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Abstract

The paper deals with the design of suboptimal
receivers for data transmission over frequency se-
lective channels. The complexity of maximum
likelihood sequence estimation turns out be ex-
ponential in the channel memory. Hence, when
dealing with channels with long memory, subop-
timal reception must be considered. Among sub-
optimal receivers, the prefiltered Viterbi detector
plays an important role. This receiver consists of
a prefilter followed by a Viterbi processor with a
number of states lower than that needed for max-
imum likelihood sequence estimation. Often the
parameters of the receiver are optimized accord-
ing to the minimum mean square error criterion.
Our contribution is a stochastic approximation
algorithm that optimizes the parameters of the
receiver according to a measure of error proba-
bility. Simulation results show that our proposed
design gives substantial benefits at moderate to
high signal to noise ratio.

1 Introduction

The increasing demand for wideband communi-
cation services has lead to the development of
broadband transmission systems. In the mobile
scenario, radio systems are often subject to prop-
agation over multipath channels. The effect of
multipath is severe in broadband systems, where
the symbol repetition interval may be shorter
than the delay between the paths. In this case,
one or more deep notches affect the spectrum
of the received signal. In modern radio systems
two methods are adopted to make the trans-
mission robust against multipath: multicarrier

modulation or equalization of the received sig-
nal. Multicarrier modulation is based on the
idea of dividing the wideband signal in several
narrowband signals, the narrowband signal be-
ing less sensitive to multipath. Equalization at-
tempts to recover the transmitted data from the
received waveform by suitable processing of the
received signal. The concern of the present pa-
per is a suboptimal technique for signal equal-
ization. The receiver that guarantees minimum
Bit Error Rate (BER) is the maximum a pos-
teriori probability receiver. However, one often
renounces to this receiver, because it is too com-
plex. A simpler receiver is obtained if the prob-
ability of sequence error is considered. This ap-
proach leads to Maximum Likelihood Sequence
Estimation (MLSE) [1, 2]. Unfortunately, even
MLSE is often too complex. Actually, the MLSE
receiver is realized by a Viterbi algorithm with a
number of states that is exponential in the chan-
nel memory. Hence, when dealing with channels
with long memory, one is forced to consider sub-
optimal receivers. Several architectures of sub-
optimal receivers have been proposed and stud-
ied in the huge literature of channel equalization.
The more common and simple is the FIR filter
followed by a threshold detector. Better perfor-
mance can be achieved if memory is introduced
in the detector. One popular example is the de-
cision feedback equalizer. A second example is
the prefiltered Viterbi detector, which is the ob-
ject of our investigation. The idea behind the
prefiltered Viterbi detector is to introduce a pre-
filter, which takes the form of a FIR filter, be-
fore the conventional Viterbi detector. The pre-
filter should be designed in such a way that the
prefiltered impulse response has shorter memory



than the impulse response of the channel. The
signal is then processed by a Viterbi algorithm
with fixed complexity. The receiver is subopti-
mal because the noise present in the prefiltered
signal can be colored, and noise coloration is
not taken into account in the metric used in the
conventional Viterbi algorithm, and because the
memory of the prefiltered impulse response can
still be too long. Two sets of parameters are
designed in the prefiltered Viterbi detector: the
taps of the FIR prefilter and the Desired Impulse
Response (DIR) used in the computation of the
metrics for the Viterbi algorithm. In the design
of these parameters one has to optimize the com-
promise between the detrimental effects of excess
of memory in the prefiltered impulse response
and noise coloration. The Mean Square Error
(MSE) has received in the past large attention
as a design criterion [5, 7, 8, 9, 11]. The idea
is to adjust receiver’ s parameters in such a way
that the MSE between the output of the prefilter
and the transmitted sequence filtered by the DIR
is minimized. Note that the MSE criterion does
not guarantee the best error performance. Hence
there is room to improve the design method. To
this aim, in the following section we introduce a
new design criterion based on a measure of error
probability that we call Last Error Event (LEE)
probability, and a stochastic gradient algorithm
that optimizes receiver’ s parameters according
to this criterion. Our idea is that, by optimizing
the probability of LEE, better BER performance
is obtained with respect to the MSE receiver. In
section 3 simulation results are presented. As ex-
pected, our results show that the BER of the re-
ceiver based on the LEE is better than the BER
of the classical receiver based on the MSE. From
our simulations it turns out that substantial im-
provement can be obtained for a receiver operat-
ing on a severely distorted signal at moderate to
high SNR. In section 4 conclusions are drawn.

2 Optimization based on the
last error event

We consider the model of a binary uncoded
data sequence transmitted over a baseband linear
channel and corrupted by additive white Gaus-
sian noise. The common model of a baud-spaced
FIR filter is adopted for the linear system, hence
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Figure 1: Channel and receiver block diagram.

the observed signal is
x=a®q+w, (1)

where a = (dg,d1,...,4;) is the transmitted
sequence, ® indicates the discrete convolution,
q = (qo,q1,---,q,) is the impulse response of the
FIR channel, and w is the row vector contain-
ing [ + v + 1 samples of white Gaussian noise.
Among reduced complexity receivers, we exam-
ine the prefiltered Viterbi detector. It is derived
from the MLSE receiver, and it is based on the
idea of shortening the impulse response q to a de-
sired impulse response by a prefilter. The block
diagram of the system is shown in figure 1, where
d = (do,dq,---,d,), p < v, is the DIR, and
e = (eg, €1, -, €,) is the prefilter. Lety =x®e
be the output of the prefilter, and consider a
truncated version of y made by [ + p 4+ 1 sam-
ples as yp = (YD, Y41+ *» YD +i4n), Where D is
the delay between the prefiltered signal sequence
and the data sequence. The receiver computes

m(a,yp) = (yp—a@d)(yp—and), (2)

and decides in favour of the sequence that has
minimum metric. Since the time spanning of the
DIR is u+1, the Viterbi algorithm has 2# states.
The choice of e, d, and D is up to the designer.
Often, the Mean Square Error

1
MSE = lim -——(yp-a@d)yp-ac d)’,
(3)

is adopted as a design criterion. In [5, 8] the
DIR is fixed, and the prefilter is optimized for
minimum MSE. In [7, 9, 11] it is proposed to op-
timize both the DIR and the prefilter for mini-
mum MSE. To discard the trivial solution d = 0,
e = 0, it is proposed in [9] to constrain the en-
ergy of the DIR. The receiver of [7, 11] is similar
to [9], but the constraint is imposed by fixing
one of the samples of the DIR to 1. It is worth
noting that, for u = 0, the MSE criterion leads
to the classical minimum MSE linear equalizer
followed by an instantaneous threshold detector.
Usually, the delay D is optimized by repeated tri-
als. The main weakness of the MSE criterion is



Desinences of the competing paths

Figure 2: Desinences of a and a’.

that it does not guarantee low error probability.
Hence we propose a new design criterion based
on the Last Error Event (LEE). The LEE is sim-
ilar to the First Error Event (FEE) proposed in
[1] as a measure of performance of the sequence
detector. As the FEE, the LEE is a conditional
event. We introduce the LEE because the con-
ditions for the LEE are simpler to check than
the conditions for the FEE, leading to a simpler
optimization algorithm. Roughly speaking, the
condition for the LEE at time j in the trellis is
that the desinence of the transmitted sequence
appears among the survivors at time j. In figure
2, the desinences of a and of a competing path
a’ are illustrated. More precisely, the conditions
for the LEE at time j are:

e the two competitors that merge in the state
visited by a at time j diverge from some state
visited, say at time 7 — k, by a;

e one of the two competitors is the desinence

of a, that is (dj—k—;m ki1, fl]‘_l).
Given the conditions, the LEE occurs if
o the desinence of a loses the competition.

Note that when u = 0 the trellis has only one
state and only £ = 1 is allowed. In this case the
LEE is the bit error event, and P(LFEF) is the
BER. We cannot find a closed form for the pre-
filter and the DIR that minimize the probability
of LEE. Therefore we resort to a stochastic ap-
proximation technique, based on the difference
between the metric of the desinence of the trans-
mitted sequence and the metric of the competitor
at time j:
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Figure 3: Representation of the hard and the
smooth estimate.
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where (a;—k—p,?a;—k—p,—l—l’ .. -,a;_l) is the com-

petitor. Given the conditions, a last error event
occurs at time j if u{) > 0. Note that a hard
estimate of P(LEFE) based on u would not be
differentiable. Hence we introduce a smooth es-
timate of P(LEFE):

If the conditions for LEE at time j are satis-
fied, then

0 if uwld) < —AW)]
PO(LEE)={ v2HAY i p A6 < o) < AU,

~—

1 if uwl) > AW

| (5)

where {AU)) (the smoothing parameter) is a

sequence of real, positive, decreasing numbers.

The relation between the smooth and the hard

estimate is illustrated in figure 3. The iterative

algorithm for minimizing P(LFEF) with respect

to the generic vector of parameters p (p = e, d
in our contest) is

pW) = pU=D _ WV PU(LEE),  (6)

where {71} (the step size) is a sequence of real,
positive, decreasing numbers. Recalling y = x ®
e, one easily obtains from (4) and (5)

if —AW) < @) < AU then
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It is apparent indeed that the proposed receiver
has at least one redundant degree of freedom. As
a matter of fact, the same P(LFEF) is obtained
from all the receivers based on ae, ad, where
a # 0 is a real constant. To discard this redun-
dant degree of freedom, we fix one of the samples
of the DIR. Iteration of algorithm (6) guaran-
tees a local minimum of P(LF E) with probabil-
ity one as j — oo, if the following conditions on
the sequences v(9) and Al are satisfied:

< N >, 4 (6)?

_ gl
27(1) = 0, EV(J)A(J) < 00, z; N e
j= J= J=

(1)
The proposed algorithm can be seen as a vari-
ant of the classical stochastic gradient algorithm,
but here a smooth version of the stochastic gra-
dient is considered, the smoothing being progres-
sively reduced down to zero during the optimiza-
tion. The complexity of the algorithm is the
same as that of the least mean-square algorithm.
Stochastic approximation techniques that have a
form similar to (5), (6), (11), have found wide
application in neural networks for pattern recog-
nition. Specifically, it is shown in [6] that condi-
tions (11) are sufficient to guarantee a local min-
imum for a family of stochastic approximation
techniques where ours is included. An optimiza-
tion algorithm based on the bit error probability
has been recently derived by other means for the
instantaneous detector (g = 0) in [3, 4]. Note
that our receiver is more general than the re-
ceiver studied in [3, 4], because we consider the
detector with memory.

3 Experimental results

To demonstrate the effectiveness of our crite-
rion we show here the results obtained by com-
puter simulation. Although our method allows

to improve the error performance of MSE re-
ceivers over all the channels that we consid-
ered, we found that, to obtain substantial im-
provement, a severely distorted channel has to
be considered. Specifically, we considered the
channels of [3, 7, 10], and a channel having an
impulse response that decreases exponentially.
Among these, the channels studied in [10] are
the most severe, in the sense that they give the
lower minimum distance for a fixed length of
the impulse response. We focused on the chan-
nel with v = 6. Since this channel has spec-
tral nulls, linear equalization is not adequate.
MLSE can be performed with a Viterbi proces-
sor of 64 states, and leads to BER= 1073 at
SNR= >, ¢i/0* = 18 dB, where o2 is the noise
variance. The impulse response of the FIR chan-
nel is Q(z) = 0.176 + 0.316z7! + 0.476272 +
0.53227° 4+ 0.4762"* 4+ 0.31627° 4+ 0.176275. The
shape of the impulse response resembles a bell,
a shape that is often found in channels from the
real world.

To demonstrate the effectiveness of our method,
we have to compare it with a rival method. We
examined the methods proposed in [7, 9]. Both
are based on constrained minimization of MSE,
but, as mentioned in the previous section, they
differ in the constraint. It should be noted that
no clear cut choice can be made among the two
methods, because none outperforms the other
over all the channels that we considered. How-
ever, when the channel [10] is considered, [9] out-
performs [7], at least with the receiver parame-
ters that we considered. Hence, in the results to
be presented, the rival method is [9]. We choose
for the decision delay D the one that gives mini-
mum MSE, calculate the parameters of the MSE
receiver as in [9], and use them as initial guess
for our optimization method. After the optimiza-
tion, the BER is measured by a random pattern
of 5-10° data.

In table 1 we report BER versus SNR considering
both MMSE and LEE receivers for DIR length
pw =0, 2, 4, 6, and for prefilter length n = 14.
The results in the table show that the BER im-
provement at fixed SNR is higher as the DIR
length increases. A clear proof of the superiority
of our method is apparent from the table com-
paring the BER of the two methods with that
of MLSE (g = 6). While our method achieves
the performance of MLSE, the MSE method does
not. Table 2 reports BER versus SNR for pre-



TABLE 1

=0 po=2 =4 =
SNR (dB) | MSE  LEE MSE LEE MSE  LEE MSE  LEE  MLSE
10 24E-1 24F-1| 29E-1 26E-1| 25E-1 22E-1|25E-1 2.0E-1 19E-1
15 2.0E-1 2.0E-1]23E-1 19E-1| 1.3E-1 8.8E-2 | 6.41-2 3.5E-2 3.3E-2
20 1.5E-1 1.5E-1 | 1.7E-1 1.2E-1 | 2.8E-2 9.6E-3 | 3.2E-4 1.01-4 R8.0E-5
25 1.0E-1 1.0E-1 | 1.1E-1 5.7E-2 | 2.8E-3  6.515-4 - - -
30 8.2E-2 7.7E-2 | 8.5E-2 3.9E-2 | 4.6E-4 9.2E-5 - - -
Table 1: BER of LEE and MSE for fixed prefilter length n = 14.
TABLE 2
n =06 n =10 n =14 n = 20
SNR (dB) | MSE LEE | MSE LEE MSE  LEE MSE LEE
10 2.6E-1 2.2FE-1]|2.6E-1 22F-1]|25E-1 22FE-1]|25E-1 22E-1
15 1.5E-1 1.1E-1 | 1.3E-1 8.9E-2 | 1.3E-1 8.8E-2 | 1.1E-1 8.3E-2
20 4.9E-2 2.7FE-2 | 3.2E-2 1.1E-2 | 2.8E-2 9.6E-3 | 2.4F-2 8.5E-3
25 1.2E-2 3.7E-3 | 6.615-3 1.1E-3 | 2.81-3 6.5E-4 | 3.0E-3 4.3E-4
30 2.6E-3 6.6E-4 | 1.1E-3 1.515-4 | 4.6E-4 9.2FE-5 | 5.1E-4  6.2E-5

Table 2: BER of LEE and MSE for fixed DIR length p = 4.

filter length » = 6, 10, 14, 20, and DIR length
1 = 4. This table shows that our method allows
to reduce up to ten times the BER of the MSE
receiver. It also shows that, at SNR> 25dB, the
BER of the MSE receiver with n = 20 is worse
than the BER of the MSE receiver with n = 14,
and that this pathological behaviour does not af-
fect our receiver. Regarding the optimization
procedure, two aspects merit to be considered:
the decreasing rule of v and A, and the halting
condition. After repeated trials, we found that,
in the initial part of the simulation it is conve-
nient to keep these parameters constant. After,
we adopt for AU and v the following rules:

(12)

where n represents the number of nonnull up-

A = A©), =02 () Z (0),=05

datings at time j. In our simulation we choose
A = 0.5 and v(© = A©)/500. To switch from
constant to decreasing parameters and to halt
the optimization procedure, we adopted the fol-
lowing method. During the adaptation, the BER
is measured on successive windows of suitable du-
ration. We denote BER,;; the BER measured
on the last window, and BER,,,;,,, the minimum
BER measured up to the last window, and apply
the procedure described in the flow graph in fig-
ure 4. The switching and the halting conditions
are satisfied only when the measured BER does
not decrease for K successive measures. To work

out the results reported in the tables, K = 5
has been used, while the duration of the window
depends on the BER. Convergence examples of
the algorithm for window duration 50 - 103, pre-
filter length n = 14, DIR memory u = 4, and
SNR= 20 dB are shown in figure 5.

4 Conclusion

A new design method for the prefiltered Viterbi
detector has been introduced, and its advantage
over the minimum-MSE receiver of [9] has been
demonstrated by computer simulation. Our re-
sults show that the BER achieved by the pro-
posed receiver outperforms the BER achieved
by the classical MSE method, and that, when
a severely distorted channel is considered, the
BER can be improved by our method of a fac-
tor ranging from 2 to 10 at moderate to high
SNR. One important issue, that is not pursued
in the present paper, is globability of the mini-
mum. In [4] sufficient conditions are stated for
globality of the minimum for the memoryless de-
tector. Unfortunately, the detector with memory
complicates the analysis of the cost function. To
our experience, the method seems to be robust,
in the sense that different initial guesses lead to
the same optimal parameters. Another impor-
tant issue is the application of the method to
real receivers. To this purpose, we recall that the
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Figure 4: Flow chart for the switching and the
halting conditions.

method is based on the knowledge of the impulse
response of the channel, which can be estimated
from the received signal either by blind methods
or by a known data sequence. Once the channel
has been estimated, one can locally generate a
random data sequence and a random noise se-
quence to optimize receiver’ s parameters in an
off-line manner by the described algorithm. Of
course, since the optimization requires a large
number of samples, the receiver must be able to
perform fast off-line processing to track rapidly
varying channels.
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