 g cm−3

Rm Maximum nutrient uptake rate 8 × 10−6 g cm−3 s−1

Dcell Cellular diffusivity due to random walk 1.7 × 10−10 cm2 s−1

Rd Cell apoptosis rate 3.3 × 10−7 s−1

Kc Contois saturation coefficient 0.154 Adimensional

ρcell Specific cell density 0.182 g cm−3

Using the tabulated values of the parameters, we have δv = 9.6 × 10−4

and δD = 0.14, so that the term δv∂tφ in Eq. (8)1 can be safely neglected.
Moreover, we also compute Re ' 0.16 and Da ' 0.11, so that also the
inertial terms in the momentum balance equation (8)2 can be neglected.
Eventually, we notice that D̂cell ' 1.18× 10−4, indicating that cell growth
reactions occur on a much faster time-scale than cell random walk.
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Based upon the above considerations, the simplified model for biological
tissue growth under fluid perfusion in a scaffold reads:

divv = 0,

div T̃(v, p)− χ(φ)−1v = 0,

T̃(v, p) := 2Da ε(v)− pI, χ(φ) := φ2/(1− φ)2,
δD ∂t

(
(φ+Keqε)c

)
+ div jnutr(c,v) = − R̂mεc

c+ K̂m

,

jnutr(c,v) := −D̂eff∇c+ Peglobv, D̂eff :=
3k − 2φ(k − 1)

3 + φ(k − 1)
,{

∂tε =
( c

c+ ηε
− R̂d

)
ε.

(11)

3. Computational algorithm.

In this section, we illustrate the fixed-point map for system linearization,
the time-marching procedure and the finite element approximation of the
linearized differential subproblems.

3.1. Linearization and time-advancing.

Model (11) is a system of nonlinearly coupled PDEs for the set of de-
pendent variables v, p, c and ε, and must be solved in the scaffold domain
Ωsc supplied with suitable initial and boundary conditions, as described in
Sect. 4. This requires to linearize the fully coupled system in order to end
up with a sequence of differential subproblems that are easier to treat in a
computational algorithm. With this aim, let us divide the temporal interval
[0, T ] into NT ≥ 1 time levels of length ∆ t := T/NT , such that tn := n∆ t,
n = 0, . . . , NT and, for a generic function u(x, t), set un := u(x, tn). Then,
given the initial data v0, c0 and ε0, for each n = 1, . . . , NT solve the follow-
ing sequence of linear differential sub-problems:divvn = 0,

div T̃(vn, pn)− χ(φn−1)
−1vn = 0,

(12a)

div jnutr(cn,vn) +
(
δD

(φn−1 +Keqεn−1)

∆ t
+

R̂mεn−1

cn−1 + K̂m

)
cn

= δD
(φn−1 +Keqεn−1)cn−1

∆ t
,

(12b)
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( 1

∆ t
+ R̂d

)
εn =

( 1

∆ t
+

cn
cn + ηεn−1

)
εn−1.(12c)

Time advancing from time level tn−1 to time level tn is carried out using the
Backward Euler method, because of its inconditional stability and ease of
implementation, while system inner decoupling is carried out using a fixed-
point iteration of block Gauss-Seidel form. Precisely, for a given scaffold
porosity φn−1, the part of model (11) describing fluid perfusion throughout
the scaffold is a linear Stokes-Brinkman problem for the pair (v, p). This is
reflected into Eq. (12a) that constitutes the first step of the algorithm, and
provides the pair (vn, pn). Plugging φn−1 and vn into the equation of mass
nutrient delivery in model (11), however, would yield an advection-diffusion
problem for c with non-linear reaction terms. Eq. (12b) is a suitable lin-
earization of such a problem, constructed in such a way that the absorption
and production terms are positive given functions. This ensures, in turn,
a maximum principle to hold for the solution cn (see [36]), which can be
proved to be positive in Ωsc as physically expected. The same philosophy
underlies Eq. (12c), that is a linear diffusion-reaction problem for εn, which
can be proved to be positive in Ωsc, again as physically expected. A flow-
chart of the computational algorithm for cell growth simulation is shown
in Fig. 3, where the quantities on the left of each arrow are input data to
the successive equation block in the chart, and the quantities on the right
are the output of the previous equation block in the chart.

Figure 3. Flow-chart of the computational algorithm.
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3.2. Finite element approximation.

In this section, we address the issue of the numerical discretization, using
the Galerkin Finite Element Method (GFEM) [25], of each of the linearized
differential subproblems to be solved at each time level in the functional
iteration (12). With this aim, we introduce a triangulation Th of Ωsc made
of regular open simplices K (intervals in 1D, triangles in 2D and tetrahedra
in 3D) [37], such that Ωsc = ∪K∈ThK. Then, the approximation of (12a)
is carried out using the Taylor-Hood finite element pair [38]. This choice
satisfies the inf-sup compatibility condition (see [25], Chapt. 9) and avoids
the onset of spurious pressure modes. As for subproblems (12b) and (12c),
both can be written in the general form of a linear diffusion-advection-
reaction equation:

(13)

divF(u;β) + σ u = f,

F(u;β) : −D∇u+ βu,

where β is a given divergence-free advective field, while σ and f are given
positive functions. The approximation of (13) is carried out using a stan-
dard SUPG formulation with piecewise linear continuous finite elements
(see [39,40]). This choice ensures a numerically stable solution even in the
case of a local Peclèt number > 1.

4. Simulation results and discussion.

In this section we use the computational model proposed above to sim-
ulate biomass growth in the polymer-based scaffolds experimentally inves-
tigated in [26,27,41]. A µCT image of a detail of the bioreactor porous
matrix is shown in Fig. 4 (left), while Fig. 4 (right) illustrates a schematics
of the simplified geometrical model used in computations to represent the
whole scaffold matrix as a periodical ”honey-comb” repetition of a cubic
”unit cell” intersected by a sphere. Referring to Fig. 5 (left), we denote by
H and R the size of the unit cell and the radius of the intersecting sphere,
respectively, and we set h := R − H/2. To compute the porosity of the
uncellularized scaffold we need to evaluate the volumetric fraction Vsc that
is occupied by the solid porous matrix within the total volume of the unit
cell V = H3. A simple geometrical computation shows that

Vsc = H3 −
(

4 π

3
R3 − 6

π

3
h2 (3R− h)

)
,

13
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Figure 4. Left: µCT image of a representative construct at the single pore level; right:
simplified geometrical model.

from which, introducing the dimensionless parameter λ := R/(H/2) such
that 1 < λ <

√
2, we obtain

εs(λ) =
Vsc
V

=
(

1 +
π

4

)
+
π

3
λ3 − 3π

4
λ2.

The graph of εs as a function of λ is depicted in Fig. 5 (right), indicating that
scaffold porosity dramatically decreases from almost 50% (corresponding to
λ = 1) to almost 2% (corresponding to λ =

√
2).

As the main focus of our analysis is the investigation of the role of
the scaffold porosity εs in determining the effectiveness of nutrient (glu-
cose) delivery to the cellular environment, and, consequently, in driving
cell metabolism and biomass production, we clearly expect the above re-
duction of void fraction to reflect into a strong reduction of nutrient delivery
efficiency and, consequently, biomass production. To assess this conjecture,
we have implemented the computational algorithm of Sect. 3 in a Mat-
lab routine, and run the code with the following input data: W = 1 cm,
H = 0.307 cm, c0 = 4.5 · 10−3 g cm−3 and Uin = 3.5µms−1. The finite
element triangulation is of Friedrichs-Keller type, with triangle edge sizes

Figure 5. Left: two-dimensional section of the unit cell; right: graph of εs as a function
of the dimensionless parameter λ.
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hx = W/20 and hy = H/20 in the x and y directions, respectively. The
final simulated culture time is T = 60 days and ∆t = 12 hours. The results
of the simulation are shown in Fig. 6 and 7, where the x-and y coordinates
are normalized to x = H. As expected, glucose delivery to deeper scaffold

Figure 6. Nutrient concentration (normalized to c0) as a function of εs(λ). Top: λ = 1,
middle: λ = 1.138, bottom: λ = 1.345.

sections is strongly inhibited as the solid porous volume fraction increases,
and the same phenomenon occurs with biomass production which is mainly
confined to the scaffold region close to the inlet section where the maximum
amount of nutrient is available. Inhibition of nutrient delivery and biomass

15
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Figure 7. Biomass volume fraction as a function of εs(λ). Top: λ = 1, middle: λ = 1.138,
bottom: λ = 1.345.

production due to the increase of solid volume fraction is even more no-
ticeable in the graphs of Fig. 8 where the maximum, minimum and average
values of c and ε over Ωsc are plotted as a function of εs. We observe that for
(almost) every scaffold porosity, there exist sub–regions of the device where
the nutrient concentration is very low (cf. the minimum curves), this being
an indication of non–optimal nutrient perfusion. As for the average curves,
the trend is almost linear with scaffold porosity, this being an interesting
indication for design purposes that, however, should be more thoroughly
assessed for a wider range of inlet fluid velocities.
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Figure 8. Maximum (solid line), minimum (dash-dotted line) and average (dashed line)
values of c/c0 (top) and ε (bottom) as functions of εs.
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