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We consider a system which describes the behavior of a binary mixture of immiscible incompressible
fluids with shear dependent viscosity by means of the diffuse interface approach. This system
consists of Navier–Stokes type equations, characterized by a nonlinear stress-strain law, which are
nonlinearly coupled with a convective Cahn–Hilliard equation for the order parameter. We analyze
the corresponding dynamical system and, by means of the short trajectory method, we prove the
existence of global and exponential attractors. We also discuss the dependence of an upper bound of
the fractal dimension on the physical parameters of the system.
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1. Introduction

The mathematical treatment of sharp interface problems is rather complicated also from the
numerical viewpoint. Therefore, it is particularly convenient to introduce models where the interface
is diffused (i.e., it has some small thickness ε). This is done by means of a convenient order
parameter whose evolution is governed by a gradient flow type equation (see, e.g., [3]). For
instance, if we want to describe the motion of a (homogeneous) incompressible, isothermal and
immiscible binary fluid mixture (e.g., oil and water), a typical model is the so-called Cahn–Hilliard-
Navier–Stokes system for the (mean) fluid velocity u and the order parameter φ (i.e., the relative
concentration of one phase). This system reads as follows (with unit density):

∂tu+ (u · ∇)u−∇ · τ (φ, e(u))+∇π = kµ∇φ + g, (1.1)
∇ · u = 0, (1.2)
∂tφ + u · ∇φ −m∆µ = 0, (1.3)
µ = −ε∆φ + αF ′(φ), (1.4)
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in Ω × (0, T ), Ω ⊆ RN , N = 2, 3, T > 0. Here k, ε,m, α are given positive constants, π denotes
the pressure, g is a given (time-independent) external force and F is a given double-well potential.
The stress tensor τ is defined by the constitutive relation

τ (φ, e(u)) = ν(φ)e(u), (1.5)

where ν is a strictly positive function and e is the symmetric velocity gradient, namely,

e(u) :=
1
2
(∇u+ (∇u)tr). (1.6)

System (1.1)–(1.5) is known as model H and was proposed in [19] (see also [29]) and then rigorously
justified in [15]. From the mathematical viewpoint, this system has been first studied in [31] for
Ω = R2. Then, in the case of bounded domains, a careful analysis has been carried out in [6]
(see also [7]). More recently, the case of logarithmic potentials and constant mobility m has been
considered in [1], where, in particular, the convergence of solutions to a single equilibrium has been
established in absence of nongradient external forces. This issue has also been investigated in [33]
for smooth potentials. A rather complete picture of the longtime behavior in the case N = 2 on a
bounded domain can be found in [13]. In the case N = 3, existence of trajectory attractors has been
demonstrated in [14] with time-dependent external forces (see also [2] for an alternative approach
in the case g ≡ 0). Regarding the numerical analysis of Cahn–Hilliard–Navier–Stokes systems we
refer the reader to, e.g., [4, 12, 16, 17, 21, 28] and their references.

Here we want to consider a nontrivial generalization of this model which accounts for a
shear dependent viscosity. More precisely, instead of (1.5), we assume the following stress-strain
relationship:

τ (φ, e(u)) = (ν1(φ)+ ν2(φ)|e(u)|p−2)e(u). (1.7)

Here νi are strictly positive given functions and p > 1. Of course, in the case p = 2 we obtain the
previous model.

In the case of single fluids, assumption (1.7) is known as the Ladyzhenskaya model (see [20]),
while the particular case p = 3 is the Smagorinsky model of turbulence (cf. [30]). We recall that,
in the case N = 3, the main features of the corresponding generalized Navier–Stokes equations
endowed with, say, no-slip or periodic boundary conditions are the uniqueness of weak solutions if
p > 5/2 and the existence of a (unique) strong solution if p > 11/5. This problem has been widely
and deeply investigated in recent years by several people (see [5, 11, 23, 25] and references therein).
Regarding the asymptotic behavior, in the seminal paper [22], the authors introduced a new method
to prove the existence of a global attractor of finite fractal dimension. This approach, now known
as the short trajectory method, has been refined in [24] (see also [11, 7.4]) to prove the existence
of exponential attractors as well. This method is actually rather flexible and it has been applied to
many other dynamical systems so far (see, e.g., [26, Rem. 3.8] and references therein).

System (1.1)–(1.4) with a generalized version of (1.7) has been considered first in [18]. There,
some existence, uniqueness and regularity results have been proven on bounded domains and for
periodic or no-slip and no-flux boundary conditions for u and φ, µ, respectively. The case of
singular potentials has also been considered, proving the existence of a measure-valued solution.
Here, in the case of smooth potentials and periodic boundary conditions, we want to investigate
the asymptotic behavior of (1.1)–(1.4), (1.7) along the lines of [24]. More precisely, using the short
trajectory method, we prove the existence of a global attractor and of an exponential attractor. In
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addition, we observe that the upper bound of the fractal dimension of these attractors grows at most
polynomially with the data. We will essentially focus on the case N = 3 with p > 11/5. The
degenerate case p ∈ (1, 2) and N = 2 will be treated elsewhere. Boundary conditions like no-slip
for u and no-flux for φ and µ might also be considered possibly with further restrictions, e.g., on p
(see [11, 7.4] and references therein for simple fluids, cf. also Remark 2.7).

The present analysis requires combining some different existing, albeit nontrivial, techniques
and we think that it is a further significant application of the short trajectory approach. Moreover, this
is a first step towards the possibility of considering similar models with more challenging features
like, say, singular potentials and degenerate mobility coefficients.

Equations (1.1)–(1.4) and (1.7) are given in RN × (0,∞), and u, φ and the chemical potential
µ are supposed to be L-periodic with respect to each variable xk , k = 1, . . . , N . The system is also
endowed with initial conditions

u(0) = u0, φ(0) = φ0. (1.8)

The plan of the paper is the following. In Section 2 we introduce the basic assumptions and we define
the notion of weak solution. Then we state and prove some existence, regularity and continuous
dependence results. Section 3 will be devoted to the main results about the asymptotic behavior,
that is, the existence of global and exponential attractors.

2. Well-posedness and smoothness

The aim of this section is to establish main results concerning the properties of solutions to our
system. Namely, we prove the compactness of the set of weak solutions (Theorem 2.4), which is
tantamount to the (global) existence of weak solutions. A key ingredient of the subsequent analysis
is the regularity result (Theorem 2.6), which ensures the uniqueness of solutions (Theorem 2.8)
under sufficiently general conditions.

Let us begin by stating our assumptions on the potential F :

F ∈ C3(R;R),
lim inf
|y|→∞

F ′′(y) > 0,

|F (3)(y)| 6 CF (1+ |y|r−1), r ∈

{
[1, 3], N = 3,
[1,∞), N = 2.

(2.1)

Moreover, for the sake of simplicity, we can assume F > 0.
Regarding νi, i = 1, 2, we suppose

ν1, ν2 ∈ C
1(R;R),

min
y∈R

νi(y) > νi∗, max
y∈R

νi(y) 6 ν∗i , max
y∈R
|ν′i(y)| 6 ν

]
i ,

(2.2)

for some positive νi∗, ν
∗

i , and ν]i .
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Also, we takem = 1 in (1.3) and we observe that the stress tensor τ has the following properties:

τ (φ, 0) = 0,

|τ (φ, e)− τ (φ, ẽ)| 6 c1ν
∗(1+ |e| + |ẽ|)p−2

|e− ẽ|,

|τ (φ, e)− τ (φ̃, e)| 6 c2ν
](1+ |e|)p−1

|φ − φ̃|,

(τ (φ, e)− τ (φ, ẽ)) : (e− ẽ) > c3ν∗(1+ |e| + |ẽ|)p−2
|e− ẽ|2,

(2.3)

where
ν∗ := max{ν∗1 , ν

∗

2 }, ν∗ := min{ν1
∗, ν

2
∗}, ν] := max{ν]1, ν

]
2}, (2.4)

for some suitable p such that

p >
3N + 2
N + 2

. (2.5)

All the functions here considered are L-periodic in space with respect to each variable and the
reference domain is Ω = (0, L)N . By H a

per(Ω), a > 0, we denote the Banach space of L-periodic
functions which belong to W a,2(Ω) whose norm is defined by ‖ · ‖H a

per(Ω)
= ‖ · ‖W a,2(Ω). The

notation L2
div and W a,p

div , a > 0, is reserved for the vector-valued functions of L2(Ω;RN ) and
W a,p(Ω;RN ) which are divergence-free and have zero mean value. The latter canonical norms
are indicated as ‖·‖2 and ‖·‖a,p, respectively. An equivalent norm ‖∇·‖p is often used as well. In
addition, if V is a Banach space, then V ∗ stands for its dual.

DEFINITION 2.1 Assume (u0, φ0) ∈ L
2
div ×H

1
per and g ∈ (W 1,2

div )
∗. For any given T > 0, the pair

(u, φ) is called a weak solution provided that

u ∈ L∞(0, T ;L2
div) ∩ L

p(0, T ;W 1,p
div ), (2.6)

φ ∈ L∞(0, T ;H 1
per) ∩ L

2(0, T ;H 3
per), (2.7)

and (1.1)–(1.4) hold in the sense of distributions inΩ×(0, T )with (1.7) and (1.8). Concerning (1.1),
only test functions with zero (spatial) divergence are considered. In addition, the spatial average of φ
is conserved, that is,

φ(t) ≡ φ0, ∀t > 0, (2.8)

where φ := |Ω|−1 ∫
Ω
φ dx.

REMARK 2.2 Note that (2.8) follows by taking 1 as test function in (1.3). Moreover, due to our
assumptions (2.1) and (2.5) all the nonlinearities are integrable, and for finite T > 0,

∂tu ∈ Lp
′

(0, T ; (W 1,p
div )

∗), (2.9)

∂tφ ∈ L
2(0, T ; (H 1

per)
∗). (2.10)

Consequently, any weak solution has a representative

(u, φ) ∈ C([0, T );L2
div ×H

1
per), (2.11)

so that (1.8) makes sense. Note that u, φ and ∆φ are admissible test functions for (1.1) and (1.3),
respectively. Finally, we note that the pressure π is excluded from the subsequent analysis thanks to
the fact we only work with divergence free test functions for (1.1). In the current setting of periodic
boundary conditions, the existence of a function π such that (1.1) holds in the sense of distributions
can be established a posteriori (see, e.g., [32, Ch. 3, Prop. 1.1]).
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REMARK 2.3 We will observe throughout our analysis that, as one might expect, the most difficult
term to handle is the convective one in (1.1), which gives rise to the lower bound (2.5) (see [23,
Ch. 5, Lemma 2.44]).

For future reference, it will be useful to write down the abstract weak formulation of (1.1)
explicitly, that is,

〈∂tu+N(φ, e(u))+ u · ∇u− kµ∇φ − g, v〉 = 0, ∀v ∈ Lp(0, T ;W 1,p
div ), (2.12)

where 〈·, ·〉 stands for the duality between Lp
′

(0, T ; (W 1,p
div )

∗) and Lp(0, T ;W 1,p
div ), and

〈N(φ, e(u)), v〉 =
∫
Ω×(0,T )

τ (φ, e(u)) : e(v) dx dt. (2.13)

THEOREM 2.4 Let (un, φn) be a sequence of weak solutions such that (un(0), φn(0))→ (u0, φ0)

in L2
div×H

1
per. Then, modulo a subsequence, un→ u, φn→ φ in the spaces specified in (2.17) and

(2.18) below, and (u, φ) is again a weak solution.

Proof. We confine ourselves to the case N = 3. The two-dimensional case can be treated in the
same way with a more general growth condition on F (cf. (2.1)). Also, from now on, CF will denote
a positive constant which controls the growth of F and depends on F only, but it may change from
line to line. Multiply (1.1) by k−1un, (1.3) by µ, and add the resulting equations. The convective
term in (1.1) disappears (cf. [23, Ch. 5, Lemma 2.9]). The convective term in (1.3) cancels out with
the coupling term on the right-hand side of (1.1). Using (2.3) and Korn’s inequality, we arrive at

d
dt
E[un, φn]+ c1ν∗‖∇un‖22 + c2ν∗‖∇un‖pp + c3‖∇µ‖

2
2 6 c4‖g‖2

(W
1,2
div )
∗
, (2.14)

where

E[u, φ] :=
1
k
‖u‖22 + ε‖∇φ‖

2
2 + 2α

∫
Ω

F(φ) dx. (2.15)

We readily deduce that

{un} is bounded in L∞(0, T ;L2
div) ∩ L

p(0, T ;W 1,p
div ).

By Poincaré’s inequality, since φn ≡ φn(0) is bounded, we further see that

{φn} is bounded in L∞(0, T ;H 1
per).

Similarly, if N = 3, we have

‖µn‖
H 1

per
6 c(‖∇µn‖22 + |F

′(φn)|),

|F ′(φn)| 6 CF

∫
Ω

(1+ |φn|4) dx 6 CF (1+ ‖φn‖4H 1
per
).

Hence we find that
{µn} is bounded in L2(0, T ;H 1

per).
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On the other hand, we have

c−1
‖φn‖

H 3
per

6 ‖∇µn‖2 + ‖F
′′(φn)∇φn‖2 + |φ

n|,

‖F ′′(φn)∇φn‖2 6 ‖F ′′(φn)‖2‖∇φ
n
‖∞ 6 CF (1+ ‖φn‖36)‖φ

n
‖

1/4
H 1

per
‖φn‖

3/4
H 3

per
.

Here (and below), we frequently use the interpolation inequalities

‖ϕ‖∞ 6 c‖ϕ‖
3/4
H 1

per
‖ϕ‖

1/4
H 3

per
, ‖∇ϕ‖∞ 6 c‖ϕ‖

1/4
H 1

per
‖ϕ‖

3/4
H 3

per
, (2.16)

as well as the embedding H 1
per ↪→ L6. We eventually find that

{φn} is bounded in L2(0, T ;H 3
per).

With this information at hand, we come to a subsequence (not relabelled) such that

un→ u weakly in Lp(0, T ;W 1,p
div ),

φn→ φ weakly in L2(0, T ;H 3
per),

µn→ µ weakly in L2(0, T ;H 1
per),

∂tun→ ∂tu weakly in Lp
′

(0, T ; (W 1,p
div )
∗),

∂tφ
n
→ ∂tφ weakly in L2(0, T ; (H 1

per)
∗).

(2.17)

In virtue of the Aubin–Lions lemma, we also have

un→ u strongly in Lp(0, T ;Ls) ∀s ∈ [1, 3p/(3− p)),

un→ u in C([0, T ]; (L2
div)weak),

φn→ φ strongly in L2(0, T ;H 3−ε
per ) ∀ε > 0.

(2.18)

Here the first convergence is for all s > 1 if p > 3. It is standard to obtain the limit in all the lower
order nonlinearities; thus we will only treat the stress tensor. From (2.3) and (2.13) it follows that

〈N(φn, e(v))−N(φn, e(un)), v− un〉 > 0.

Then we obtain (cf. (2.12))

〈∂tun +N(φn, e(v))+ (un · ∇)un − kµn∇φn − g, v− un〉 > 0

for an arbitrary smooth function v. Thus we deduce

〈∂tun +N(φn, e(v))+ (un · ∇)un − kµn∇φn − g, v〉

>
1
2
‖un(T )‖22 −

1
2
‖un(0)‖22 + 〈N(φ

n, e(v))− kµn∇φn − g,un〉.

Taking the lower limit, we have

〈∂tu+N(φ, e(v))+ (u · ∇)u− kµ∇φ − g, v〉

>
1
2
‖u(T )‖22 −

1
2
‖u(0)‖22 + 〈N(φ, e(v))− kµ∇φ − g,u〉
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or
〈∂tu+N(φ, e(v))+ (u · ∇)u− kµ∇φ − g, v− u〉 > 0.

At this stage, v can be replaced by an arbitrary function in Lp(0, T ;W 1,p
div ); using a standard

argument (see, e.g., [27, Lemma 9.43]), we deduce that u is also solution to (1.1). 2

REMARK 2.5 Using a suitable approximating scheme, the above result readily gives the global
existence of a weak solution (see also [18, Thm. 1]). For such a result, assumptions (2.1) can be
weakened by taking, e.g., F ∈ C2(R;R).

It is well known that weak solutions—that is, having only regularity (2.6)—of the
Ladyzhenskaya model are unique only if p > (N + 2)/2 (see [18, Thm. 3]), which is stronger
than (2.5) for N = 3. Thus, if we want to get uniqueness under (2.5), we have to improve the
regularity of solutions (see [18, Sec. 6] for N = 2).

THEOREM 2.6 Let g ∈ L2
div and (u0, φ0) ∈ W

1,2
div × H

2
per. Then there exists a weak solution with

regularity

u ∈ L∞(0, T ;W 1,2
div ) ∩ L

p(0, T ;W 1,3p
div ) ∩ L2(0, T ;W 2,2

div ), (2.19)

φ ∈ L∞(0, T ;H 2
per) ∩ L

2(0, T ;H 4
per). (2.20)

Proof. Let us assume N = 3. We again give a formal proof, which can be made rigorous at the
level of suitable approximation. Rewrite (1.3)–(1.4) as

φt + ε∆
2φ = −u · ∇φ + αF (3)(φ)|∇φ|2 + αF ′′(φ)∆φ =: R1 + R2 + R3.

Testing with ∆2φ gives

d
dt
‖∆φ‖22 + ε‖∆

2φ‖22 6 cε−1
∫
Ω

(R2
1 + R

2
2 + R

2
3) dx.

We begin with the estimate∫
Ω

R2
1 dx =

∫
Ω

|u|2|∇φ|2 dx 6 ‖u‖23‖∇φ‖
2
6 6 h1(t)‖φ‖

2
H 2

per
,

where
h1(t) := c‖∇u‖2p.

Furthermore, we have∫
Ω

R2
2 dx = α2

∫
Ω

|F (3)(φ)|2|∇φ|4 dx 6 CFα
2(1+ ‖φ‖412)‖∇φ‖

4
6.

Using now the estimates

‖φ‖12 6 c‖φ‖
7/8
H 1

per
‖φ‖

1/8
H 3

per
, ‖∇φ‖6 6 c‖φ‖

H 2
per

6 c̃‖φ‖
1/2
H 1

per
‖φ‖

1/2
H 3

per
,

we obtain ∫
Ω

R2
2 dx 6 h2(t)‖φ‖

2
H 2

per
,
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where
h2(t) := CFα2(1+ ‖φ‖9/2

H 1
per
‖φ‖

3/2
H 3

per
).

Finally, we observe that∫
Ω

R2
3 dx = α2

∫
Ω

|F ′′(φ)|2|∆φ|2 dx 6 CFα
2(1+ ‖φ‖6∞)‖∆φ‖

2
2 6 h3(t)‖φ‖

2
H 2

per
,

where
h3(t) := CFα2(1+ ‖φ‖9/2

H 1
per
‖φ‖

3/2
H 3

per
).

Recalling Poincaré’s inequality and the fact that φ is a constant of motion, we eventually have

d
dt
‖φ‖2

H 2
per
+ ε‖φ‖2

H 4
per

6 H1(t)‖φ‖
2
H 2

per
, (2.21)

where H1(t) := cε(h1(t)+ h2(t)+ h3(t)+ 1). Hence (2.20) follows by Gronwall’s lemma.
Further, arguing formally, we test (1.1) with −∆u. More precisely, we test ∂2u/∂x2

k and sum
the resulting equation over k. Obviously,

e
(
∂

∂xk
u
)
=

∂

∂xk
e(u).

Hence, from the stress tensor term, integrating by parts, we obtain

I (φ, e(u)) :=
∫
Ω

τ (φ, e(u)) : e(−∆u) dx = −
∫
Ω

τ (φ, e(u)) :
∂

∂xk
e
(
∂

∂xk
u
)

dx

=

∫
Ω

∂e(u)τ (φ, e(u)) :
(

e
(
∂

∂xk
u
)
⊗ e

(
∂

∂xk
u
))

dx +
∫
Ω

(
∂φτ (φ, e(u))

∂

∂xk
φ

)
: e
(
∂

∂xk
u
)

dx.

In the former integral, with a slight abuse of notation, : stands for the product of two fourth-order
tensors. Writing everything in terms of components, one sees that

∂e(u)τ (φ, e(u)) : (A⊗ A) = ∂e(u)ij τ (φ, e(u))mnAijAmn > c(ν1(φ1)+ ν2(φ)|e(u)|p−2)|A|2

for any symmetric tensor A ∈ R3×3. Thus we have

I (φ, e(u)) >
∫
Ω

Jp(φ,u) dx − cν]
∫
Ω

(1+ |e(u)|)p−1
∣∣∣∣e( ∂

∂xk
u
)∣∣∣∣|∇φ| dx,

where

Jp(φ,u) := (ν1(φ1)+ ν2(φ)|e(u)|p−2)

∣∣∣∣e( ∂

∂xk
u
)∣∣∣∣2,

with the implicit summation over k. We recall that the following estimate holds (see [23, Ch. 5,
Lemma 3.24]):∫

Ω

Jp(φ,u) dx > cν∗

∫
Ω

(1+ |e(u)|p−2)

∣∣∣∣e( ∂

∂xk
u
)∣∣∣∣2 dx > c1ν∗(‖u‖2W 2,2 + ‖∇u‖p3p). (2.22)
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On the other hand, using the well-known orthogonality of the convective term,∫
Ω

∂

∂xk
[(u · ∇)u] :

∂

∂xk
u dx =

∫
Ω

(
∂

∂xk
u · ∇

)
u :

∂

∂xk
u dx 6 ‖∇u‖33,

while the right-hand side is estimated simply as∣∣∣∣∫
Ω

g · (−∆u) dx
∣∣∣∣ 6

c1

2
ν∗‖u‖2W 2,2 + cν

−1
∗ ‖g‖

2
2.

Altogether, we have deduced the following inequality:

d
dt
‖∇u‖22 + Jp(u)+ c1ν∗‖u‖2W 2,2 + c1ν∗‖∇u‖p3p

6 c2ν
]

∫
Ω

(1+ |e(u)|)p−1
|e(∇u)| |∇φ| dx + ‖∇u‖33 +

∫
Ω

|µ| |φ| |∆u| dx + cν−1
∗ ‖g‖

2
2

=: P1 + P2 + P3 + cν
−1
∗ ‖g‖

2
2.

Observe that

P1 6
1
2

∫
Ω

Jp(u) dx + cν−1
∗ ν

]2
∫
Ω

(1+ |e(u)|)p|∇φ|2 dx,

where the last integral is estimated by

‖∇φ‖26(1+ ‖∇u‖p3p/2) 6 c‖φ‖2
H 2

per
(1+ ‖∇u‖p/2p ‖∇u‖p/23p ) 6

c1

2
ν∗‖∇u‖p3p + h4(t),

with
h4(t) := cν−2

∗ ν
]4
‖φ‖4

H 2
per
(1+ ‖∇u‖pp ).

Similarly, we have

P3 6
c1

2
ν∗‖u‖2W 2,2 + cν

−1
∗

∫
Ω

|µ|2|∇φ|2 dx,

where the integral is estimated by

cν−1
∗ ‖µ‖

2
4‖∇φ‖

2
4 6 cν−1

∗ ‖µ‖
2
H 1

per
‖φ‖2

H 2
per
=: h5(t).

The most difficult term to handle is P2, coming from the convective term. Here we slightly modify
the technique of [23, Chap. 5, proof of Thm.3.4].

Let us assume p < 3 first. Using the interpolation inequalities

‖v‖3 6 ‖v‖αp‖v‖
1−α
3p , α =

p − 1
2

,

‖v‖3 6 ‖v‖β2 ‖v‖
1−β
3p , β =

2(p − 1)
3p − 2

,

we can write
P2 6 ‖∇u‖3(1−a)3 ‖∇u‖3a3 6 ‖∇u‖Q1

2 ‖∇u‖Q2
p ‖∇u‖Q3

3p ,
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where

Q1 =
6(1− a)(p − 1)

3p − 2
, Q2 =

3a(p − 1)
2

, Q3 = 3
[
(1− a)p
3p − 2

+
a(3− p)

2

]
.

We now apply Young’s inequality with

1
δ
+

1
δ′
= 1, δQ3 = p, δ′Q1 = 2.

These conditions determine the choice of a and δ, namely,

a =
4p

3(p − 1)(5p − 6)
, δ =

5p − 6
3

.

We finally deduce
P2 6

c1

4
ν∗‖∇u‖p3p +H3(t)‖∇u‖22,

where

H3(t) := cν
−

3
5p−9
∗ ‖∇u‖

2p
5p−9
p . (2.23)

Observe that 2p/(5p − 9) 6 p is equivalent to p > 11/5, and thus H3 is integrable in time.
Summing up, recalling (2.22), we come to

d
dt
‖∇u‖22 + c2ν∗‖u‖22,2 + c3ν∗‖∇u‖p3p 6 H2(t)+H3(t)‖∇u‖22, (2.24)

where H2(t) := h4(t)+ h5(t). Thus (2.19) follows by Gronwall’s lemma.
The case p > 3 is simpler, since now ‖∇u‖33 is integrable (see (2.14)). Hence (2.24) holds with

H2 = h4 + h5 + ‖∇u‖33 and H3 ≡ 0. 2

REMARK 2.7 In the case of simple fluids, following [8], if N = 3 and

p > 12/5, (2.25)

the regularity of solutions can be proven in the case g ∈ (W 1,2
div )
∗. This result is obtained by taking

ut in place of −∆u as a test function. It should be possible to extend [8, Thm. 3.3] to system (1.1)–
(1.4) provided that ν1 and ν2 are constants. If so, all the following results would hold under a more
general (nongradient) external force. We recall that the longterm dynamics is strongly affected by
the presence of such a force (see Remark 3.2 below). We also refer to [9] for an alternative approach
to improving regularity of three-dimensional non-Newtonian fluids, based on estimates of fractional
time differences, which works for p > 11/5 and is independent of boundary conditions.

THEOREM 2.8 Any solution satisfying (2.19) and (2.20) is unique in the class of weak solutions.
More precisely: given two solutions (u1, φ1), (u2, φ2), we have

d
dt
(‖w‖22 + ‖ψ‖

2
H 1

per
)+ ε‖ψ‖2

H 3
per
+ c1ν∗‖∇w‖22 + c1ν∗

∫
Ω

I2
p(e(u1), e(u2)) dx

6 H4(t)(‖w‖22 + ‖ψ‖
2
H 1

per
), (2.26)
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where w = u1 − u2, ψ = φ1 − φ2, and

Ip(e(u1), e(u2)) := (1+ |e(u1)| + |e(u2)|)
p/2−1

|e(w)|. (2.27)

Here H4 ∈ L
1(0, T ) denotes a function only depending on the norms of (u2, φ2) in the spaces

specified in (2.6) and (2.7) and on the norms of (u1, φ1) in the spaces specified in (2.19) and (2.20).

Proof. We start with the equation for ψ, that is,

∂tψ + (u1 · ∇φ1 − u2 · ∇φ2)+ ε∆
2ψ − α∆(F ′(φ1)− F

′(φ2)) = 0.

Multiplying it by −∆ψ , which is an admissible test function, we arrive at

1
2

d
dt
‖∇ψ‖22 + ε‖∇∆ψ‖

2
2 6

∫
Ω

(u2φ2 − u1φ1) · ∇∆ψ dx

+ α

∫
Ω

∇(F ′(φ1)− F
′(φ2)) · ∇∆ψ dx =: I1 + I2.

The first term on the right-hand side is estimated as follows:

I1 6
ε

8
‖∇∆ψ‖22 + cε

−1
∫
Ω

(|w|2|φ1|
2
+ |u1|

2
|ψ |2) dx,

the integral being estimated by

cε−1(‖w‖22‖φ2‖
2
∞ + ‖u1‖

2
3‖ψ‖

2
6) 6 h6(t)(‖w‖22 + ‖ψ‖

2
H 1

per
),

where
h6(t) := cε−1(‖φ2‖

3/2
H 1

per
‖φ2‖

1/2
H 3

per
+ ‖∇u1‖

2
p).

Furthermore, we have

I2 6
ε

8
‖∇∆ψ‖22 + cε

−1
∫
Ω

|∇(F ′(φ1)− F
′(φ2))|

2 dx.

Observe now that we can write

F ′(φ1)− F
′(φ2) =

∫ 1

0
F ′′((1− s)φ1 + sφ2) ds ψ,

∇(F ′(φ1)− F
′(φ2)) =

∫ 1

0
F (3)((1− s)φ1 + sφ2)∇((1− s)φ1 + sφ2) ds ψ

+

∫ 1

0
F ′′((1− s)φ1 + sφ2) ds ∇ψ.

Consequently, recalling (2.1), we have∫
Ω

|∇(F ′(φ1)− F
′(φ2))|

2 dx 6 CF

∫
Ω

(1+ |φ1| + |φ2|)
4(|∇φ1| + |∇φ2|)

2
|ψ |2 dx

+ CF

∫
Ω

(1+ |φ1| + |φ2|)
6
|∇ψ |2 dx =: J1 + J2. (2.28)
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In view of (2.16), these integrals are then estimated as follows:

J1 6 CF (1+ ‖φ1‖
4
∞ + ‖φ2‖

4
∞)(‖∇φ1‖

2
2 + ‖∇φ2‖

2
2)‖ψ‖

2
∞

6 CF (1+ ‖φ1‖
5
H 1

per
+ ‖φ2‖

5
H 1

per
)(‖φ1‖H 3

per
+ ‖φ2‖H 3

per
)‖ψ‖

3/2
H 1

per
‖ψ‖

1/2
H 3

per

6
ε

8
‖ψ‖2

H 3
per
+ CF ε

−4/3(1+ ‖φ1‖
20/3
H 1

per
+ ‖φ2‖

20/3
H 1

per
)(‖φ2‖

4/3
H 3

per
+ ‖φ2‖

4/3
H 3

per
)‖ψ‖2

H 1
per
,

J2 6 CF (1+ ‖φ1‖
6
6 + ‖φ2‖

6
6)‖∇ψ‖

2
∞ 6 CF (1+ ‖φ1‖

6
H 1

per
+ ‖φ2‖

6
H 1

per
)‖ψ‖

1/2
H 1

per
‖ψ‖

3/2
H 3

per

6
ε

8
‖ψ‖2

H 3
per
+ CF ε

−4(1+ ‖φ1‖
24
H 1

per
+ ‖φ2‖

24
H 1

per
)‖ψ‖2

H 1
per
.

To summarize, we deduce that

d
dt
‖ψ‖2

H 1
per
+ ε‖ψ‖2

H 3
per

6 (h6(t)+ h7(t))(‖w‖22 + ‖ψ‖
2
H 1

per
), (2.29)

where

h7(t) := CF ε−4/3(1+ ‖φ1‖
20/3
H 1

per
+ ‖φ2‖

20/3
H 1

per
)(‖φ2‖

4/3
H 3

per
+ ‖φ2‖

4/3
H 3

per
)

+ CF ε
−4(1+ ‖φ1‖

24
H 1

per
+ ‖φ2‖

24
H 1

per
).

We proceed to handle the equation for w which can be written as follows:

∂tw+ u1 · ∇u1 − u2 · ∇u2 −∇ ·
{
τ (φ1, e(u1))− τ (φ2, e(u2))

}
+∇(π1 − π2)

= kµ1∇φ1 − kµ2∇φ2.

Multiply it by w (an admissible test function due to (2.5)) to obtain

1
2

d
dt
‖w‖22 +

∫
Ω

{τ (φ2, e(u1))− τ (φ2, e(u2))} : e(w) dx︸ ︷︷ ︸
K1

=

∫
Ω

{τ (φ1, e(u1))− τ (φ2, e(u1))} : e(w) dx +
∫
Ω

(u2 · ∇u2 − u1 · ∇u1) · w dx

+ k

∫
Ω

(µ2∇φ2 − µ1∇φ1) · w dx =: K2 +K3 +K4.

Thanks to (2.3) and Korn’s inequality, we have

K1 > c1ν∗‖∇w‖22 + c1ν∗

∫
Ω

I2
p(e(u1), e(u2)) dx.

On the other hand (cf. (2.3) once more)

K2 6 c2ν
]

∫
Ω

(1+ |e(u1)|)
p−1
|e(w)| |ψ | dx 6 c̃2ν

]

∫
Ω

Ip(e(u1), e(u2))(1+ |e(u1)|)
p/2
|ψ | dx

6
c1ν∗

4

∫
Ω

I2
p(e(u1), e(u2)) dx + c3ν

−1
∗ (ν

])2
∫
Ω

(1+ |∇u1|
p)|ψ |2 dx.
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The second term is estimated as follows:

cν−1
∗ (ν

])2(1+ ‖∇u1‖
p

3p/2)‖ψ‖
2
6 6 h8(t)‖ψ‖

2
H 1

per
,

where
h8(t) := cν−1

∗ (ν
])2(1+ ‖∇u1‖

2p/(3p−2)
2 ‖∇u1‖

(3p2
−4p)/(3p−2)

3p ).

Here we have used the interpolation inequality

‖v‖3p/2 6 ‖v‖2/(3p−2)
2 ‖v‖

(3p−4)/(3p−2)
3p .

Furthermore, we insert ±u2 · ∇u1 and use again the orthogonality of convective terms to deduce

K3 = −

∫
Ω

(w · ∇u1) · w dx 6 ‖∇u1‖3p‖w‖
2
6p/(3p−1).

Here we have used the inequalities

‖v‖6p/(3p−1) 6 ‖v‖a2‖v‖
1−a
6 6 c‖v‖a2‖∇v‖

1−a
2 , a =

2p − 1
2p

.

Therefore, we obtain

K3 6 c4‖∇u1‖3p‖w‖
(2p−1)/p
2 ‖∇w‖1/p2 6

c1ν∗

4
‖∇w‖22 + h9(t)‖w‖22,

where
h9(t) := c5ν

−1/(2p−1)
∗ ‖∇u1‖

2p/(2p−1)
3p .

Note that the exponent 2p/(2p − 1) is strictly smaller than p. We now use integration by parts and
recall that w is divergence-free, to write

K4 = k

∫
Ω

(∇µ1φ1 −∇µ2φ2) · w dx = −k
∫
Ω

η∇φ2 · w dx − k
∫
Ω

µ1∇ψ · w dx =: K4a +K4b,

where we have set η := µ1 − µ2. Then, we observe that

|η| 6 ε|∆ψ | + αCF (1+ |φ1| + |φ2|)
3
|ψ |,

‖η‖2 6 ε‖ψ‖
H 2

per
+ αCF (1+ ‖φ1‖

3
6 + ‖φ2‖

3
6)‖ψ‖∞ (2.30)

6 c(ε + αCF (1+ ‖φ1‖
3
H 1

per
+ ‖φ2‖

3
H 1

per
))‖ψ‖

H 2
per
.

We thus have

K4a 6 ck(ε + αCF (1+ ‖φ1‖
3
H 1

per
+ ‖φ1‖

3
H 1

per
))‖ψ‖

H 2
per
‖∇φ2‖∞‖w‖2

6 ck(ε + αCF (1+ ‖φ1‖
3
H 1

per
+ ‖φ1‖

3
H 1

per
))‖ψ‖

1/2
H 1

per
‖ψ‖

1/2
H 3

per
‖φ2‖

1/4
H 1

per
‖φ2‖

3/4
H 3

per
‖w‖2

6
ε

8
‖ψ‖2

H 3
per
+ h10(t)(‖ψ‖

2
H 1

per
+ ‖w‖22),
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where
h10(t) := ck4/3ε−1/3(ε + αCF (1+ ‖φ1‖

3
H 1

per
+ ‖φ1‖

3
H 1

per
))4/3‖φ2‖H 3

per
.

Finally, we note that

|µ| 6 ε|∆φ| + αCF (1+ |φ|4), ‖µ‖2 6 ε‖φ‖
H 2

per
+ αCF (1+ ‖φ‖48).

Using the interpolation inequality

‖φ‖8 6 c‖φ‖
H

5/4
per

6 c̃‖φ‖
3/4
H 1

per
‖φ‖

1/4
H 2

per
,

we deduce
‖µ1‖2 6 (ε + αCF (1+ ‖φ1‖

3
H 1

per
))‖φ1‖H 2

per
.

Hence, we find

K4b 6 k‖µ1‖2‖∇ψ‖∞‖w‖2 6 k‖µ1‖2‖ψ‖
1/4
H 1

per
‖ψ‖

3/4
H 3

per
‖w‖2

6
ε

8
‖ψ‖2

H 3
per
+ h11(t)(‖w‖22 + ‖ψ‖

2
H 1

per
),

where
h11(t) := cε−3/5(ε + αCF (1+ ‖φ1‖

3
H 1

per
))8/5‖φ1‖

4/5
H 1

per
‖φ1‖

4/5
H 3

per
.

Collecting the above estimates and invoking (2.29), we see that (2.26) holds with H4(t) :=∑11
j=6 hj (t), and this completes the proof. 2

A consequence of Theorem 2.8 is the following

COROLLARY 2.9 Let (ui, φi), i = 1, 2, be two weak solutions and suppose that (u1, φ1) satisfies
(2.19) and (2.20). Let 0 < 2` 6 T be given. Then

‖w(t)‖2 + ‖ψ(t)‖2
H 1

per
6 λ1(‖w(s)‖2 + ‖ψ(s)‖2H 1

per
), 0 6 s 6 t 6 T , (2.31)

‖w‖2
L2(`,2`;W 1,2

div )
+ ‖ψ‖2

L2(`,2`;H 3
per)
+ ‖Ip(e(u1), e(u2))‖L2(`,2`;L2)

6 λ2(‖w‖2L2(0,`;L2
div)
+ ‖ψ‖2

L2(0,`;H 1
per)
), (2.32)

where λj , j = 1, 2, depend on T and `, on the norms of (u2, φ2) in the spaces specified in (2.6) and
(2.7), on the norms of (u1, φ1) in the spaces specified in (2.19) and (2.20) and on the other structural
constants of the system.

Proof. For a fixed s ∈ [0, T ] we set

Ys(t) = ‖w(t)‖22 + ‖ψ(t)‖
2
H 1

per

+

∫ t

s

(ε‖ψ‖2
H 3

per
+ c1ν∗‖∇w‖22)+ c1ν∗

∫ t

s

∫
Ω

I2
p(e(u1), e(u2)) dx

for all t ∈ [s, T ]. Now (2.26) can be written as d
dt Ys(t) 6 H4(t)Ys(t), which yields

Ys(t) 6 Ys(s) exp
(∫ t

s

H4(τ ) dτ
)
. (2.33)
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Thus (2.31) follows with λ1 = exp(
∫ T

0 H4). In addition, if s ∈ (0, `) and t = 2`, then we get

∫ 2`

s

(ε‖ψ‖2
H 3

per
+ c1ν∗‖∇w‖22)+ c1ν∗

∫ 2`

s

∫
Ω

I2
p(e(u1), e(u2)) dx

6 (‖w(s)‖22 + ‖ψ(s)‖
2
H 1

per
) exp

(∫ 2`

s

H4(τ ) dτ
)
.

Integrating over s ∈ (0, `) immediately gives (2.32) with λ2 = `
−1 exp(

∫ 2`
0 H4). 2

We also need the following Lipschitz estimate:

LEMMA 2.10 Let 0 < ` 6 T be fixed and let (u1, φ1), (u2, φ2) be two weak solutions satisfying
(2.19), (2.20). Set w = u1 − u2 and ψ = φ1 − φ2. Then, for any p > 11/5, we have

‖∂tw‖
Lp
′
(0,`;(W 1,p

div )
∗)
+ ‖∂tψ‖L2(0,`;(H 1

per)
∗)

6 Λ{‖w‖
L2(0,`;W 1,2

div )
+ ‖Ip(e(u1), e(u2))‖L2(0,`;L2)

+ ‖ψ‖
L2(0,`;H 3

per)
+ ‖ψ‖

L∞(0,`;H 1
per)
},

(2.34)

where Λ is a computable constant, depending on the norms of the solutions in the spaces (2.19),
(2.20).

Proof. We use the equation and a duality argument. First, recall that

‖∂tw‖
Lp
′
(0,`;(W 1,p

div )
∗)
= sup

z

{∫ `

0
〈∂tw, z〉 dt : ‖z‖

Lp(0,`;W 1,p
div )

6 1
}
.

Then, from (1.1) it follows that∫ `

0
〈∂tw, z〉 dt =

∫
Ω×(0,`)

((u2 · ∇)u2 − (u1 · ∇)u1) · z dx dt

+

∫
Ω×(0,`)

(τ (φ2, e(u2))− τ (φ1, e(u1))) : ∇z dx dt

+ k

∫
Ω×(0,`)

(µ1∇φ1 − µ2∇φ2) · z dx dt =: P1 + P2 + P3.

Integrating by parts and using the fact that u is divergence-free, we have

P1 =

∫
Ω×(0,`)

(u1 ⊗ u1 − u2 ⊗ u2) : ∇z dx dt 6
∫
Ω×(0,`)

(|u1| + |u2|)|w| |∇z| dx dt

6
∫ `

0
(‖u1‖6p/(5p−6) + ‖u2‖6p/(5p−6))‖w‖6‖∇z‖p dt 6 L1

(∫ `

0
‖∇w‖22

)1/2

,

where
L1 := c`(p−2)/(2p) sup

t∈(0,`)
(‖u1(t)‖6p/(5p−6) + ‖u2(t)‖6p/(5p−6)).
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This is indeed finite as 6p/(5p − 6) 6 6, in view of (2.19). Here we have also used the estimate(∫ `

0
‖∇z‖2p

)1/2

6 c`(p−2)/(2p). (2.35)

Furthermore, invoking (2.3), we get

P2 6 cν∗
∫
Ω×(0,`)

(1+ |e(u1)| + |e(u2)|)
p−2
|e(w)| |∇z| dx dt

+ cν]
∫
Ω×(0,`)

(1+ |e(u1)|)
p−1
|ψ | |∇z| dx dt =: P2a + P2b.

Observe now that

P2a 6 cν∗
∫
Ω×(0,`)

Ip(e(u1), e(u2))(1+ |e(u1)| + |e(u2)|)
p/2−1

|∇z| dx dt

6 cν∗
∫ `

0
‖Ip(e(u1), e(u2))‖2(1+ ‖∇u1‖p + ‖∇u2‖p)

p/2−1
‖∇z‖p dt

6 L2a

(∫ `

0
‖Ip(e(u1), e(u2))‖

2
2

)1/2

,

where

L2a = cν
∗

(∫ `

0
(1+ ‖∇u1‖

p
p + ‖∇u2‖

p
p ) dt

)(p−2)/2p

.

Also, setting ρ := 6p(p − 1)/(5p − 6), we have

P2b 6 cν]
∫ `

0
(1+ ‖∇u1‖ρ)

p−1
‖ψ‖6‖∇z‖p dt 6 L2b sup

t∈(0,`)
‖ψ(t)‖

H 1
per
,

where

L2b = cν
]

(∫ `

0
(1+ ‖∇u1(t)‖

p
ρ ) dt

)(p−1)/p

,

and this quantity is finite, thanks to (2.19) and ρ 6 3p. The last term can be estimated as follows:

P3 6 k

∫
Ω×(0,`)

|µ1 − µ2| |∇φ1| |z| dx dt + k
∫
Ω×(0,`)

|µ2| |∇ψ | |z| dx dt := P3a + P3b.

In this case, we obtain

P3a 6 k

∫ `

0
‖µ1 − µ2‖2‖∇φ1‖3‖z‖6 dt 6 L3a

(∫ `

0
‖ψ‖2

H 3
per

)1/2

,

where, in view of (2.30) and (2.35), we have set

L3a = ck`
(p−2)/(2p) sup

t∈(0,`)
[(ε + αCF (‖φ1(t)‖

3
H 1

per
+ ‖φ2(t)‖

3
H 1

per
))‖∇φ1(t)‖3].
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On the other hand, we get

P3b 6 k

∫ `

0
‖µ2‖6/5‖∇ψ‖∞‖z‖6 dt 6 L3b

(∫ `

0
‖ψ‖2

H 3
per

)1/2

,

where
L3b = ck`

(p−2)/(2p) sup
t∈(0,`)

‖µ2(t)‖6/5.

Consider now the second term on the left-hand side of (2.34), that is,

‖∂tψ‖L2(0,`;(H 1
per)
∗)
= sup

ω

{∫ `

0
〈∂tψ,ω〉 dt : ‖ω‖

L2(0,`;H 1
per)

6 1
}
,

and observe that, by (1.3),∫ `

0
〈∂tψ,ω〉 dt =

∫
Ω×(0,`)

(u2φ2 − u1φ1) · ∇ω dx dt − ε
∫
Ω×(0,`)

∇(∆ψ) · ∇ω dx dt

+ α

∫
Ω×(0,`)

∇(F ′(φ1)− F
′(φ2)) · ∇ω dx dt =: R1 + R2 + R3.

Here we have

R1 6
∫
Ω×(0,`)

(|w| |φ1| + |u2| |ψ |)|∇ω| dx dt 6
∫ `

0
(‖w‖6‖φ1‖3 + ‖u2‖2‖ψ‖∞)‖∇ω‖2 dt

6 L4

{(∫ `

0
‖w‖2

W
1,2
div

dt
)1/2

+

(∫ `

0
‖ψ‖2

H 3
per

dt
)1/2}

,

where
L4 = c sup

t∈(0,`)
(‖φ1(t)‖H 1

per
+ ‖u2(t)‖2).

Similarly, we find

R2 6 ε

∫
Ω×(0,`)

|∇
3ψ | |∇ω| dx dt 6 cε

(∫ `

0
‖ψ‖2

H 3
per

dt
)1/2

.

Also, recalling (2.28), we have∫
Ω

∣∣∇(F ′(φ1)− F
′(φ2))

∣∣2 dx 6 CF (1+ ‖φ1‖
4
∞ + ‖φ2‖

4
∞)(‖∇φ1‖

2
2 + ‖∇φ2‖

2
2)‖ψ‖

2
∞

+ CF (1+ ‖φ1‖
6
6 + ‖φ2‖

6
6)‖∇ψ‖

2
∞,

so that

R3 6
∫ `

0
‖∇(F ′(φ1)− F

′(φ2))‖2‖∇ω‖2 dt 6 L5

(∫ `

0
‖ψ‖2

H 3
per

dt
)1/2

,

where

L5 = sup
t∈(0,`)

{CF (1+ ‖φ1(t)‖
2
H 1

per
+ ‖φ2(t)‖

2
H 1

per
)(‖φ1(t)‖H 2

per
+ ‖φ2(t)‖H 2

per
)

+ CF (1+ ‖φ1(t)‖
3/2
H 1

per
+ ‖φ2(t)‖

3/2
H 1

per
)}.
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We have thus proven (2.34) with

Λ := L1 + L2a + L2b + L3a + L3b + L4 + cε + L5. 2

3. Longtime behavior

In this section we investigate the longtime behavior of the dynamics of our system. First of all,
we prove a dissipative estimate (see Theorem 3.1). We then employ the short trajectory approach
(cf. [22, 24]) to establish the existence of global attractor (see Theorem 3.3). This will be a
simple consequence of the compactness result proven in Theorem 2.4 above. We also show that
the dynamics of trajectories has a smoothing property; consequently, there exists an exponential
attractor. Finally, we discuss how an upper bound on its fractal dimension depends on the physical
parameters of the system.

THEOREM 3.1 Let (2.1) and (2.2) hold. Then any weak solution (u, φ) satisfies the dissipative
estimate, for all t > 0,

d
dt
E[u, φ]+ c̃1κE[u, φ]+ c̃1

(
ν1
∗

k
‖∇u‖22+

ν2
∗

k
‖∇u‖pp +‖∇µ‖22

)
6

c̃2

kν1
∗

‖g‖2
−1,2+αεc̃3, (3.1)

where
κ := min{ν1

∗, ε},

and c̃i , i = 1, 2, are positive constants independent of the data, while c̃3 > 0 depends on φ.

Proof. Let (u, φ) be an arbitrary weak solution. Testing (1.1) with k−1u and (1.3) with µ yields

1
2

d
dt
E[u, φ]+ k−1

∫
Ω

τ (φ, e(u)) : e(u) dx + ‖∇µ‖22 6 k−1
|〈g,u〉|.

By (2.3) and Poincaré’s inequality, we find∫
Ω

τ (φ, e(u)) : e(u) dx > c1(ν
1
∗‖∇u‖22 + ν

2
∗‖∇u‖pp ).

On the other hand,

|〈g,u〉| 6 ‖g‖
−1,2‖∇u‖2 6

c1ν
1
∗

2
‖∇u‖22 +

1
2c1ν1

∗

‖g‖2
−1,2.

Altogether we thus obtain

d
dt
E[u, φ]+ c1

(
ν1
∗

k
‖∇u‖22 +

ν2
∗

k
‖∇u‖pp

)
+ ‖∇µ‖22 6

1
c1kν1

∗

‖g‖2
−1,2. (3.2)

Testing now (1.4) with φ − φ gives

〈µ, φ − φ〉 = ε‖∇φ‖22 + α

∫
Ω

F ′(φ)(φ − φ) dx. (3.3)
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Using Poincaré’s inequality we get

〈µ, φ − φ〉 = 〈µ− µ, φ − φ〉 6 ‖µ− µ‖2‖φ − φ‖2

6 c2‖∇µ‖2‖∇φ‖2 6
ε

2
‖∇φ‖22 +

c2
2

2ε
‖∇µ‖22. (3.4)

Moreover, we deduce from (2.1) that

c3

∫
Ω

F(φ) dx 6
∫
Ω

F ′(φ)(φ − φ) dx + c4 (3.5)

for some c3 ∈ (0, 1) and for some c4 > 0 depending on φ (see (2.8)). Finally, combining (3.3)–(3.5)
yields

c5ε

(
ε‖∇φ‖22 + 2α

∫
Ω

F(φ) dx
)

6 ‖∇µ‖22 + c6αε (3.6)

for some c5 > 0 and for some c6 > 0 depending on φ. Then, substituting into (3.2), one deduces
(3.1). 2

REMARK 3.2 Note that, in the case of simple fluids (more generally, for convex F(·) where c4
can be taken 0 in (3.5)), when there is no (nongradient) external force (i.e., g = 0), inequality (3.1)
implies that 0 is globally asymptotically stable. This still holds when ‖g‖2 is small enough (cf. [10,
Ch. II, Prop. 5.3] for the 2D Navier–Stokes equations), where 0 is replaced by the unique solution
to the corresponding stationary problem.

We now have all the ingredients to construct a dynamical system and prove that it has a global
attractor and an exponential attractor. We will also observe that the attractor’s dimension can be
estimated in a completely explicit way. We will only sketch the outline of such a computation, being
satisfied with the (nontrivial) observation that all the estimates grow at most polynomially with the
data. We recall that the standard method based on the estimate of the Lyapunov exponents cannot
be used in this case since the differentiability of the semigroup solution is not known (cf. [8]).

Recall that by data we mean the constants k, ε and α, occurring in (1.1)–(1.4); the viscosity
bounds ν∗, ν∗ and ν] (see (2.2)–(2.4)); the norm of the external force ‖g‖2 and a generic positive
constant CF related to the growth of the potential F . We also recall that, throughout the paper, we
have used c and ci to denote absolute (i.e., independent of the data) positive constants which may
change from line to line.

From now on we setN = 3 and (rescaling the space variable)Ω = (0, 1)3. Thus the embedding
constants are also absolute. As is well known, the embedding constants typically only depend on
the size and the shape of domain. They can blow up, however, close to critical exponents, as for
example withW 1,3

⊂ Lq ,N = 3 and q →∞. We avoid such situations in our paper. We also point
out that the following results can be reformulated for the case N = 2 with less restrictions.

We will now follow an abstract scheme of the “method of trajectories”, as presented in Section 2
of [24]. In particular, we need to verify the assumptions (A1–A10), which will imply the desired
results. For the reader’s convenience, the statement of (A1–A10) will be recalled, with the notation
slightly adapted to the present setting. We will also invoke some general abstract results from [11,
Ch. 2].

Let g ∈ L2
div and set

X := L2
div ×H

1
per, XM := {(v, ψ) ∈ L2

div ×H
1
per : |ψ̄ | 6 M}, (3.7)
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for some given M > 0. This is a complete metric space with respect to the metric induced by the
X-norm. Then, for any fixed τ > 0, we introduce the spaces

Xτ := L2(0, τ ;X), XMτ := L2(0, τ ;XM), (3.8)

YMτ := {(v, ψ) ∈ XMτ ∩ [Lp(0, τ ;W 1,p
div ))× L

2(0, τ ;H 3
per)] :

(vt , ψt ) ∈ Lp
′

(0, τ ; (W 1,p
div )

∗)× L2(0, τ ; (H 1
per)
∗)}, (3.9)

WM
τ :=

{
(v, ψ) ∈ XMτ ∩ [(L2(0, τ ;W 1,2

div ))× L
2(0, τ ;H 3

per)] :

(vt , ψt ) ∈ Lp
′

(0, τ ; (W 1,p
div )

∗)× L2(0, τ ; (H 1
per)
∗)}. (3.10)

We clearly have YMτ ↪→↪→ XMτ and WM
τ ↪→↪→ XMτ .

Recalling Theorem 2.4, Remark 2.5 and (2.11), we deduce that for an arbitrary initial
condition in XM and arbitrary T ∈ (0,∞), there exists at least one solution belonging to
C([0, T ];XMweak) ∩ Y

M
T . In other words, the assumption [24, (A1)] is satisfied. Moreover, by virtue

of Theorem 3.1, the set
BM0 = {(v, ψ) ∈ X

M : E[v, ψ] 6 R0}

is uniformly absorbing and positively invariant, provided that R0 > 0 is sufficiently large. This
means that the assumption [24, (A2)] is satisfied as well. Note that BM0 is a closed set in XM .

For any solution starting from BM0 , arguing as in the proof of Theorem 2.4, one deduces

sup
t∈[0,T ]

(‖u(t)‖22 + ‖φ(t)‖
2
H 1

per
)+

∫ T

0
(‖u‖p1,p + ‖φ‖

2
H 3

per
+ ‖µ‖2

H 1
per
) dt

6 Π1 = Π1(M)(T + 1). (3.11)

Here and in what follows, by Πk we denote an explicitly computable upper bound, depending
polynomially on the data, values of Πl for l < k and, possibly, on other quantities which will
be pointed out.

We now fix ` > 0 and we consider the set X` of `-trajectories, that is, of all weak solutions
(u, φ) given by Theorem 2.4 on the time interval [0, `] such that |φ̄(t)| 6 M for all t ∈ [0, `]. We
endow X` with the topology of X`. Of course, each trajectory makes sense pointwise because of
(2.11). Note, however, that X` is not a complete metric space.

For the sake of studying large time dynamics, we shall focus on the set

B0
` := {(u, φ) ∈ X` : (u(0), φ(0)) ∈ BM0 }, (3.12)

consisting of all trajectories starting from BM0 . Clearly, for each of such trajectories, there exists
τ ∈ (0, `/2) such that

‖u(τ )‖21,2 + ‖φ(τ)‖
2
H 2

per
6 2Π1(M)(1+ `−1) =: Π2.

We are ready to apply Theorem 2.6. The key observation, however, is that the functions H1 and H3
(which only depend on the norms being controlled in (3.11)) are integrable with some power σ > 1,
depending on p > 11/5 (cf. (2.23)). Hence, by taking ` small enough, namely ` 6 Π3, we ensure
that ∫ 2`

0
(H1 +H3) dt 6 1 (3.13)
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for any solution taking values in BM0 . Therefore, when applying Gronwall’s lemma to (2.21)
and (2.24), the exponential terms are uniformly bounded by exp(1). Eliminating thus possible
exponential dependence on the data, we obtain

sup
t∈[τ,τ+2`]

(‖u(t)‖21,2 + ‖φ(t)‖
2
H 2

per
)+

∫ τ+2`

τ

(‖u‖p1,3p + ‖u‖
2
2,2 + ‖φ‖

2
H 4

per
) dt 6 Π4.

By Theorem 2.8, this regularity also entails unique continuation of the trajectory after t > τ , more
precisely, for any (v, ψ) ∈ B0

` and any T > `, there exists only one solution on [0, T ] such that
(u, φ)|[0,`] = (v, ψ). This just means that [24, (A3)] holds.

Consequently, one can introduce a semigroup Lt : B0
` → B0

` by setting

{Lt (v, ψ)}(s) := (u(t + s), φ(t + s)), s ∈ [0, `].

We proceed to show that Lt is Lipschitz continuous, which is the assumption [24, (A4)]. Indeed, if
(w, ψ) is a difference of two solutions starting from BM0 , then due to Corollary 2.9 and the above
higher regularity on [τ, 2`], we deduce that

‖w(s + `/2)‖22 + ‖ψ(s + `/2)‖
2
H 1

per
6 λ1(‖w(s)‖22 + ‖ψ(s)‖

2
H 1

per
), ∀s ∈ (`/2, `).

Integrating over s implies that Lt is even uniformly Lipschitz continuous on B0
` with respect to

t ∈ [0, T ].
Furthermore, we claim that

B0
`

X`
= B0

` . (3.14)

Since B0
` is positively invariant with respect to the (continuous) operators Lt , (3.14) implies that

LtB0
`

X`
⊂ B0

` , and consequently [24, (A5)] is satisfied. Setting B1
` = Lτ (B0

`)
X`

for some τ ∈
[`/2, `] we obtain a compact invariant absorbing set.

Let us verify that (3.14) holds. Let (vn, ψn) ∈ B0
` , and let (vn, ψn) → (v, ψ) strongly in X`.

Extracting a subsequence, we can assume that (vn(t), ψn(t)) → (v(t), ψ(t)) for almost any t ,
strongly inX. It follows by Theorem 2.4 that (v, ψ) is a weak solution, at least on (τ, `] for arbitrary
τ > 0. Observe, furthermore, that (vn, ψn) and hence (v, ψ) are bounded in the spaces (2.6–2.10),
with T = `, and thus (v, ψ) is clearly a weak solution on [0, `]. Finally, from the continuity of
(v, ψ) and the closedness and positive invariance of BM0 , one concludes that (v(0), ψ(0)) ∈ BM0 .

Now, the assumptions (A1–A5) imply that the dynamical system of trajectories (X`, Lt ) has a
global attractor A` (see [24, Theorem 2.1]).

We will now deal with the attractor’s fractal dimension. Due to Corollary 2.9 and Lemma 2.10,
Lτ : X` → WM

` is Lipschitz continuous on B1
` , which is the assumption [24, (A6)]. Note that WM

`

is compactly embedded in X`; in other words, Lτ has the so-called smoothing property. Moreover,
since ` and τ were chosen small enough, we control the Lipschitz constant of Lτ , i.e.,

L := Lip(Lτ |B1
`;X

M
` ,W

M
` ) 6 Π5.

It follows that the global attractor A` has finite fractal dimension in XM` . See [24, Theorem 2.2].
More precisely, we have an explicit estimate (cf. [11, Theorem 2.18], for example)

dim
XM`
f (A`) 6 logK/log 2,
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where
K := NXM` (BWM

`
(0; 1), 1/4L).

Here K denotes the minimal number of balls in XM` that are needed to cover a unit ball in WM
` .

Finally, the number K can also be explicitly calculated (see [11, Appendix]) so that

logK 6 Π6(L).

To bring the results back to the phase space XM , we now consider the mapping e : X` → XM ,
(u, φ) 7→ (u(`), φ(`)). Recalling Corollary 2.9 once more and arguing as in the proof of continuity
of Lt above (cf. also [24, Lemma 2.1(ii)]), we deduce that e is Lipschitz continuous on B0

` . This
tells us that the assumption [24, (A8)] is fulfilled. Therefore, invoking [24, Theorems 2.3, 2.4] we
deduce that

A := e(A`)

is the global attractor of the dynamical system (e(B1
`), St ), where St is the solution operator defined

by St (u0, φ0) := (u(t), φ(t)) for all t > 0. Moreover, we have the estimate

dimXM

f (A) 6 dim
XM`
f (A`).

Finally, we address the problem of an exponential attractor. The smoothing property, i.e., the
Lipschitz continuity Lτ on B1

` with respect to XM` andWM
` , implies the existence of an exponential

attractor E∗` for the discrete dynamical system (B1
` , Lnτ ); moreover, the dimension of E∗` admits the

same upper bound as the global attractor A`. See [11, Proposition 2.26]. To extend the results to
the full semigroup Lt , we need to estimate the modulus of continuity of Ltχ both with respect to t
and χ .

We have already observed above that Lt : B1
` → B1

` is Lipschitz continuous, uniformly
with respect to t ∈ [0, τ ]. Thus [24, (A9)] holds true. Furthermore, if (u, φ) is the continuation
of the trajectory from B1

` , it follows from the regularity of Theorem 2.6 and the equation that
(∂tu, ∂tφ) is bounded in Lp

′

(0, τ + `; (W 1,p
div )
∗) × L2(0, τ + `;L2). This entails that t 7→ Ltχ

is Hölder continuous with the target space Lp
′

(0, `; (W 1,p
div )

∗)×L2(0, `;L2) (see, e.g., [24, Lemma
2.2]). Invoking finally the pointwise boundedness of trajectories in W 2,2

div × H
2
per and a suitable

interpolation, we conclude that t 7→ Ltχ is Hölder continuous into the desired target space XM` .
Thus the assumption [24, (A10)] holds. This, in turn, gives exponential attractors for the dynamical
systems (X`, Lt ) and eventually, (e(B1

`), St ); see [24, Theorems 2.5, 2.6].
These attractors admit the same (up to multiplying by an absolute constant) explicit estimate of

fractal dimension as was the case for the global attractor. Summing up, we have proven the following

THEOREM 3.3 Let g ∈ L2
div. The dynamical system generated by (1.1)–(1.4) on XM has an

exponential attractor and the global attractor of finite fractal dimension. Moreover, if p > 11/5, then
the dimension can be estimated by an explicitly computable constant which depends polynomially
on the data.

REMARK 3.4 Recalling (2.23) and (3.13), we deduce that the length of the trajectory tends to 0 as
p approaches the critical value p = 11/5. Therefore, in this case, we are not able to estimate the
dimension in such a way that the dependence on the data is of polynomial type.
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REMARK 3.5 We recall that the global attractorA attracts the dynamics originating from the whole
space XM in the following sense (see [24, Rem. 2.1]): for any bounded set B ⊂ XM , indicating
by Bt the set of all values of all solutions to (1.1)–(1.4) emanating from B at time t , we have
distX(Bt ,A)→ 0 as t goes to∞.
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REFERENCES

1. ABELS, H. On a diffuse interface model for two-phase flows of viscous, incompressible fluids with
matched densities. Arch. Ration. Mech. Anal. 194 (2009), 463-506. Zbl pre05640833 MR 2563636

2. ABELS, H. Longtime behavior of solutions of a Navier–Stokes/Cahn–Hilliard system. In: Nonlocal and
Abstract Parabolic Equations and their Applications (Będlewo, 2207), Banach Center Publ. 86, Inst.
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