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Abstract 
This paper deals with some design aspects of the control loops in a droop-controlled VSI connected to 
other inverters of greater ratings or to a strong grid, which sets the frequency. The design of a damping 
resistor in series with the AC filter capacitor is discussed and the impact of strong feedback between 
the output current and the capacitor voltage is investigated. Moreover an analysis of the derivative 
droop coefficients is carried out through a simplified equivalent circuit. 

Introduction 
Microgrids with local control of voltage and frequency through inverter in grid supporting mode are 
becoming more and more important. Several topologies have been presented in literature [1]: 
essentially, they can involve two or more inverters either in parallel on the same common bar or 
connected through R-L lines and feeding close and remote loads. In spite of such a variety of 
topologies, some control issues of inverters forming a microgrid and operating in supporting grid 
mode can be studied by considering the basic structure in Fig. 1.  
With a strong grid, a resistor Rd is connected in series to the capacitor [2], to avoid parallel resonance. 
The inductor Lt- Rt represents the adaptive transformer and the line. 
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Fig. 1. Scheme of the analyzed electrical system. In case of a strong grid, the resistance Rd is inserted 
to avoid parallel resonance.  
 
A method to share the real and reactive powers between the sources consists in the droop control: 
derivative terms can be added to improve the stability [3]. Nevertheless, the design of the 0v  voltage 
controller is not obvious, especially when the inverter is connected either to another inverter of much 
greater rating, which is operating in a quasi no – load condition, or to a strong grid in a grid supporting 
mode. In such conditions, the natural damping in the physical system is very low and a carefully 
designed damping resistor series connected to the capacitor is required to avoid overvoltage 
oscillations and damage of the inverter. Moreover, as it will be shown, the strong grid introduces a 
quite significant feedback between the current 0i  and the terminal voltage 0v  in the small signal loop 



model. As the feed-forward terms cannot totally compensate the output current 0i , this effect should 
be accounted for in the voltage controller design. These topics are addressed in this paper, which 
analyzes the design of the damping resistor and the effect of the strong grid on the stability of the 
voltage loop. Finally, the design of the derivative terms of the droop control will be examined. 
The system in Fig. 1 can be represented by the following equations, expressed in per unit (p.u.) in a dq 
frame with the d axis aligned with the reference voltage refv0 , where p=d/dt is the time derivative and 
ωb the reference angular frequency, equal to the rated one ωn: 
LCL filter equations 

 
( ) iLjipLiRvv fbff ω+ω++= 0  (1) 

 
( ) ( )( ) ( )( )0000 1 ipipCRiiCRjvCjvpC bfdfdfbf −ω+−ω+=ω+ω  (2) 
 

( ) 0000 iLjipLiReVv tbtt
j

g ω+ω++= δ  (3) 
 
Droop equations with the linear m and n and derivative md and nd parameters. The average real P and 
reactive Q powers are obtained by a first order filter, with time constant Tp. ω* and V* are the no-load 
values: 

 
( )[ ] ( )( ) ( )pqqdddd TpivivpmmPpmm +++−ω=+−ω=ω 10000

**  (4) 
 

( )[ ] ( )( ) ( )pqddqdd
ref
od pTivivpnnVQpnnVv +−+−=+−= 10000

**  (5) 
 

Current and voltage controllers, including some compensating terms through the gains Hi and Hv  
 

( )( ) iLjviipKKv f
ref

iIpI
ref ω++−+= 0  (6) 

 
( )( ) ( )0000 vCjHiHvvpKKi fvi

ref
iVpV

ref ω++−+=  (7) 
 
Power filters and load angle δ (ωg is the grid frequency) 

 
( )inv

ref pTvv += 1  (8) 
 

( )ω−ωω=δ gbp  (9) 
 

A block diagram of the equation system is reported in Fig. 2, where the Laplace variable s replaces the 
operator p. Two time constants are introduced: ( )fbff RLT ω= , ( )tbtt RLT ω= . 
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Fig. 2. Block diagram of the whole system, in the dq frame.  



A design criterion for the LCL filter is reported in [2] and is based on the limitation of the series 
voltage drop (here 6%) and on the capacitive reactive power due to the capacitors (5%). According to 
this, the main data of the system under study are reported in Table I. 
 

TABLE I: System Parameters 
Rated Vn [V], In [A], An [kVA], ωn [rad/s] 200; 7; 2.4; 2 π 50 

Inverter max real Pmax and reactive Qmax power An;   0.6 An 
Rf, Lf [p.u.] 0.0022; 0.045 
Rd,Cf [p.u.] 0.61; 0.052 
Rt; Lt [p.u.] 0.014; 0.016 

Droop coefficients m, n [p.u.]  0.01; 0.017 
Grid ang. freq. ωg , voltage V g [p.u.] 1.000; 1.00 

Current loop ωcI, voltage loop ωcV cross – over 
frequency [rad/s]  

2000 ;  200 
 

Time constant Tp droop power filter [s] 0.10 
 

Choice of the damping resistor Rd. 
In case of a strong grid (parameters Lt , Rt small), a parallel resonance between the grid and the filter 
capacitor may arise, that can be avoided through a resistance Rd in series to the capacitor Cf  [2]. By 
some manipulations on the LCL filter equations (2) and (3), the following relation can be obtained: 

 
( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] gvsjasaisjasavsjasa 5432010 +++=+ ;  (10) 

 
Neglecting the cross–coupling terms (indicated by the imaginary j), the important terms are: 

 
( ) ( ) ( ) ( ) ( )ftbfdtbft CLsCRRsCLsa 22

0 1 ω−+ω++ω= ;  (11) 
 

( ) ( ) ( )( ) ( )ftdtbfdttbftd CLRRsCRRLsCLRsa 22
2 ω−+ω++ω= ; (12) 

 
( ) ( )( )bfd sCRsa ω+=14 ; (13) 

 
Assume that no compensating term is introduced into the voltage loop, i.e. Hv = Hi = 0 and neglect the 
droop feedback. Thus, the voltage loop in Fig. 2 changes as in Fig. 3, where the internal current loop is 
represented by its closed loop transfer function FI(s).  
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Fig. 3. Voltage loop in case of no compensation: Hv = Hi = 0. FI(s) is the current closed loop transfer 
function. 
 
Let us analyze the term a2(s)/a0(s): some remarks follow for the design of the resistance Rd . First, the 
damping factor of the denominator should be high: 

 



( )
( )

( )
ft

ftd

ftft

ftd
d

CL

CRR

CLCL

CRR

212 2

+
≈

ω−

+
=ξ  (14) 

 
Assuming ξd > ξd

*  yields:  
 

tdftd RCLR −ξ> *2  (15) 

 
where ξd

*   is the desired damping threshold  (e.g.: ξd
* > 0.5  ⇒ Rd > 0.54 p.u.).  

Another limitation derives from the numerator a2(s), in order to avoid a zero in the right half plane, 
that may have negative consequences on the phase margin of the voltage loop. Thus, from the 
Descartes’ rule on polynomials, the coefficients of a2(s) must have the same sign: 

 

( ) 02 >ω− ftdt CLRR   ⇒  
ft

t
d

CL
R

R
2ω

<  (16) 

(e.g.: ω=1 p.u.; Rd < 16.8 p.u.)  

Effect of the strong grid on the voltage controller design 
The design of the current controller presents no difficulties and can be carried out according to the 
usual rules. In order to design the voltage controller keeping its output excursion bounded, two 
compensating terms can be added to the voltage loop: 0iH i  and 0vCjH fv ω  (Fig. 2). Additionally, it 
is useful to introduce an approximation. The design of the resistance Rd implies that even at high 
frequency the voltage drop across Rd is less than the voltage 0v  [2]: ( ) 00 viiRd <<− ; then: 

 
( ) ( ) 00 vCjiiRCj fdf ω<<−ω  . (17) 
 

Equation (2) simplifies and the transfer function between current i  and voltage 0v  is reported in the 
block diagram of Fig. 4 in this form: 

 
( ) ( )( )000 1 iiCpRvCjvpC bfdfbf −ω+=ω+ω  . (18) 
 

Because of the low value of the capacitance Cf  (in the considered case Cf ≈0.052 p.u.), the 
compensating term 0vCjH fv ω  can be neglected (it corresponds to Hv=0). This means that the cross–
coupling between d- and q-axis is very weak.  
On the other hand, the coefficient Hi  is very important. It cannot completely compensate the 
“disturbance” 0i−  in the system, because Hi is just a pure gain and, moreover, the closed loop transfer 
function FI(s) of the current loop is not perfectly known. Thus if the grid is strong, the feedback G2(s) 
must be taken into account in the design of the voltage controller, even if the feed-forward term 0iH i  
is introduced. Some steps are necessary to pass from the block diagram in Fig. 2 to a more useful 
diagram as in Fig. 4-c: they are represented in Fig. 4-a and 4-b . Here FI(s) is approximated by a first 
order system: 

 
( ) ( ) ( ) ( ) ( ) 11 11 −− +μ=ω+μ≈= cIIcII

ref
I TsssisisF  (19) 

 
The feedback becomes (Fig. 4-c): 

 

( ) ( )( )
( )( )tcI

IicI

t

Ii
a sTTs

HTs
R
HsH

++
μ−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ μ−
≈

11
111  (20) 



Since μI is not precisely known (but μI ≈1), Hi must be chosen less than one with a certain margin, to 
avoid a positive feedback that takes to instability. A low value of the line resistance Rt implies a high 
value of the gain, even if Hi μI ≈1. Thus, the feedback Ha(s) (20) cannot be neglected in the design of 
the voltage controller. Fig. 5 shows the transfer function  Fa(s) = Ga(s) / ( 1+ Ga(s) Ha(s) ) as a function 
of Hi. It can be seen that, even when Hi  approaches one, the feedback Ha(s) has a significant impact 
on Fa(s) and must be taken into account in the design of the voltage control. 
 

refv0
refi

PIv 

− + 

0vCjH fv ω

( )sFI
i+ –

( )bfd

f

sCR
vCj

ω+

ω

1
0

( )sG a
0v –

0iLjv tg ω+

( )sG 2

0i–

( )sFH Ii

( )sG 20i

0i

(a) 

 
 

refv0
refi

PIv 

− + 

0vCjH fv ω

( )sFI
i+ –

( )bfd

f

sCR
vCj

ω+

ω

1
0

( )sG a
0v –

0iLjv tg ω+

( )sG 2

0i–

( )sG 2

( )sFH Ii−1

0iLjv tg ω+

(b) 

( )[ ] ( )sGsFH Ii 21 −
 

 

 

refv0

loopcurrent

PIv 

− + 

–

( )bfd

f

sCR
vCj

ω+

ω

1
0

( )
bf

bfd

Cs
sCR
ω

ω+1 0v

( )( )
( )tt

Ii
sTR

sFH
+

−
1

1

–
( )sGa

( )sFI

( )sH a( )sFa

refi i

( )( )
( )tt

Ii
sTR

sFH
+

−
1

1

0iLjv tg ω+

0vCjH fv ω

+ –

0iLjv tg ω+

0i

( )tt sTR +1
1

(c) 

 
Fig.4  Deduction of a scheme of the voltage loop for the design purpose. (a), (b): preliminary  
manipulations starting from Fig. 2. (c): final scheme. The compensating term 0iHi  has been inserted 
and taken after FI(s). In case of a strong grid (Rt, Lt small), the feedback of the line current 0i  must be 
considered, because it cannot be thoroughly compensated by 0iHi . 
 
 
 
 
 



 
Fig. 5. Transfer functions Fa(jωs) of the process to be taken into account for the design of the voltage 
regulator. Refer to Fig. 4. The curves differ for the parameter Hi . 
 
The compensating term 0iH i can reduce the excursion of the voltage controller, but it has no effect on 
the actuator, that is on the rating of the inverter.  

Influence of the droop parameters on the stability 
The system shows the dominant eigenvalues with a small damping factor and sometimes in the right 
half plane. In order to preserve the stability of the system, the derivative terms md and nd are often 
inserted in the droop equations (3), (4) [3]. A method to design them and to analytically study their 
effect is here reported.  
The starting point is the deduction of a reduced system representative of the dominant poles. Assume 
ideal current and voltage loops with an infinite bandwidth ( refii = , refvv 00 = ). The equations which 
define the system are now: (3), (4)-(5), and (9). It is possible to linearize them around a stable 
condition (indicated by capital letters or superscript 0), where the vector 0v  is on the d-axis: V0d ≈1 
p.u.; V0q = 0. Moreover δ0<0, I0d >0; I0q <0 since real power and inductive power flow from the 
inverter towards the grid. Then, the linearization gives: 

 
( ) ( )ωΔ+Δω+Δ+=δΔ−Δ δ

00
0

00 1
0

IiLjipTRejVv ttt
j

g  (21) 
 

( ) ( )qqdddd
p

dm IviVIv
pT

pm
000000

*

1
1

Δ+Δ+Δ
+

τ+
−ωΔ=ωΔ   (22) 

 
( ) ( )qdqddq

p

dnref
od iVIvIv

pT
pnVv 000000

*

1
1

Δ−Δ−Δ
+

τ+
−Δ=Δ  (23) 

 
( ) ωΔω−=δΔ bp  (24) 

 
where ( )tbtt RLT ω= , mmddm =τ , nnddn =τ . These equations are represented by a block diagram of 
transfer functions (Fig. 6), where the approximations Δv0q ≈Δv0q

ref =0 and Δv0d≈Δv0d
ref have been used. 

The starting diagram in Fig. 2 consists in a Multiple Input – Multiple Output (MIMO) system, with 
coupling terms between the axes d-q. This new diagram in Fig. 6 is instead a Single Input – Single 
Output (SISO) block system. Some approximations and manipulations can be adopted to simplify 
(21)-(24) and obtain the final block diagram in Fig. 7 which allows to analyze the stability conditions 
and to design the parameters md and nd. In Fig. 7, the two subsystems F5(s) and F6(s) are highlighted, 
and three independent SISO closed loops are derived: they link the main quantities, such as Δεv0q to 
Δvy, Δvy to Δω and Δv0q to Δω. 
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Fig. 6. Complete block diagram of the linearized system, assuming current loops with an infinite 
bandwidth. This is a Single Input – Single Output (SISO) block system. 
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Fig. 7. New arrangement of the block diagram of Fig. 6. 
 
This equivalent circuit is the starting point to analytically find the stability conditions of the system. It 
will be used hereafter to analyse the influence of the derivative droop components on the stability.  

Design of the Droop Derivative Coefficients md  and nd. 
The block diagram in Fig. 7 represents the simplified model of the system in load operation. Some 

meaningful loops can be recognized: their analysis allows to discuss the effect of the droop parameters 
on the performance of the system. The first loop is the subsystem called F5(s); its open loop transfer 
function is: 

 

( ) ( ) ( ) ( )
( )( ) ( )( )

( )( )pt

dm

t

bgd
d sTsTs

ss
R

mVV
VsHsGsGsL

++
τ−τ+δ−ω

==
11
11sin 1

0
0

04425  (25) 

( ) ( )( )0
01 sin δω=τ bgqt VIL  (26) 

 
Since δ0<0, the gain is positive and greater than one. The zero τ1

–1 is usually at high frequencies and 
can be neglected in this low frequency analysis. Because δ0 usually has a small value, the gain of 
L5(jωs) is low; thus the system is stable for all (reasonable) τdm values (dashed-dot line in Fig. 8) . 
 
A second loop is the subsystem F6(s): its feedback is depicted with a dotted line. The open loop 
transfer function is: 

 



( ) ( ) ( ) ( ) ( )[ ]
( )( )2

3
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( ) ( ) ( )0

0
0

03 ω+ω+τ=ττ tdptdnddnbG LnVTLnV  (28) 
 

If τdn < Tp then τdn < τG3b < Tp, while if τdn>Tp then Tp < τG3b < τdn. Thus, this loop suggests that τdn 
must be lower than Tp: in fact, when τdn approaches Tp, at the cut off frequency the slope equals –2 and 
reduces the phase margin (see Fig. 9). This loop suggests that τdn has a small influence on stability. 
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Fig. 8. Bode diagram of the open loop transfer 
function L5(s). The case where the gain of 
L5(s) is low is reported. 
 

Fig. 9. Bode diagram of the open loop transfer 
function L6(s) when nd =0 (τdn =0, continuous line) 
and nd≠0 (τdn ≠0 dashed and dashed-dot lines). In the 
third case (τdn →Tp) a less stable system derives. 
 

 
In order to analyse the external loop in Fig. 7, the transfer functions F5(s) between Δvy and Δω as well 
as F6(s) between Δεv0q and Δvy  must be calculated. In fact, the open loop transfer function is: 

 
( ) ( ) ( ) ( )sHsFsFsL 7657 =  (29) 

 
An approximated expression can be found valid in the range Tp

–1 < ωs < Tt
–1: 
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The approximated open loop transfer function L7ap(s) (30) and its bode diagram in Fig. 10 show the 
importance of the parameter τdm in order to get the stability: τdm should be chosen less than Tp. 
Additionally, an increase of the gain of L7ap(s) may lead to instability. Such a gain depends on the 
voltage squared V0d (V0d ≈ Vg), on the droop coefficient m and is inversely proportional to the line 
resistance Rt. 
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Fig. 10. Bode diagram of the transfer function L7ap(s). Continuous line: md=0, slope –2; dashed line 
md≠0, slope –1. The second case provides a stable system. 

 



Numerical validation. 
Two types of validation have been carried out. The former deals with the stability analysis of the 
external loop, in order to check the importance of the droop derivative parameters md and nd. The latter 
deals with the design of the voltage controllers. 
 
Through the complete system of equations (1) – (9), the dominant eigenvalues can be found together 
with their damping factor. They can be compared with the same parameters obtained by the analysis of 
the three open loop transfer functions L5(s), L6(s), L7ap(s), above all from the last. It is well known that 
for a second order system the cut – off frequency is close to the dominant poles and that the relation 
between the damping factor ξd ap and the phase margin ϕm is ξd ap =sin(ϕm/2). Some results as for 
L7ap(s) are reported in Table II, for the considered experimental system with: Tp

–1 = 10rad/s; Tt
–1 = 

269rad/s, μL7ap = 146p.u. = 43.3dB (gain of L7ap). 
In case 1 with τdm = τdn = 0, the results obtained by the complete and the simplified models coincide 
because both of them show lack of stability; a phase margin ϕm = 3.5 deg means instability. 
An increase of τdm implies a stable system (case 2), while a τdn different from zero has a negligible 
effect (case 3). 
The values of md and nd depend on the actual value of m and n respectively and on the main time 
constants of the system, as Tp and Tt. 
 
A second check is carried out as for the design of the voltage loop controller. In fact, if we take into 
account the feedback Ha(s) in Fig. 4, the parameters of the voltage controller are (data in Table I): 
KpV = 1.47 p.u.  KiV = 596 p.u./s 
If we do not take Ha(s) into account, the same parameters are: 
KpV = 0.025 p.u.  KiV = 1.47 p.u./s 
which imply a complete different behaviour when they are implemented into the real system. 
 
Figs. 11 show the results from simulation after the connection of the droop controlled inverter. The 
reference v0dref  and the actual v0d voltages are shown in two cases: the voltage controller is designed 
taking and not taking into account the feedback Ha(s) in Fig. 4c, respectively. In the first case the 
system is even unstable. 
 
TABLE II Dominant poles p1,2 and damping coefficient ξd from the complete model (1)-
(9) and cut off frequency ωc and phase margin ϕm from the reduced model L7ap(s), as a 

function of the droop derivative time constants (τdm, τ dn); Vg=1.0 p.u.; V* =1.02 p.u. ≈ Vg; 
ω*≈1.009 p.u. ; I0d ≈0.94; I0q≈-0.10. 

 
   Complete model  

(eigenvalue analysis) 
Reduced model (simplified  

analysis) 
case 

p

dm
T
τ

 
p

dn
T
τ

 
p1,2 

[rad/s] 
ξd 

[%] 
ωc 

[rad/s] 
ϕm 

[deg] 
ξd ap 

[%] 

1 0 0 1.9±j34 
unstable 

-5.6 34 

unstable 
3.5 

 
3 

 
2 0.4 0 -44±j40 74 51 

 
60 50 

 
3 0.4 0.4 -50±j17 95 56 

 
63 
 

52 
 

 

Conclusion 
This paper has analyzed some design aspects of the control loops in a microgrid with droop-controlled 
VSIs, especially when the line impedance is very small and stability problems arise. The design of a 



damping resistor in series with capacitor, necessary to avoid parallel resonance, has been studied. The 
impact of the strong feedback between the output current and the capacitor voltage has been analyzed: 
when such an effect is not taken into account in the design of the voltage controller, the system may be 
unstable. Additionally, the derivative droop coefficients have been designed starting from a simplified 
equivalent system in a dynamical operating condition. 
 

Fig. 11. Actual and reference voltages v0d and v0ref after the insertion of the droop control.  Left: 
voltage controller designed without taking into account the feedback Ha(s) in Fig. 4c. Right: voltage 
controller designed taking into account the feedback Ha(s) in Fig. 4c. 
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