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Isotropic Compliance

in the Special Euclidean Group SE(3)

M. Verottia, P. Masaratib, M. Morandinib, N. P. Belfiorea,∗

aDepartment of Mechanical and Aerospace Engineering, Sapienza University of Rome,

Via Eudossiana 18, 00184 Rome, Italy
bDipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano,

via La Masa 34, 20156 Milano, Italy

Abstract

In this paper, the isotropic compliance property is examined in the Special Euclidean Group

SE(3). The relation between the wrench and the resulting twist is examined, considering

an end-effector of 6 D.O.F. serial manipulators. Two properties are introduced. The first

one, called local isotropic compliance, is verified if the force vector is parallel to the tip point

displacement vector, and, at the same time, if the torque vector is parallel to the change

of orientation vector. The second one, called screw isotropic compliance, is verified if the

wrench screw axis is parallel to the twist screw axis. In the latter case, the wrench and twist

screw axes are generally not coincident in the Cartesian Space. If they are, the contact point

could (screw-B isotropic compliance) or could not (screw-A isotropic compliance) belong to

the coincident axes. Four cases are analyzed and classified. Active stiffness regulation is

considered to achieve isotropic compliance in a generic configuration. Two arrangements

are taken into account for the control system, which acts either in parallel or as a series

with the passive joint stiffness. The control stiffness matrix is then determined for both the

arrangements and for all the four kinds of isotropic compliance. One detailed example of

application is presented and the obtained results are verified by using multi-body dynamic

simulation.
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1. Definitions and nomenclature

R0 Base reference frame system {O0, X0, Y0, Z0}

P End-effector tip point (or contact point) in R0

•̂ unit vector

φν̂ force vector applied on P

ℓ line of action of φν̂

µû torque applied to the end-effector

u torque axis

û unit vector parallel to the torque axis u

λ = µ/φ wrench pitch

ĵ unit vector parallel to ν̂ and ℓ

î unit vector parallel to ĵ × µ̂

k̂ = î× ĵ

R reference system {P, x, y, z}, where x, y, z are parallel to î, ĵ, k̂, respectively

p =
−→
PO = φĵ × µû/φ2 = p̂i

w =

{

φĵ
µû

}

= φ

{

ĵ

λĵ + p× ĵ

}

= φ

[

I 0
Sp I

]{

ĵ

λĵ

}

, wrench

Sp skew-symmetric tensor defined in such a way that, for a given vector V , SpV = p×V

o screw axis of the wrench, passing through the terminal point O of p =
−→
PO

Θ∆ = Θ∆ĥ end-effector change of orientation vector

h screw axis of the twist, or instantaneous rotation axis
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ĥ unit vector parallel to the change of orientation

v̂ unit vector parallel to the displacement vector of point P

∆xP = ∆P v̂ displacement vector of point P

r =
−−→
PH = Θ∆ ×∆xP/Θ2

∆, minimum distance from P to h

∆xH = ∆Hĥ, displacement vector of point H

ν = ∆H/Θ∆ twist pitch

t =

{

Θ∆ĥ

∆P v̂

}

= Θ∆

{

ĥ

νĥ+ r × ĥ

}

= Θ∆

[

I 0
Sr I

]{

ĥ

νĥ

}

S∆ =

{

∆P v̂

Θ∆ĥ

}

=

{

Θ∆νĥ+ r ×Θ∆ĥ

Θ∆ĥ

}

n number of joints

qi generic Lagrangian coordinate

q joint coordinates vector

J Jacobian matrix defined as

S∆ = J∆q (1)

∆τc reaction generalized force vector in the joint space due to the control system as a

response to a posture modification ∆q (in the joint space), defined as

∆τc = −kc∆q (2)

Kp stiffness matrix in the Cartesian space due to the passive stiffness of the joints

Kc stiffness matrix in the Cartesian space due to control

K stiffness matrix in the Cartesian space

kp passive stiffness matrix defined in the joint space, kp = diag(kp1 , kp2 , ..., kpn), due to

the mechanical compliance of the joints components
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kc control stiffness matrix defined in the joint space, where the generic element kcij rep-

resents the feedback gain (in terms of torque or force) applied by link i − 1 to link i,

due to feedback acquired from link j

k overall stiffness matrix defined in the joint space and related to the overall stiffness

matrix defined in the Cartesian space by means of [1]

k = JTKJ (3)

C compliance matrix defined in the Cartesian space associating the end-effector displace-

ment S∆ with wrench w in the Cartesian space by means of the relation

S∆ = Cw , (4)

and equal to [2]

C = Jk−1JT (5)

2. Introduction

Interactions between a manipulator end-effector and the environment occur in many ap-

plications, such as assembling or grasping operations. Consequently, considerable attention

has been paid to the analysis, modeling, optimization, and control of robotic systems stiff-

ness and compliance [3–18]. Generally, such interactions occur in dynamic conditions, and

depend on the compliance of the systems in contact, i.e. both the robot and the environ-

ment. A manipulator end-effector, trying to maintain its pose when subjected to an external

action, represents a simplified case of such interactions. Assuming that the control system

is able to assure local stability in a prescribed pose, a wrench on the end-effector and its

consequent twist response can be studied under kinetostatic conditions.

A possible way to characterize such response was presented in Ref. [19], where both the

force and the displacement were defined in the Euclidean Space E (3). In this contribution,

isotropic compliance property was introduced considering 3 D.O.F. serial manipulators. If

this property holds in a specific posture, the displacement of the end-effector is parallel to
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the external action. As described in Refs. [19, 20], to achieve isotropic compliance, the 3× 3

compliance matrix of the manipulator, defined in the Cartesian space, has to be equal to a

scalar matrix. It is worth noting that the well-known condition of kinematic isotropy [21–28]

generally does not imply isotropic compliance. A scalar compliance matrix was obtained,

in specific postures, by means of a decoupling control strategy, based on the adoption of a

PD controller in each joint. Two arrangements were considered, depending on whether each

control torque/force may act either as a series or in parallel with the mechanical passive

elastic torque/force, as in some applications of compliant mechanisms and MEMS [29–31].

However, the external load acting on the end-effector and its consequent displacement

are generally not limited to vectors defined in E (3). In fact, a generalized force may be ap-

plied to the end-effector, composed of a force and a moment, and a generalized displacement

could occur, composed of a displacement and a rotation. The relation of these generalized

vectors, that are the applied wrench (Poinsot’s theorem) and the resultant twist (Chasles’s

theorem), is then represented by a 6 × 6 compliance matrix. This paper focuses exactly

on such relation, considering non-redundant, 6 D.O.F. serial manipulators. The extension

of the isotropic compliance property to the Special Euclidean Group SE(3) leads to the

definition of two different properties: local isotropic compliance and screw isotropic compli-

ance. Local isotropic compliance holds when the force vector is parallel to the displacement

vector and, at the same time, the torque vector is parallel to the change of orientation vec-

tor. Screw isotropic compliance refers to the condition of parallelism between the wrench

and twist screw axes. Although the screw axes are parallel, generally they are not coinci-

dent. Furthermore, none of them passes through the end-effector contact point. However,

thanks to the active control, it is possible to impose both the above mentioned conditions.

For these reasons, two more cases deserve particular attention, namely, screw-A isotropic

compliance (or task screw isotropic compliance), and screw-B isotropic compliance (or tool

screw isotropic compliance). Screw-A isotropic compliance holds when the screw axes of

both the wrench and twist are coincident. Screw-B is a particular form of Screw-A isotropic

compliance for which the common screw axis passes through the contact point.

Local or screw isotropic compliance can be achieved by means of coupled active stiffness
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regulation. Two different arrangements are considered for the control system, which may act

either as a series or in parallel with the passive stiffness, depending on the mechanism under

consideration. The passive stiffness matrix of the serial manipulator is generally diagonal,

while the control stiffness matrix can have a more general form, representing the coupling

effects of the active regulation. The control stiffness matrix is determined for both the

arrangements.

3. Why Struggling with Isotropic Compliance?

A practical application of the concept of isotropic compliance is presented in this para-

graph. In the situation depicted in Fig. 1, a manipulator end-effector is grasping a cylindrical

object while it is locally moving in a structured workspace delimited by two parallel planes

π1 and π2. During its task, the end-effector must avoid collisions between the carried ob-

ject and the planar boundaries. Possibly, it must avoid collisions with other end-effectors

operating in the same space.

Under these conditions, the end-effector should move on a plane parallel to π1 and π2

and, hopefully, it should not rotate. Furthermore, we will assume that the interaction load,

externally applied in quasi-static conditions, could be represented by a resultant force φĵ

which is parallel to the boundary surfaces π1 and π2 (otherwise such working station would

have been very badly designed).

When the isotropic compliance property is limited to the Eucliden Space E(3), the

application point displacement is parallel to the applied force φĵ. This result is useful, but

there are no guarantees that interference with neighborhood objects is excluded. In fact,

with reference to Fig. 1a, the achievement of the property in E(3) does not prevent the

manipulator end-effector from accidental collisions with close walls π1 and π2 even though

the externally applied force was parallel to π1 and π2. This circumstance does apply because

isotropic compliance in E(3) has no control on the final end-effector rotational attitude.

For these reasons, the achievement of such property has been extended to SE(3), because

it involves the end-effector rotations. For example, with reference to Fig. 1b, if the pose of

such manipulator corresponds to a local isotropic compliance posture (see the next sections),
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the end-effector and the handled tool both translate along the force axis, from the pose P0 to

the pose P1. In other words, since no moments are applied to the end-effector, no rotations

will be contained within the system response motion.

x

y
z

φĵ

π1

π2

P0
P1

(a)

x
y

z
φĵ

π1

π2

P0

P1

(b)

Figure 1: End-effector handling a tool between two parallel surfaces in E(3) isotropic compliance condition

(a), and in SE(3) local isotropic compliance condition (b)

4. Isotropic compliance in SE(3): problem formulation

To define the isotropic compliance property in SE(3), we first introduce the manipulator

base frame R0 ≡ {O0, x0, y0, z0}, and we consider a generic point P defined by the position

vector vP =
−−→
O0P . The external load conditions can be reduced to a force, whose line of

action passes through P , and to a torque. With reference to Fig. 2, we define ĵ as the

unit vector corresponding to the force line of action, φ the force magnitude, û the unit

vector corresponding to the axis torque u, and µ as the torque magnitude. Furthermore, we

define k̂ as the unit vector belonging to the plane defined by ĵ and û, whose direction is

perpendicular to ĵ, and whose sense is the same as the component of û perpendicular to ĵ.

From the definition of ĵ and k̂, it follows that î = ĵ× k̂. Finally, we introduce the reference

frame RP ≡ {P, x, y, z}, having its origin in P and axes x, y, and z, defined by the unit

vectors î, ĵ, and k̂, respectively.

The torque component µû of the wrench, w =
{

φĵ;µû
}

, is equal to the sum of a compo-

nent parallel to the force line of action, λφĵ, where λ is the wrench pitch, and a component
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perpendicular to such line, that is φp× ĵ. In the reference frame RP ≡ {P, x, y, z}, p = p̂i,

and then φp × ĵ = φpk̂. We define o as the screw axis of the wrench, and O the point

defined by the position vector p =
−→
PO. Also, we define π as the plane xy, and σ as the

plane normal to the unit vector û.

As it is well known [32], the wrench w is energetically conjugated to a generalized

displacement S∆, that depends on the twist t =
{

Θ∆ĥ; ∆P v̂
}

, where ∆P v̂ = Θ∆νĥ +

Θ∆r × ĥ. We define h as the screw axis of the twist, ĥ as the unit vector corresponding to

h, and with r the vector representing the position of h with respect to P . The point H is

defined by the position vector r =
−−→
PH. Also, we define χ as the plane normal to the unit

vector ĥ.

Generally, there are no particular relations between the directions of the unit vectors ĵ

and v̂, that represent the directions of the applied force and of the displacement, respectively,

nor between the unit vectors û and ĥ, the unit vectors corresponding to the axis torque and

to the screw axis of the twist, respectively. In Ref. [19], the condition of parallelism between

ĵ and v̂ was called isotropic compliance in E(3).

In the present investigation, we define local isotropic compliance, in SE(3), the condition

of parallelism between the unit vectors ĵ and v̂, and between the unit vectors û and ĥ.

Also, we define screw isotropic compliance, in SE(3), the condition of parallelism between

the unit vectors ĵ and ĥ, that is the condition of parallelism between the screw axes of the

wrench and of the twist.

So far, nothing has been assumed about the position of point P . Thus, in general, the

formulation is valid for every point defined by the position vector
−−→
O0P in the the manip-

ulator base frame R0 ≡ {O0, x0, y0, z0}. Nevertheless, the generalized displacement of the

manipulator end-effector due to the external load is of particular interest in many practical

applications. For this reason, we consider as point P the origin of the end-effector frame (or

tool frame) Rn ≡ {On, xn, yn, zn}, defined according to the Denavit-Hartenberg convention;

namely, we assume P ≡ On.
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î

ĵ

k̂

ĥu

P

O

H

p

r

o

λφĵ

λφĵ

φĵ

φĵ

µû

µû

φpk̂

Θ∆ π

σ ⊥ ûχ ⊥ ĥ

∆xH

∆xP
r ×Θ∆

Figure 2: Wrench w and its consequent screw displacement S∆ in the general case

5. Condition for parallelism

Introducing a basis in IR6, namely (v1, . . . ,v6), vi ∈ IR6, i = 1, . . . , 6, the generalized

vector

a = {ad; ar}

with ad = {ad1; ad2; ad3} and ar = {ar1; ar2; ar3} can be written, with respect to this basis,

as

a =
6

∑

1

αivi = Vα (6)

with

V = [v1 | . . . | v6] ,

α = {α1 ; . . . ;α6} .
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Considering the generalized vector b = {bd; br} the isotropic compliance condition between

vectors a and b,

ad ‖ bd ,

ar ‖ br ,

can be written as
{

bd

br

}

=

[

λdI 0

0 λrI

]{

ad

ar

}

(7)

where λd, λr are scalars, I is the 3 × 3 Identity matrix and 0 is the 3 × 3 zero matrix.

Generally, if any relationship between a and b holds, i.e.

b = Ma (8)

where M is a 6 × 6 matrix, by making use of Eqns. (6) and (7) such relationship can be

written as








λdI 0

0 λrI



−M



Vα = 0 , (9)

which must be true for any α ∈ IR6, and implies

M =

[

λdI 0

0 λrI

]

. (10)

In the present investigation, the notation λd and λr will be replaced by c̃d and c̃r, with

the aim of representing the end-effector compliance in terms of displacement and rotation,

respectively. Hence, c̃d will have units of mN−1, while c̃r will have units of N−1m−1.

6. Isotropic compliance in SE(3): local formulation

6.1. Definition

The local isotropic compliance in SE(3) consists in imposing that the force φĵ be parallel

to the displacement of the tip point P , and that the moment µû be parallel to the rotation

axis ĥ, i.e.

v̂ = ĵ , (11)

ĥ = û . (12)
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or

∆P v̂ ‖ φĵ ⇐⇒ Θ∆

(

νĥ+ ~r × ĥ
)

‖ φĵ , (13)

Θ∆ĥ ‖ µû ⇐⇒ Θ∆ĥ ‖ φ
(

λĵ + ~p× ĵ
)

. (14)

The local isotropic compliance condition is illustrated in Fig. 3. Assuming

î

ĵ

k̂

ĥ

u

P

O

H

p

r

o

h

λφĵ

λφĵ

φĵ

φĵ

µû

µû

φpk̂

Θ∆

π

σ ≡ χ ⊥ û ≡ ĥ

∆xH

∆xP

r ×Θ∆

Figure 3: Local isotropic compliance. Wrench w and its consequent screw displacement S∆ when ĵ ≡ v̂

and û ≡ ĥ

bd = ∆P v̂ , (15)

br = Θ∆ĥ , (16)

ad = φĵ , (17)

ar = µû . (18)

Eqn. (7) can be rewritten as
{

∆P v̂

Θ∆ĥ

}

=

[

c̃dI 0

0 c̃rI

]{

φĵ

µû

}

. (19)
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From Eqn. (4) and Eqn. (19), it follows

C =

[

c̃dI 0

0 c̃rI

]

. (20)

Figure 4 show a second example of a practical application of the local isotropic compliance

property in SE(3). In particular, in Fig. 4a the local isotropic compliance condition implies

a displacement along the force line of action, ĵ, and a rotation about an axis parallel to the

torque axis, k̂. Figure 4b shows the end-effector displacement and rotation when the local

isotropic compliance condition is not verified.

x
y

z µû

φĵ

π1

π2

P0
P1

(a)

x
y

z µû

φĵ

π1

π2

P0
P1

(b)

Figure 4: End-effector handling a tool between two parallel surfaces: (a) local isotropic compliance condition;

(b) non isotropic compliance condition.

6.2. Position of the twist screw axis

The condition for the local isotropic compliance, Eqn. (19), can be rewritten as

{

∆P v̂

Θ∆ĥ

}

=

{

c̃dφĵ
c̃rµû

}

=

{

c̃dφĵ

c̃rφ
(

λĵ + p̂i× ĵ
)

}

, (21)

and the unit vector representing the twist screw axis is equal to

ĥ =
c̃r

(

λφĵ + φp̂i× ĵ
)

√

(c̃rλφ)
2 + (c̃rφp)

2
=

λĵ + p̂i× ĵ
√

λ2 + p2
. (22)
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The end-effector displacement ∆P v̂ can be decomposed into a component parallel to the

unit vector ĥ, that is

ĥ⊗ ĥ∆P v̂ =
c̃dφλ

λ2 + p2

(

λĵ + pk̂
)

, (23)

and a component perpendicular to the unit vector ĥ, that is

(

I− ĥ⊗ ĥ
)

∆P v̂ =
c̃dφp

λ2 + p2

(

pĵ − λk̂
)

. (24)

For the component perpendicular to the unit vector ĥ, the relation

(

I− ĥ⊗ ĥ
)

∆P v̂ = −Θ∆ĥ× r (25)

must hold. By cross multiplying each side of Eqn. (25) by ĥ, it is possible to obtain

r = −
c̃dφ

Θ2
∆

ĵ ×Θ∆ĥ . (26)

By making use of Θ∆ĥ defined in Eqn. (21), Eqn. (26) becomes

r = −
c̃d
c̃r

p

λ2 + p2
î . (27)

6.3. Particular case

Considering the wrench w, a particular case arises when p = 0 (and φpk̂ = 0). This

condition implies û ‖ ĵ. In case of local isotropic compliance, µû ‖ ĥ, and φĵ ‖ ∆P v̂.

Since û ‖ ĵ, it follows that v̂ ‖ ĥ; thus p = r = 0. In other words, wrench screw axis,

twist screw axis, moment, force, displacement and change of orientation vectors all have the

same direction, passing through P . In this case, the local isotropic compliance condition

reduces to the particular case screw-B isotropic compliance condition, as it will be clear in

Section 7.3.2.

7. Isotropic compliance in SE(3): screw formulation

7.1. Definition

The screw isotropic compliance condition in SE(3) consists in imposing the parallelism

between the wrench screw axis o and the twist axis h, i.e.

ĵ ‖ ĥ, (28)
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or

Θ∆νĥ ‖ φĵ , (29)

Θ∆ĥ ‖ λφĵ , (30)

as depicted in Fig. 5. By invoking Eqn. (7), it follows

î

ĵ ≡ ĥ

k̂

P

O

H

p

r

o

h

u

λφĵ
λφĵ

φĵ

φĵ

µû

µû

φpk̂

π

σ ⊥ ûχ ⊥ ĥ

∆xH

∆xP
r ×Θ∆

Figure 5: Screw isotropic compliance. Wrench w and its consequent screw displacement S∆ when the

wrench and twist screw axes o and h are parallel, and so ĵ ≡ ĥ

{

νΘ∆ĥ

Θ∆ĥ

}

=

[

c̃dI 0

0 c̃rI

]{

φĵ

λφĵ

}

, (31)

or, equivalently,

νΘ∆ĥ = c̃dφĵ , (32)

Θ∆ĥ = c̃rλφĵ . (33)
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From the definitions of wrench and twist, it follows

φĵ =
[

Sp + λI
]

−1µû , (34)

Θ∆ĥ = [Sr + νI] −1∆P v̂ . (35)

Substituting (35) and (34) in (32) and (33), respectively, yields

ν [Sr + νI] −1∆P v̂ = c̃dφĵ , (36)

Θ∆ĥ = c̃rλ
[

Sp + λI
]

−1µû . (37)

In matrix form
{

∆P v̂

Θ∆ĥ

}

=

[

c̃d/ν [Sr + νI] 0

0 c̃rλ
[

Sp + λI
]

−1

]{

φĵ

µû

}

, (38)

or, equivalently,

S∆ = Cw ,

where

C =

[

c̃d/ν [Sr + νI] 0

0 c̃rλ
[

Sp + λI
]

−1

]

(39)

is the compliance matrix.

Analogously,

w = KS∆ ,

where

K = C−1 =

[

ν/c̃d [Sr + νI] −1 0

0 1/(c̃rλ)
[

Sp + λI
]

]

(40)

is the stiffness matrix.

7.2. Position of the twist screw axis

The condition for the screw isotropic compliance condition, Eqn. (31), can be rewritten

as

νΘ∆ĥ = c̃dφĵ , (41)

Θ∆ĥ = c̃rλφĵ . (42)
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From the previous equations it can be seen that

λν =
c̃d
c̃r

, (43)

so the pitch of the twist depends on the compliance coefficients c̃d and c̃d, other than on the

wrench pitch λ. If Eqns. (29) and (30) hold, the generalized displacement S∆, or
{

∆P v̂

Θ∆ĥ

}

=

{

Θ∆νĥ+ r ×Θ∆ĥ

Θ∆ĥ

}

, (44)

can be rewritten, by making use of Eqns. (41), (42), and (43), as
{

∆P v̂

Θ∆ĥ

}

=

{

c̃dφĵ + c̃rλr × φĵ

c̃rλφĵ

}

. (45)

The position of the twist screw axis can be set by the control system, by defining the position

vector r. Two particular screw isotropic compliance cases, that depend on the position of

the twist screw axis and thus on the selection of vector r, are discussed in Section 7.3.

7.3. Screw-A and screw-B isotropic compliance

In this paragraph we consider two particular cases:

• screw-A isotropic compliance: the screw axes of the wrench and of the twist are coin-

cident ;

• screw-B isotropic compliance: the screw axes of the wrench and of the twist are coin-

cident and pass through P.

7.3.1. Screw-A isotropic compliance

If the wrench and twist screw axes are coincident, as depicted in Fig. 6,

Sr = Sp,

and, with the notation Sr = Sp = Srp, from Eqns. (39) and (40) it follows that

C =

[

c̃d/ν [Srp + νI] 0

0 c̃rλ [Srp + λI] −1

]

, (46)

K =

[

ν/c̃d [Srp + νI] −1 0

0 1/(c̃rλ) [Srp + λI]

]

, (47)

respectively.
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î

ĵ

k̂

P

O
r

o ≡ h

u

λφĵ

λφĵ

φĵ

φĵ

µû

µû

φpk̂ π

σ ⊥ û
χ ⊥ ĥ

∆xP

∆xH

r ×Θ∆

Figure 6: Screw-A isotropic compliance. Wrench w and its consequent screw displacement S∆ when the

wrench and twist screw axes o and h are coincident, and so ĵ ≡ ĥ. Furthermore, points O and H are

coincident, as are vectors r and p

7.3.2. Screw-B isotropic compliance

If wrench and twist screw axes are coincident and pass through the end-effector tip point

P , as depicted in Fig. 7, then

Sr = Sp = 0,

and, from Eqns. (46) and (47), it follows that

C =

[

c̃dI 0

0 c̃rI

]

, (48)

K =

[

1/c̃dI 0

0 1/c̃rI

]

, (49)

respectively.
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φĵ
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Figure 7: Screw-B isotropic compliance. Wrench w and its consequent screw displacement S∆ when the

wrench and twist screw axes o and h are coincident and passing through P . Since r = p = 0, points O, H,

and P are coincident

8. Isotropic compliance in brief

In this Section, the main characteristics of the different kinds of isotropic compliance are

briefly described, focusing on the conditions of parallelism between the screw axes, the tip

displacement vector, the change of orientation vector, the applied force and moment vectors.

• isotropic compliance in E (3): the force φĵ is parallel to the tip point displacement

∆P v̂, but, in general, the moment µû is not parallel to the rotation axis ĥ. Further-

more, neither the force φĵ is parallel to the moment µû, nor the tip point displacement

∆P v̂ is parallel to the rotation axis ĥ.

• local in SE (3): the wrench and twist screw axes, o and h, respectively, are skew

lines (ĥ ∦ ĵ) not passing through the contact point P . The force φĵ is parallel to
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the tip point displacement ∆P v̂, and the moment µû is parallel to the rotation axis

ĥ. In general, neither the force φĵ is parallel to the moment µû, nor the tip point

displacement ∆P v̂ is parallel to the rotation axis ĥ.

• screw in SE (3): wrench and twist screw axes, o and h, respectively, are parallel lines

(ĥ ≡ ĵ), both of them not passing through the contact point P . The force φĵ is not

parallel to the tip point displacement ∆P v̂, and the moment µû is not parallel to the

rotation axis ĥ. Neither the force φĵ is parallel to the moment µû, nor the tip point

displacement ∆P v̂ is parallel to the rotation axis ĥ.

• screw-A (task screw) in SE (3): wrench and twist screw axes, o and h, respectively,

are coincident (o ≡ h), and not passing through the contact point P . The force φĵ is

not parallel to the tip point displacement ∆P v̂, and the moment µû is not parallel

to the rotation axis ĥ. Neither the force φĵ is parallel to the moment µû, nor the tip

point displacement ∆P v̂ is parallel to the rotation axis ĥ.

• screw-B (tool screw) in SE (3): wrench and twist screw axes, o and h, respectively, are

coincident (o ≡ h), and passing through the contact point P . The force φĵ is parallel

to the tip point displacement ∆P v̂, and the moment µû is parallel to the rotation axis

ĥ. Furthermore, since p = r = 0, the force φĵ is parallel to the moment µû, and the

tip point displacement ∆P v̂ is parallel to the rotation axis ĥ.

The previous characteristics are summarized in Table 1.

9. The coupled control strategy

To achieve local or screw isotropic compliance, a coupled control strategy can be consid-

ered, based on active stiffness regulation. A coupled, active stiffness matrix may overcome

the limitations of the diagonal, passive joint stiffness matrix. For example, in Ref. [33], vari-

able stiffness actuation (VSA) technology was used in combination with an active impedance

controller to extend the achievable Cartesian stiffness range.
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Table 1: Comparison of generalized isotropic compliance

Isotropic Compliance o, h P , o P , h ĵ, v̂ û, ĥ ĵ, û v̂, ĥ

E(3) ∦ /∈ /∈ ‖ ∦ ∦ ∦

SE(3)

Local ∦ /∈ /∈ ‖ ‖ ∦ ∦

Screw ‖, 6≡ /∈ /∈ ∦ ∦ ∦ ∦

Screw-A ‖, ≡ /∈ /∈ ∦ ∦ ∦ ∦

Screw-B ‖, ≡ ∈ ∈ ‖ ‖ ‖ ‖

Screw-A: wrench and twist screw axis coincident

Screw-B: wrench and twist screw axis coincident and passing through P

In this Section, the control system is considered in two different arrangements. In fact,

active stiffness can work in parallel or in series with the passive stiffness, depending on the

mechanism under consideration [19]. The two arrangements are here considered separately,

focusing on the stiffness matrix in the parallel case, and on the compliance matrix in the

serial arrangement. The control stiffness or compliance matrix are determined for all the

cases.

Partitioning the passive compliance matrix in the form

Cp =

[

A D

DT B

]

, (50)

the passive stiffness matrix can be written as

Kp =

[

E G

GT H

]

, (51)

where

E =
(

A−DB−1DT
)

−1 , (52)

G = −
(

A−DB−1DT
)

−1DB−1 , (53)

H =
(

B−DTA−1D
)

−1 . (54)

The control system is designed to transform the Cartesian stiffness or compliance matrix in

a diagonal matrix, exerting two simultaneous actions:
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• it decouples the effects of forces and moments on the end-effector displacement and

rotation, by setting equal to zero the elements of the off-diagonal blocks;

• it achieves the isotropic compliance condition by separately transforming the diag-

onal blocks in particular submatrices, whose form depends on the type of isotropic

compliance.

9.1. Passive and Active Stiffness in Parallel Configuration

Considering the spectral decomposition of the diagonal blocks E and H, the passive

stiffness matrix can be written as

Kp =





UEΣEUE
T G

GT UHΣHUH
T



 , (55)

where the columns of UE, UH form a set of orthonormal eigenvectors of E and H, respec-

tively, and ΣE, ΣH are diagonal matrices having the eigenvalues of E and H on the diagonal,

respectively.

In case of parallel configuration, the control stiffness matrix is added to the passive

stiffness matrix. To achieve the isotropic compliance condition, the control system must

exert a generalized force in the Cartesian space that decouples the effects of forces and

moments on the end-effector displacement and rotation, and attains both the parallelism

between the force and the displacement and the rotation about the axis of the external

moment, namely,
{

∆fc

∆Mc

}

=

[

∆E −G

−GT ∆H

]{

∆P v̂

Θ∆ĥ ,

}

(56)

with

∆E = UE (ΓE −ΣE)UE
T, (57)

∆H = UH (ΓH −ΣH)UH
T. (58)

The structure of matrices ΓE and ΓH depends on the isotropic compliance property to be

achieved.
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9.1.1. Local isotropic compliance

ΓE =
1

c̃d
I, (59)

ΓH =
1

c̃r
I, (60)

9.1.2. Screw isotropic compliance

ΓE = UE
T

(

ν

c̃d
[Sr + νI] −1

)

UE, (61)

ΓH = UH
T

(

1

c̃rλ

[

Sp + λI
]

)

UH. (62)

Furthermore, in this case, two particular conditions can be achieved.

• Screw-A isotropic compliance (twist and wrench screw axes coincident):

ΓE = UE
T

(

ν

c̃d
[Srp + νI] −1

)

UE, (63)

ΓH = UH
T

(

1

c̃rλ
[Srp + λI]

)

UH. (64)

• Screw-B isotropic compliance (twist and wrench screw axes coincident and passing

through P ):

ΓE =
1

c̃d
I, (65)

ΓH =
1

c̃r
I. (66)

The action of the control force is then translated into the addition of a control matrix

that sets equal to zero the off-diagonal block elements of the passive stiffness matrix, and

transforms the diagonal blocks in scalar submatrices, that is

Kc =

[

∆E −G

−GT ∆H

]

. (67)
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Then, the overall stiffness matrix is

K = Kp +Kc =





k̃dI 0

0 k̃rI



 , (68)

and the overall compliance matrix is

C =





c̃dI 0

0 c̃rI



 . (69)

From Eqn. (67), the control stiffness matrix in the joint space can be evaluated by means

of Eqn. (3), in terms of the control matrices kc and Kc:

kc = JTKcJ. (70)

9.2. Passive and Active Stiffness in Serial Configuration

In case of serial configuration, the inverse of the overall stiffness matrix is equal to the

sum of the inverse of the passive stiffness matrix and the inverse of the control stiffness

matrix. Hence, the passive compliance matrix can be considered, in terms of the spectral

decomposition of its diagonal blocks,

Cp =





UAΣAUA
T D

DT UBΣBUB
T



 , (71)

where the columns of UA, UB form a set of orthonormal eigenvectors of A and B, respec-

tively, and ΣA, ΣB are diagonal matrices having the eigenvalues ofA and B on the diagonal,

respectively.

To achieve the isotropic compliance condition, the control system must exert a gen-

eralized force in the Cartesian space that decouples the force and moment effects on the

end-effector displacement and rotation, and attain both the parallelism between the force

and the displacement and the rotation about the axis of the external moment, namely,

{

∆P v̂

Θ∆ĥ

}

=

[

∆A −D

−DT ∆B

]{

∆fc

∆Mc

}

, (72)
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with

∆A = UA (ΛA −ΣA)UA
T, (73)

∆B = UB (ΛB −ΣB)UB
T. (74)

The structure of matrices ΛA and ΛB depends on the isotropic compliance property to be

achieved.

9.2.1. Local isotropic compliance

ΛA = c̃dI, (75)

ΛB = c̃rI, (76)

9.2.2. Screw isotropic compliance

ΛA = UE
T

(

c̃d
ν
[Sr + νI]

)

UE, (77)

ΛB = UH
T
(

c̃rλ
[

Sp + λI
]

−1
)

UH . (78)

The particular screw cases are the following.

• Screw-A isotropic compliance (twist and wrench screw axes coincident):

ΛA = UE
T

(

c̃d
ν
[Srp + νI]

)

UE, (79)

ΛB = UH
T
(

c̃rλ [Srp + λI] −1
)

UH . (80)

• Screw-B isotropic compliance (twist and wrench screw axes coincident and passing

through P ):

ΛA = c̃dI , (81)

ΛB = c̃rI . (82)
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The action of the control force is then translated into the addition of a control matrix that

sets equal to zero the off-diagonal block elements of the passive compliance matrix and

transforms the diagonal blocks in scalar submatrices, that is

Cc =

[

∆A −D

−DT ∆B

]

. (83)

Consequently, the overall compliance matrix,

C = Cp +Cc, (84)

assumes the form given by Eqn. (69). Once the control compliance matrix in the Cartesian

space is determined with Eqn. (83), the control stiffness matrix in the joint space can be

evaluated by means of Eqn. (70), assuming Kc = Cc
−1.

10. Algorithm

In order to illustrate how the isotropic compliance property can be achieved, it is possible

to consider a serial manipulator in a posture, possibly not near to a kinematic singularity,

defined by means of the joint coordinate vector q. The following operations can be per-

formed.

1. Assign the tip compliance by means of the coefficients c̃d, c̃r;

2. evaluate the Jacobian matrix and the compliance matrix in the Cartesian space with

Eqn. (5);

in case of parallel arrangement:

3p) calculate the matrices ΓE and ΓH;

4p) evaluate the stiffness matrix Kp in the Cartesian space, Eqn. (51) and its submatrices

E, G, H, Eqns. (52), (53), (54), respectively;

5p) evaluate the control stiffness matrix Kc in the Cartesian space, Eqn. (67);
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in case of serial arrangement:

3s) evaluate the compliance matrix submatrices A, B, D;

4s) evaluate the control compliance matrix Cc in the Cartesian space, Eqn. (83);

5s) evaluate the control stiffness matrix in the Cartesian space, Kc = Cc
−1;

6) evaluate the control stiffness matrix kc in the joint space, Eqn. (70).

10.1. Singular configuration

The isotropic compliance property cannot be achieved whenever the posture of the ma-

nipulator corresponds to a kinematic singularity, i.e. when the Jacobian matrix J is singular.

In that case, the passive stiffness along the eigenvectors in the nullspace of J would be infi-

nite, whereas the control authority in that same direction would be zero.

11. Example of application

In this section an application of the proposed algorithm to a particular PUMA manip-

ulator with parallel active and passive stiffness arrangement is presented. The purpose is

showing how local isotropic compliance property in SE (3) can be achieved for the analyzed

robot by using coupled active control. The manipulator under study is depicted in Fig. 8a

in its reference posture (q = 0). Table 2 lists the Denavit-Hartenberg parameters and the

joint passive stiffness coefficients kp1, . . . , kp6. The perturbation load is applied to a point

of the end-effector which is located in correspondence of the origin of joint 6, as shown in

Table 2 and in Fig. 8.

11.1. Control matrix computation

The posture selected in this example is defined by the joint coordinates vector qe =

[0, 15,−40, 30, 44, 66] deg, as illustrated in Fig. 8b. Following the algorithm presented in

Section 10, the compliance of the end-effector is chosen by imposing the coefficients (see
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Table 2: PUMA manipulator: Denavit-Hartenberg parameters and joint passive stiffness coefficients

Joint d (m) a (m) α (deg) kp (Nm/rad)

1 0 0 90 550

2 0 0.4318 0 470

3 0.15 0.0203 -90 630

4 0.4318 0 90 770

5 0 0 -90 660

6 0 0.2 0 530

Eqn. (10))

c̃d = 2.0 · 10−3 mN−1 ,

c̃r = 1.7 · 10−3 N−1m−1rad ,
(85)

and by defining the matrices ΓE and ΓH accordingly (see Eqs. (59) and (60), respectively).

Once the Jacobian matrix is calculated in the assigned posture,

J(qe) =



























−0.0375 −0.5629 −0.4512 −0.1699 −0.0196 −0.1937

0.6050 0.0000 0.0000 −0.0407 −0.0283 0.0047

0.0000 0.6050 0.1879 0.0792 0.0737 −0.0497

0.0000 0.0000 0.0000 0.4226 0.4532 −0.2412

0.0000 −1.0000 −1.0000 −0.0000 −0.8660 −0.3473

1.0000 0.0000 0.0000 0.9063 −0.2113 0.9062



























, (86)

the passive compliance matrix in the Cartesian space is given by Cp = Jkp
−1JT , and the

passive stiffness matrix can be obtained by means of Eq. (51):

Kp =



























22809.98 −4897.07 14565.55 −5086.14 −4716.60 3817.78

−4897.07 3496.69 −3364.11 1161.45 888.50 −1409.03

14565.55 −3364.11 12491.22 −3113.42 −1953.61 2581.29

−5086.14 1161.45 −3113.42 2771.94 1236.83 −832.45

−4716.60 888.50 −1953.61 1236.83 1537.31 −714.35

3817.78 −1409.03 2581.29 −832.45 −714.35 1007.12



























. (87)
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Hence, by making use of matrices Kp, ΓE, and ΓH, the control stiffness matrix can be

obtained by means of Eqs. (57), (58), and (67):

Kc =



























−22309.98 4897.07 −14565.55 5086.14 4716.60 −3817.78

4897.07 −2996.69 3364.11 −1161.45 −888.50 1409.03

−14565.55 3364.11 −11991.22 3113.42 1953.61 −2581.29

5086.14 −1161.45 3113.42 −2183.70 −1236.83 832.45

4716.60 −888.50 1953.61 −1236.83 −949.07 714.35

−3817.78 1409.03 −2581.29 832.45 714.35 −418.89



























. (88)

Finally, the control stiffness matrix in the joint space for the parallel case can be obtained

by means of Eq. (3):

kc =



























221.94 10.55 8.46 524.00 −132.48 538.11

10.55 459.68 772.06 71.80 537.25 243.77

8.46 772.06 77.67 45.78 520.78 243.33

524.00 71.80 45.78 −163.36 5.16 437.53

−132.48 537.25 520.78 5.16 −68.46 0.00

538.11 243.77 243.33 437.53 0.00 78.24



























. (89)

11.2. Verification by Multibody Simulation

The system response has been verified by means of a dynamic simulation performed using

MBDyn, a free general-purpose multibody solver developed at Politecnico di Milano [34, 35].

The multibody model includes six rigid bodies and six revolute joints. The constitutive law

of each joint is characterized by the nominal torsional stiffness kp, listed in Table 2, and by

an additional damping term, arbitrarily set to 10−3 ·kp Nms/rad, that stabilizes the analysis.

Arbitrary (although realistic) inertia properties have been given to each link. The values are

not relevant in this context, since only quasi-static problems have been addressed by gently

applying the loads.

A sequence of three independent forces and three independent moments is applied to

the end-effector. Each force and moment is directed along one of the coordinate axes;

the magnitude of each force and moment is equal to 0.2 N and 0.5 Nm, respectively. These
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Figure 8: PUMA manipulator in: (a) posture defined by q = 0; (b) posture defined in qe.

values have been chosen to produce a configuration change small enough to neglect kinematic

nonlinearities in the perturbed solution. Each force and moment is slowly increased following

a regular pattern, then kept constant for some time, and subsequently slowly decreased to

zero. The small applied loads induce correspondingly small changes of configuration; thus,

the feedback gain matrix, Eq. (89), can remain constant.

The results presented in Fig. 9 show the end-effector loads, the corresponding displace-

ment and the finite rotation vectors, u and Θ, computed with and without the control

action. It is clear that when the feedback action is present, the solution provides almost

perfectly the sought local isotropic compliance. Figure 10 shows, with more accuracy, the

first 3 seconds of simulation, which refers to the loading cycle along the x axis. The re-

sponse obtained when the end-effector is loaded with a force in the other directions, or with

a moment, are qualitatively identical. The small deviations from the isotropic compliance

behavior during the loading and unloading phases of the end-effector are due to the viscous

dissipation in the joints, which was fictitiously added to stabilize the computation.

The passive stiffness matrix Kp in the Cartesian coordinates space has been indirectly
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verified by independently perturbing each component of the pose of the end-effector in the

Cartesian space while constraining the remaining ones, and measuring the resulting reaction

forces and moments. The matrix has been found in good agreement with the corresponding

analytical values, within the desired accuracy. This may be very practical and helpful a

procedure for the experimental determination of the control stiffness matrix in the joint

space.

12. Conclusions

In this work, the concept of isotropic compliance has been extended from the Euclidean

Space E(3) to the Special Euclidean Group SE(3). Such extension, which appears for

the first time in literature, has required the adoption of screw vector notation, which has

been useful to ascertain that in SE(3) the concept of isotropic compliance is not as simple

as in E(3). In fact, four different types of such property had to be introduced to cope

with the variety of all the possible practical applications, depending on the required force-

displacement-moment-rotation parallelism in the Euclidean Space and on the position of

the instantaneous rotation axis, with respect to the force action line and application point.

They have been termed local, screw, task screw and tool screw isotropic compliance. It has

also been disclosed how coupled active stiffness regulation can be used to achieve the four

isotropic compliance conditions. The actuators can be embedded in the system in such a

way to work either in parallel or as a series with the passive joints stiffness. Finally, the

proposed computational procedure has been checked by dynamic simulation on a detailed

example.
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