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Measure-valued Markov chains have raised interest in Bayesian nonparametrics since the seminal paper by
(Math. Proc. Cambridge Philos. Soc. 105 (1989) 579–585) where a Markov chain having the law of the
Dirichlet process as unique invariant measure has been introduced. In the present paper, we propose and
investigate a new class of measure-valued Markov chains defined via exchangeable sequences of random
variables. Asymptotic properties for this new class are derived and applications related to Bayesian nonpara-
metric mixture modeling, and to a generalization of the Markov chain proposed by (Math. Proc. Cambridge
Philos. Soc. 105 (1989) 579–585), are discussed. These results and their applications highlight once again
the interplay between Bayesian nonparametrics and the theory of measure-valued Markov chains.
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1. Introduction

Measure-valued Markov chains, or more generally measure-valued Markov processes, arise nat-
urally in modeling the composition of evolving populations and play an important role in a va-
riety of research areas such as population genetics and bioinformatics (see, e.g., [5,9,10,26]),
Bayesian nonparametrics [31,38], combinatorics [26] and statistical physics [5,6,26]. In particu-
lar, in Bayesian nonparametrics there has been interest in measure-valued Markov chains since
the seminal paper by [12], where the law of the Dirichlet process has been characterized as the
unique invariant measure of a certain measure-valued Markov chain.

In order to introduce the result by [12], let us consider a Polish space X endowed with the Borel
σ -field X and let PX be the space of probability measures on X with the σ -field PX generated
by the topology of weak convergence. If α is a strictly positive finite measure on X with total
mass a > 0, Y is a X-valued random variable (r.v.) distributed according to α0 := α/a and θ is a
r.v. independent of Y and distributed according to a Beta distribution with parameter (1, a) then,
Theorem 3.4 in [33] implies that a Dirichlet process P on X with parameter α uniquely satisfies
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the distributional equation

P
d= θδY + (1 − θ)P, (1)

where all the random elements on the right-hand side of (1) are independent. All the r.v.s intro-
duced in this paper are meant to be assigned on a probability space (�,F ,P) unless otherwise
stated. In [12], (1) is recognized as the distributional equation for the unique invariant measure
of a measure-valued Markov chain {Pm,m ≥ 0} defined via the recursive identity

Pm = θmδYm + (1 − θm)Pm−1, m ≥ 1, (2)

where P0 ∈ PX is arbitrary, {Ym,m ≥ 1} is a sequence of X-valued r.v.s independent and
identically distributed as Y and {θm,m ≥ 1} is a sequence of r.v.s, independent and identi-
cally distributed as θ and independent of {Ym,m ≥ 1}. We term {Pm,m ≥ 0} as the Feigin–
Tweedie Markov chain. By investigating the functional Markov chain {Gm,m ≥ 0}, with Gm :=∫

X
g(x)Pm(dx) for any m ≥ 0 and for any measurable linear function g : X �→ R, [12] provide

properties of the corresponding linear functional of a Dirichlet process. In particular, the ex-
istence of the linear functional G := ∫

X
g(x)P (dx) of the Dirichlet process P is characterized

according to the condition
∫

X
log(1+|g(x)|)α(dx) < +∞; these functionals were considered by

[16] and their existence was also investigated by [7] who referred to them as moments, as well
as by [39] and [4]. Further developments of the linear functional Markov chain {Gm,m ≥ 0} are
provided by [15,17] and more recently by [8].

Starting from the distributional equation (1), a constructive definition of the Dirichlet pro-
cess has been proposed by [33]. If P is a Dirichlet process on X with parameter α = aα0, then
P = ∑

1≤i≤∞ piδYi
where {Yi, i ≥ 1} is a sequence of independent r.v.s identically distributed

according to α0 and {pi, i ≥ 1} is a sequence of r.v.s independent of {Yi, i ≥ 1} and derived by
the so-called stick breaking construction, that is, p1 = w1 and pi = wi

∏
1≤j≤i−1(1 − wj) for

i > 1, with {wi, i ≥ 1} being a sequence of independent r.v.s identically distributed according to
a Beta distribution with parameter (1, a). Then, equation (1) arises by considering

P = p1δY1 + (1 − w1)

∞∑
i=2

p̃iδYi
,

where now p̃2 = w2 and p̃i = wi

∏
2≤j≤i−1(1 − wj) for i > 2. Thus, it is easy to see that P̃ :=∑

2≤i≤∞ p̃iδYi
is also a Dirichlet process on X with parameter α and it is independent of the pairs

of r.v.s (p1, Y1). If we would extend this idea to n initial samples, we should consider writing

P = θ

n∑
i=1

(
pi

θ

)
δYi

+ (1 − θ)P̃ ,

where θ = ∑
1≤i≤n pi = 1 − ∏

1≤i≤n(1 − wi) and P̃ is a Dirichlet process on X with parameter
α independent of the random vectors (p1, . . . , pn) and (Y1, . . . , Yn). However, this is not an easy
extension since the distribution of θ is unclear, and moreover θ and

∑
1≤i≤n(pi/θ)δYi

are not
independent. For this reason, in [11] an alternative distributional equation has been introduced.
Let α be a strictly positive finite measure on X with total mass a > 0 and let {Yj , j ≥ 1} be a X-
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valued Pólya sequence with parameter α (see [2]), that is, {Yj , j ≥ 1} is a sequence of X-valued
r.v.s characterized by the following predictive distributions

P(Yj+1 ∈ A|Y1, . . . , Yj ) = 1

a + j
α(A) + 1

a + j

j∑
i=1

δYi
(A), j ≥ 1,

and P(Y1 ∈ A) = α(A)/a, for any A ∈ X. The sequence {Yj , j ≥ 1} is exchangeable, that is,
for any j ≥ 1 and any permutation σ of the indexes (1, . . . , j), the law of the r.v.s (Y1, . . . , Yj )

and (Yσ(1), . . . , Yσ(j)) coincide; in particular, according to the celebrated de Finetti representa-
tion theorem, the Pólya sequence {Yj , j ≥ 1} is characterized by a so-called de Finetti measure,
which is the law of a Dirichlet process on X with parameter α. For a fixed integer n ≥ 1, let
(q

(n)
1 , . . . , q

(n)
n ) be a random vector distributed according to the Dirichlet distribution with pa-

rameter (1, . . . ,1),
∑

1≤i≤n q
(n)
i = 1, and let θ be a r.v. distributed according to a Beta distribu-

tion with parameter (n, a) such that {Yi, i ≥ 1}, (q
(n)
1 , . . . , q

(n)
n ) and θ are mutually independent.

Moving from such a collection of random elements, Lemma 1 in [11] implies that a Dirichlet
process P (n) on X with parameter α uniquely satisfy the distributional equation

P (n) d= θ

n∑
i=1

q
(n)
i δYi

+ (1 − θ)P (n), (3)

where all the random elements on the right-hand side of (3) are independent. In order to em-
phasize the additional parameter n, we used an upper-script (n) on the Dirichlet process P and
on the random vector (q

(n)
1 , . . . , q

(n)
n ). It can be easily checked that equation (3) generalizes (1),

which can be recovered by setting n = 1.
In the present paper, our aim is to further investigate the distributional equation (3) and its im-

plications in Bayesian nonparametrics theory and methods. The first part of the paper is devoted
to investigate the random element

∑
1≤i≤n q

(n)
i δYi

in (3) which is recognized to be the random
probability measure (r.p.m.) at the nth step of a measure-valued Markov chain defined via the
recursive identity

n∑
i=1

q
(n)
i δYi

= WnδYn + (1 − Wn)

n−1∑
i=1

q
(n−1)
i δYi

, n ≥ 1, (4)

where {Wn,n ≥ 1} is a sequence of independent r.v.s, each Wn distributed according a Beta
distribution with parameter (1, n − 1), q

(n)
i = Wi

∏
i+1≤j≤n(1 − Wj) for i = 1, . . . , n and n ≥

1 and the sequence {Wn,n ≥ 1} is independent from {Yn,n ≥ 1}. More generally, we observe
that the measure-valued Markov chain defined via the recursive identity (4) can be extended
by considering, instead of a Pólya sequence {Yn,n ≥ 1} with parameter α, any exchangeable
sequence {Zn,n ≥ 1} characterized by some de Finetti measure on PX and such that {Wn,n ≥ 1}
is independent from {Zn,n ≥ 1}. Asymptotic properties for this new class of measure-valued
Markov chains are derived and some linkages to Bayesian nonparametric mixture modelling are
discussed. In particular, we remark how it is closely related to a well-known recursive algorithm
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introduced in [25] for estimating the underlying mixing distribution in mixture models, the so-
called Newton’s algorithm.

In the second part of the paper, by using finite and asymptotic properties of the r.p.m.∑
1≤i≤n q

(n)
i δYi

and by following the original idea of [12], we define and investigate from (3)

a class of measure-valued Markov chain {P (n)
m ,m ≥ 0} which generalizes the Feigin–Tweedie

Markov chain, introducing a fixed integer parameter n. Our aim is in providing features of the
Markov chain {P (n)

m ,m ≥ 0} in order to verify if it preserves some of the properties character-
izing the Feigin–Tweedie Markov chain; furthermore, we are interested in analyzing asymptotic
(as m goes to +∞) properties of the associated linear functional Markov chain {G(n)

m ,m ≥
0} with G

(n)
m := ∫

X
g(x)P

(n)
m (dx) for any m ≥ 0 and for any function g : X �→ R such that∫

R
log(1 + |g(x)|)α(dx) < +∞. In particular, we show that the Feigin–Tweedie Markov chain

{Pm,m ≥ 0} sits in a larger class of measure-valued Markov chains {P (n)
m ,m ≥ 0} parametrized

by an integer number n and still having the law of a Dirichlet process with parameter α as unique
invariant measure. The role of the further parameter n is discussed in terms of new potential
applications of the Markov chain {P (n)

m ,m ≥ 0} with respect to the the known applications of the
Feigin–Tweedie Markov chain.

Following these guidelines, in Section 2 we introduce a new class of measure-valued Markov
chains {Qn,n ≥ 1} defined via exchangeable sequences of r.v.s; asymptotic results for {Qn,n ≥
1} are derived and applications related to Bayesian nonparametric mixture modelling are dis-
cussed. In Section 3, we show that the Feigin–Tweedie Markov chain {Pm,m ≥ 0} sits in a larger
class of measure-valued Markov chains {P (n)

m ,m ≥ 0}, which is investigated in comparison with
{Pm,m ≥ 0}. In Section 4, some concluding remarks and future research lines are presented.

2. A class of measure-valued Markov chains and Newton’s
algorithm

Let {Wn,n ≥ 1} be a sequence of independent r.v.s such that W1 = 1 almost surely and Wn has
Beta distribution with parameter (1, n− 1) for n ≥ 2. Moreover, let {Zn,n ≥ 1} be a sequence of
X-valued exchangeable r.v.s independent from {Wn,n ≥ 1} and characterized by some de Finetti
measure on PX. Let us consider the measure-valued Markov chain {Qn,n ≥ 1} defined via the
recursive identity

Qn = WnδZn + (1 − Wn)Qn−1, n ≥ 1. (5)

In the next theorem, we provide an alternative representation of Qn and show that Qn(ω) con-
verges weakly to some limit probability Q(ω) for almost all ω ∈ �, that is, for each ω in some
set A ∈ F with P(A) = 1. In short, we use notation Qn ⇒ Q a.s.-P.

Theorem 1. Let {Qn,n ≥ 1} be the Markov chain defined by (5). Then:

(i) an equivalent representation of Qn, n = 1,2, . . . is

Qn =
n∑

i=1

q
(n)
i δZi

, (6)
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where
∑

1≤i≤n q
(n)
i = 1, q(n) = (q

(n)
1 , . . . , q

(n)
n ) has Dirichlet distribution with parameter

(1,1, . . . ,1), and {q(n), n ≥ 1} and {Zn,n ≥ 1} are independent.
(ii) There exists a r.p.m. Q on (�,F ,P) such that, as n → +∞,

Qn ⇒ Q, a.s.-P,

where the law of Q is the de Finetti measure of the sequence {Zn,n ≥ 1}.

Proof. As far as (i) is concerned, by repeated application of the recursive identity (5), it can be
checked that, for any n ≥ 1,

Qn =
n∑

i=1

Wi

n∏
j=i+1

(1 − Wj)δZi
,

where W1 = 1 almost surely and
∏

i+1≤j≤n(1 − Wj) is defined to be 1 when i = n. Defin-

ing q
(n)
i := Wi

∏
i+1≤j≤n(1 − Wj), i = 1, . . . , n, it is straightforward to show that q(n) =

(q
(n)
1 , . . . , q

(n)
n ) has the Dirichlet distribution with parameter (1,1, . . . ,1) and

∑
1≤i≤n q

(n)
i = 1,

so that (6) holds.
Regarding (ii), by the definition of the Dirichlet distribution, an equivalent representation of

(6) is

Qn =
n∑

i=1

q
(n)
i δZi

=
n∑

i=1

λi∑n
j=1 λj

δZi
,

where {λn,n ≥ 1} is a sequence of r.v.s independent and identically distributed according to
standard exponential distribution, independent from {Zn,n ≥ 1}. Let g : X → R be any bounded
continuous function, and consider

Gn =
∫

X

g dQn =
n∑

i=1

λi∑n
1 λj

g(Zi) =
∑n

i=1 λig(Zi)/n∑n
1 λi/n

.

The expression in the denominator converges almost surely to 1 by the strong law of large num-
bers. As far as the numerator is concerned, let Q be the r.p.m. defined on (�,F ,P), such that
the r.v.s {Zn,n ≥ 1} are independent and identically distributed conditionally on Q; the existence
of such a random element is guaranteed by the de Finetti representation theorem (see, e.g., [32],
Theorem 1.49). It can be shown that {λng(Zn), n ≥ 1} is a sequence of exchangeable r.v.s and, if
t1, . . . , tn ∈ R,

P
(
λ1g(Z1) ≤ t1, . . . , λng(Zn) ≤ tn

)
=

∫
(0,+∞)n

P
(
λ1g(Z1) ≤ t1, . . . , λng(Zn) ≤ tn|λ1, . . . , λn

) n∏
i=1

e−λi dλi
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=
∫

(0,+∞)n

∫
PR

n∏
i=1

FQ∗
(

ti

λi

)
μ(dQ∗)

n∏
i=1

e−λi dλi

=
∫

PR

n∏
i=1

(∫ +∞

0
FQ∗

(
ti

λi

)
e−λi dλi

)
μ(dQ∗),

where Q∗(A,ω) := P(g−1(A),ω), ω ∈ �, A ∈ R, is a r.p.m. with trajectories in PR, and
FQ∗ denotes the random distribution relative to Q∗. This means that, conditionally on Q∗,
{λng(Zn), n ≥ 1} is a sequence of r.v.s independent and identically distributed according to the
random distribution (evaluated in t ) ∫ +∞

0
FQ∗

(
t

y

)
e−y dy.

Of course, E|λ1g(Z1)| = E(λ1)E|g(Z1)| < +∞ since g is bounded. As in [3], Example 7.3.1,
this condition implies

1

n

n∑
i=1

λig(Zi)
a.s.→ E(λ1g(Z1)|Q∗) =

∫
R

t d

(∫ +∞

0
FQ∗

(
t

y

)
e−y dy

)

=
∫

R

uQ∗(du) =
∫

X

g(x)Q(dx),

so that Gn → ∫
X

g(x)Q(dx) a.s.-P. By Theorem 2.2 in [1], it follows that Qn ⇒ Q a.s.-P as
n → +∞. �

Throughout the paper, α denotes a strictly positive and finite measure on X with total mass a,
unless otherwise stated. If the exchangeable sequence {Zn,n ≥ 1} is the Pólya sequence with
parameter α, then by Theorem 1(i) {Qn,n ≥ 1} is the Markov chain defined via the recursive
identity (4); in particular, by Theorem 1(ii), Qn ⇒ Q a.s.-P where Q is a Dirichlet process on X

with parameter α. This means that, for any fixed integer n ≥ 1, the r.p.m. Qn can be interpreted
as an approximation of a Dirichlet process with parameter α. In Appendix A.1, we present an
alternative proof of the weak convergence (convergence of the finite dimensional distribution) of
{Qn,n ≥ 1} to a Dirichlet process on X with parameter α, using a combinatorial technique. As a
byproduct of this proof, we obtain an explicit expression for the moment of order (r1, . . . , rk) of
the k-dimensional Pólya distribution.

A straightforward generalization of the Markov chain {Qn,n ≥ 0} can be obtained by con-
sidering a nonparametric hierarchical mixture model. Let k : X × 	 → R

+ be a kernel, that is,
k(x,ϑ) is a measurable function such that x �→ k(x,ϑ) is a density with respect to some σ -
finite measure λ on X, for any fixed ϑ ∈ 	, where 	 is a Polish space (with the usual Borel
σ -field). Let {Qn,n ≥ 1} be the Markov chain defined via (5). Then for each x ∈ X we introduce
a real-valued Markov chain {f (Q)

n (x), n ≥ 1} defined via the recursive identity

f (Q)
n (x) = Wnk(x,ϑn) + (1 − Wn)f

(Q)
n−1(x), n ≥ 1, (7)
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where

f (Q)
n (x) =

∫
	

k(x,ϑ)Qn(dϑ).

By a straightforward application of Theorem 2.2 in [1], for any fixed x ∈ X, when ϑ �→ k(x,ϑ)

is continuous for all x ∈ X and bounded by a function h(x), as n → +∞, then

f (Q)
n (x) → f (Q)(x) :=

∫
	

k(x,ϑ)Q(dϑ), a.s.-P, (8)

where Q is the limit r.p.m. in Theorem 1. For instance, if Q is a Dirichlet process on X with
parameter α, f (Q) is precisely the density in the Dirichlet process mixture model introduced by
[19]. When h(x) is a λ-integrable function, not only the limit f Q(x) is a random density, but a
stronger result than (8) is achieved.

Theorem 2. If ϑ �→ k(x,ϑ) is continuous for all x ∈ X and bounded by a λ-integrable function
h(x), then

lim
n→+∞

∫
X

∣∣f (Q)
n (x) − f (Q)(x)

∣∣λ(dx) → 0, a.s.-P,

where Q is the limit r.p.m. in Theorem 1.

Proof. The functions f
(Q)
n and f (Q)(x) = ∫

	
k(x,ϑ)Q(dϑ), defined on X × �, are X ⊗ F -

measurable, by a monotone class argument. In fact, by kernel’s definition, (x,ϑ) �→ k(x,ϑ) is
X ⊗ B(	)-measurable. Moreover, if k = 1A1B , A ∈ X and B ∈ B(	), then

f (Q)(x,ω) =
∫

k(x,ϑ)Q(dϑ;ω) = 1A(x)Q(B;ω)

is X ⊗ F -measurable. Let C = {C ∈ X ⊗ B(	):
∫
1C(x,ϑ)Q(dϑ;ω) is X ⊗ F -measurable}.

Since C contains the rectangles, it contains the field generated by rectangles, and, since C is a
monotone class, C = X ⊗ B(	). The assertion holds for f (Q) of the form

f (Q)(x) =
∫

	

k(x,ϑ)Q(dϑ)

since there exist a sequence of simple function on rectangles which converges pointwise to k.
Therefore, A := {(ω, x)): f

(Q)
n (ω, x) does not converge to f (Q)(ω, x)} ∈ F ⊗ X. Then, by

Fubini’s theorem,∫
λ
{
x: f (Q)

n (ω, x) does not converge to f (Q)(ω, x)
}
P(dω)

=
∫ ∫

1A(ω,x)λ(dx)P(dω)
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=
∫

P
{
ω: f (Q)

n (ω, x) does not converge to f (Q)(ω, x)
}
λ(dx)

=
∫

0λ(dx) = 0.

Hence, P(H) = 1 where H is the set of ω such that λ{x: f
(Q)
n (ω, x) does not converge to

f (Q)(ω, x)} = 0. For any ω fixed in H , it holds f
(Q)
n (ω, ·) → f (Q)(ω, ·), λ-a.e., so that by the

Scheffé’s theorem we have

lim
n→+∞

∫
X

∣∣f (Q)
n (ω, x) − f (Q)(ω, x)

∣∣λ(dx) → 0.

The theorem follows since P(H) = 1. �

We conclude this section by remarking an interesting linkage between the Markov chain
{Qn,n ≥ 1} and the so-called Newton’s algorithm, originally introduced in [25] for estimat-
ing the mixing density when a finite sample is available from the corresponding mixture model.
See also See also [24] and [23]. Briefly, suppose that X1, . . . ,Xn are n r.v.s independent and
identically distributed according to the density function

f̃ (x) =
∫

	

k(x,ϑ)Q̃(dϑ), (9)

where k(x,ϑ) is a known kernel dominated by a σ -finite measure λ on X; assume that the mixing
distribution Q̃ is absolutely continuous with respect to some σ -finite measure μ on 	. [23]
proposed to estimate q̃ = dQ̃/dμ as follows: fix an initial estimate q̂1 and a sequence of weights
w1,w2, . . . ,wn ∈ (0,1). Given X1, . . . ,Xn independent and identically distributed observations
from f̃ , compute

q̂i (ϑ) = (1 − wi)q̂i−1(ϑ) + wi

k(xi,ϑ)q̂i−1(ϑ)∫
	

k(xi,ϑ)q̂i−1(ϑ)μ(dϑ)
, ϑ ∈ 	

for i = 2,3, . . . , n and produce q̂n as the final estimate. We refer to [13,20,34], and [21] for a
recent wider investigation of the Newton’s algorithm. Here we show how the Newton’s algorithm
is connected to the measure-valued Markov chain {Qn,n ≥ 1}.

Let us consider n observations from the nonparametric hierarchical mixture model, that is,
Xi |ϑi ∼ k(·, ϑi) and ϑi |Q ∼ Q where Q is a r.p.m. If we observed {ϑi, i ≥ 1}, then by virtue of
(ii) in Theorem 1, we could construct a sequence of distributions

Qi = Wiδϑi
+ (1 − Wi)Qi−1, i = 1, . . . , n

for estimating the limit r.p.m. Q, where {Wi, i ≥ 1} is a sequence of independent r.v.s such that
W1 = 1 almost surely and Wi has Beta distribution with parameters (1, i−1). This approximating
sequence is precisely the sequence (5). Therefore, taking the expectation of both sides of the
previous recursive equation, and defining Q̃i := E[Qi], wi = E[Wi] = 1/i, we have

Q̃i = wiδϑi
+ (1 − wi)Q̃i−1, i = 1, . . . , n, (10)
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which can represent a predictive distribution for ϑi+1, and hence an estimate for Q.
However, instead of observing the sequence {ϑi, i ≥ 1}, it is actually the sequence {Xi, i ≥ 1}

which is observed; in particular, we can assume that X1, . . . ,Xn are n r.v.s independent and iden-
tically distributed according to the density function (9). Therefore, instead of (10), we consider

Q̃i(dϑ) = (1 − wi)Q̃i−1(dϑ) + wi

k(xi,ϑ)Q̃i−1(dϑ)∫
	

k(xi,ϑ)Q̃i−1(dϑ)
, i = 1, . . . , n,

where δϑi
in (10) has been substituted (or estimated, if you prefer) by k(xi,ϑ)Q̃i−1(dϑ)/∫

	
k(xi,ϑ)Q̃i−1(dϑ). Finally, observe that, if Q̃i is absolutely continuous, with respect to some

σ -finite measure μ on 	, with density q̃i , for i = 1, . . . , n, then we can write

q̃i (ϑ) = (1 − wi)̃qi−1(ϑ) + wi

k(xi,ϑ)̃qi−1(ϑ)∫
	

k(xi,ϑ)̃qi−1(ϑ)μ(dϑ)
, i = 1, . . . , n, (11)

which is precisely a recursive estimator of a mixing distribution proposed by [23] when the
weights are fixed to be wi = 1/i for i = 1, . . . , n and the initial estimate is E[δϑ1 ].

3. A generalized Feigin–Tweedie Markov chain

In this section our aim is to define and investigate a class of measure-valued Markov chain which
generalizes the Feigin–Tweedie Markov chain introducing a fixed integer parameter n, and still
has the law of a Dirichlet process with parameter α as the unique invariant measure. The starting
point is the distributional equation (3) introduced by [11]; see Appendix A.2 for an alternative
proof of the solution of the distributional equation (3). All the proofs of Theorems in this section
are in Appendix A.3 for the ease of reading.

For a fixed integer n ≥ 1, let θ := {θm,m ≥ 1} be a sequence of independent r.v.s with Beta
distribution with parameter (n, a), q(n) := {(q(n)

m,1, . . . , q
(n)
m,n),m ≥ 1}, with

∑
1≤i≤n q

(n)
m,i = 1 for

any m > 0, be a sequence of independent r.v.s identically distributed according to a Dirichlet
distribution with parameter (1, . . . ,1) and Y := {(Ym,1, . . . , Ym,n), m ≥ 1} be sequence of inde-
pendent r.v.s from a Pólya sequence with parameter α. Moving from such collection of random
elements, for each fixed integer n ≥ 1 we define the measure-valued Markov chain {P (n)

m ,m ≥ 0}
via the recursive identity

P (n)
m = θm

n∑
i=1

q
(n)
m,iδYm,i

+ (1 − θm)P
(n)
m−1, m ≥ 1, (12)

where P
(n)
0 ∈ PX is arbitrary. By construction, the Markov chain {Pm,m ≥ 0} proposed by

[12] and defined via the recursive identity (2) can be recovered from {P (n)
m ,m ≥ 0} by setting

n = 1. Following the original idea of [12], by equation (12) we have defined the Markov chain
{P (n)

m ,m ≥ 0} from a distributional equation having as the unique solution the Dirichlet pro-
cess. In particular, the Markov chain {P (n)

m ,m ≥ 0} is defined from the distributional equation (3)
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which generalizes (1) substituting the random probability measure δY with the random convex
linear combination

∑
1≤i≤n q

(n)
i δYi

, for any fixed positive integer n. Observe that
∑

1≤i≤n q
(n)
i δYi

is an example of the r.p.m. Qn defined in (6) and investigated in the previous section, when {Zi}
is given by the Pólya sequence {Yi} with parameter α. In particular, Theorem 1 shows that Qn

a.s.-converges to the Dirichlet process P when n goes to infinity; however here we assume a
different perspective, that is, n is fixed.

As for the case n = 1, the following result holds.

Theorem 3. The Markov chain {P (n)
m ,m ≥ 0} has a unique invariant measure � which is the

law of a Dirichlet process P with parameter α.

Another property which still holds in the more general case when n ≥ 1 is the Harris ergodicity
of the functional Markov chain {G(n)

m ,m ≥ 0}, under assumption (13) below. This condition is
equivalent to the finiteness of the r.v.

∫
X

|g(x)|P(dx); see also [4].

Theorem 4. Let g : X �→ R be any measurable function. If∫
X

log
(
1 + |g(x)|)α(dx) < +∞, (13)

then the Markov chain {G(n)
m ,m ≥ 0} is Harris ergodic with unique invariant measure �g , which

is the law of the random Dirichlet mean
∫

X
g(x)P (dx).

We conclude the analysis of the Markov chain {P (n)
m ,m ≥ 0} by providing some results on the

ergodicity of the Markov chain {G(n)
m ,m ≥ 0} and by discussing on the rate of convergence. Let

X = R and let {P (n)
m ,m ≥ 0} be the Markov chain defined by (12). In particular, for the rest of

the section, we consider the mean functional Markov chain {M(n)
m ,m ≥ 0} defined recursively by

M(n)
m = θm

n∑
i=1

q
(n)
m,iYm,i + (1 − θm)M

(n)
m−1, m ≥ 1, (14)

where M
(n)
0 ∈ R is arbitrary and n is a given positive integer. From Theorem 4, under the con-

dition
∫

R
log(1 + |x|)α(dx) < +∞, the Markov chain {M(n)

m ,m ≥ 0} has the distribution M of
the random Dirichlet mean M as the unique invariant measure. It is not restrictive to consider
only the chain {M(n)

m ,m ≥ 0}, since a more general linear functionals G of a Dirichlet process on
an arbitrary Polish space has the same distribution as the mean functional of a Dirichlet process
with parameter αg , where αg(B) := α(g−1(B)) for any B ∈ R.

Theorem 5. The Markov chain {M(n)
m ,m ≥ 0} satisfies the following properties:

(i) {M(n)
m ,m ≥ 0} is a stochastically monotone Markov chain;
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(ii) if further

E[|Y1,1|] =
∫

R

|x|α0(dx) < +∞, (15)

then {M(n)
m ,m ≥ 0} is a geometrically ergodic Markov chain;

(iii) if the support of α is bounded then {M(n)
m ,m ≥ 0} is an uniformly ergodic Markov chain.

Recall that the stochastic monotonicity property of {M(n)
m ,m ≥ 0} allows to consider exact

sampling (see [27]) for M via {M(n)
m ,m ≥ 0}.

Remark 1. Condition (15) can be relaxed. If the following condition holds

E[|Y1,1|s] =
∫

R

|y|sα0(dx) < +∞ for some 0 < s < 1, (16)

then the Markov chain {M(n)
m ,m ≥ 0} is geometrically ergodic. See Appendix A.3 for the proof.

If, for instance, α0 is a Cauchy standard distribution and a > 0, condition (16) is fulfilled so that
{M(n)

m ,m ≥ 0} will turn out to be geometrically ergodic for any fixed integer n.

From Theorem 1, T (n) := ∑
1≤i≤n q

(n)
i Yi = ∫

R
x(

∑
1≤i≤n q

(n)
i δYi

)(dx) converges in distribu-
tion to the random Dirichlet mean M as n → +∞; so it is clear that, for a fixed integer n, the
law of T (n) approximates the law of M and that the approximation will be better for n large. If
we reconsider (14), written as

M(n)
m = θmT (n)

m + (1 − θm)M
(n)
m−1, m ≥ 1,

since the innovation term T (n) is an approximation in distribution of the limit (as m → +∞) r.v.
M , it is intuitive that the rate of convergence will increase as n gets larger. This is confirmed by
the description of small sets C(n) in (22) (in the proof of Theorem 5). In fact, under (15) or (16),
the Markov chain {M(n)

m ,m ≥ 0} is geometrically or uniformly ergodic since it satisfies a Foster–
Lyapunov condition PV (x) := ∫

R
V (y)p(x,dy) ≤ λV (x) + b1C(n) (x) for a suitable function V ,

a small set C(n) and constants b < +∞, 0 < λ < 1. In particular, the small sets C(n) generalize
the corresponding small set C obtained in Theorem 1 in [15] which can be recovered by setting
n = 1, that is, C = [−K(λ),K(λ)] where

K(λ) := 1 − λ + 1/(1 + a)E[|Y1,1|]
λ − a/(1 + a)

.

Here the size of the small set C(n) of {M(n)
m ,m ≥ 0} can be controlled by an additional parame-

ter n, suggesting the upper bounds of the rate of convergence of the chain {M(n)
m ,m ≥ 0} depends

on n too.
However, if we would establish an explicit upper bound on the rate of convergence, we would

need results like Theorem 2.2 in [30], or Theorems 5.1 and 5.2 in [29]. All these results need a
minorization condition to hold for the m0th step transition probability p

(n)
m0 (x,A) := P(M

(n)
m ∈
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A|M(n)
0 = x) for any A ∈ R and x ∈ R, for some positive integer m0 and all x in a small set; in

particular, if infx∈C(n) f (z|x) ≥ p
(n)
0 (z), where f (z|x) is the density of p

(n)
1 (x, ·) and p

(n)
0 (z) is

some density such that ε(n) := ∫
R

p
(n)
0 (z)dz > 0, then

p
(n)
1 (x,A) ≥ ε(n)

∫
A

p
(n)
0 (z)

ε(n)
dz = ε(n)ν(A), A ∈ R, x ∈ C(n),

where ν is a probability measure on R. In order to check the validity of our intuition that the rate
of convergence will increase as n gets larger, the function ε(n) should be increasing with n in
order to prove that the uniform error (when the support of the Yi ’s is bounded) in total variation
between the law of M

(n)
m given M

(n)
0 and its limit distribution decreases as n increases. If fT (n)

is the density of T (n), which exists since, conditioning on Yi ’s, T (n) is a random Dirichlet mean,
then

p
(n)
1 (x,A) =

∫
A

f (z|x)dz =
∫

R

P
(
θ1y + (1 − θ1)x ∈ A|T (n) = y,M

(n)
0 = x

)
fT (n) (y)dy.

Therefore, the density function corresponding to p
(n)
1 (x,A) is

f (z|x) = 1

B(a,n)

∫
R

(z − x)n−1(y − z)a−1

(y − x)a+n−2|y − x| 1{(0,1)}
(

z − x

y − x

)
fT (n) (y)dy

=

⎧⎪⎪⎨⎪⎪⎩
1

B(a,n)

∫ z

−∞
(x − z)n−1(z − y)a−1

(x − y)a+n−1
fT (n) (y)dy, if z < x,

1

B(a,n)

∫ +∞

z

(z − x)n−1(y − z)a−1

(y − x)a+n−1
fT (n) (y)dy, if z > x

= 1

B(a,n)

∫ 1

0
tn−2(1 − t)a−1fT (n)

(
z − (1 − t)x

t

)
dt.

Unfortunately, the explicit expression of fT (n) , which for n = 1 reduces to the density of α0 if it
exists, is not simple; from Proposition 5 in [28] for instance, for y ∈ R,

fT (n) (y) =
∫

Rn

fT (n) (y;y1, . . . , yn)F(Y1,...,Yn)(dy1, . . . , yn),

where, when y �= yi for i = 1, . . . , n,

fT (n) (y;y1, . . . , yn) = n − 1

π

∫ +∞

0

n∏
j=1

1

(1 + t2(yj − y)2)1/2
cos

(
n∑

j=1

arctan
(
t (yj − y)

))
dt;

here F(Y1,...,Yn) is the distribution of (Y1, . . . , Yn) which, by definition, can be recovered by the
product rule F(Y1,...,Yn)(y1, . . . , yn) = FY1(y1)FY2|Y1(y2;y1) · · ·FYn|Y1,...,Yn−1(yn;y1, . . . , yn−1)
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with F1 = A0 and

FYj |Y1,...,Yj−1(y;y1, . . . , yj−1) = a

a + j − 1
A0(y) + 1

a + j − 1

j−1∑
i=1

1(−∞,y](yi).

However, some remarks on the asymptotic behavior of ε(n) can be made under suitable condi-
tions. Since,

1

t
fT (n)

(
z − (1 − t)x

t

)
≥ fT (n)

(
z − (1 − t)x

t

)
,

if the support of Yi ’s is bounded (for instance equal to [0,1]) and the derivative of fT (n) is
bounded by some constant K , then, by Taylor expansion of fT (n) , we have

ε(n) = 1

B(a,n)

∫ 1

0
(1 − t)a−1tn

(∫ 1

0

1

t
fT (n) (z/t)dz

)
dt

− 1

B(a,n)
sup

x∈C(n)

x

∫ 1

0

(∫ 1

0
(1 − t)atn−2f

′
T (n)

(
zx,t

t

)
dt

)
dz

(17)

≥ n

a + n
− KK(n)(λ)

∫ 1

0
(1 − t)atn−2 dt

= n

a + n
− aKK(n)(λ)

n − 1
.

For a large enough n0, if we fix λ equal to some positive constant C which is grater than a/(a+n)

for all n > n0, then K(n)(λ) is bounded above by

1 − C + E[Y1,1]
C − a/(a + n0)

.

The second term in (17) is negligible with respect to the first term, which increase as n increases.
As we mentioned, when the support of the Yi ’s is bounded, from Theorem 16.2.4 in [22] it
follows that the error in total variation between the mth transition probability of the Markov
chain {M(n)

m ,m ≥ 0} and the limit distribution M is less than (1 − ε(n))m. This error decreases
for n increasing greater than n0.

So far we have provided only some qualitative features on the rate of convergence; however,
the derivation of the explicit bound of the rate of convergence of M

(n)
m to M for each fixed n, via

p
(n)
0 and ε(n), is still an open problem. Some examples confirm our conjecture that the conver-

gence of the Markov chain {M(n)
m ,m ≥ 0} improves as n increases. Nonetheless, we must point

out that simulating the innovation term T (n) for n larger than 1 will be more computationally
expensive, and also that this cost will be increasing as n increases. In fact, if n is greater that
one, 2n − 1 more r.v.s must be drawn at each iteration of the Markov chain (n − 1 more from
the Pólya sequence and n more from the finite-dimensional Dirichlet distribution). Moreover, we
compared the total user times of the R function simulating {M(n)

m ,m = 0, . . . ,500}. We found
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that all these times were small, of course depending on α0, but not on the total mass parameter
a (all the other values being fixed). The total user times when n = 2 were about 50% greater
than those for n = 1, while they were about 5, 10 and 50 times greater when n = 10,20 and
100, respectively, for a number of total iterations equal to 500. From the following examples, we
found that values of n between 2 and 20 are a good choice between a fast rate of convergence
and a moderate computational cost.

Example 1. Let α0 be a Uniform distribution on (0,1) and let a be the total mass. In this case
E[|Y1,j |] = 1/2 so that for any fixed integer n, the chain will be geometrically ergodic; moreover,
it can be proved that (0,1) is small so that the chain is uniformly ergodic. When a = 1, [15]
showed that the convergence of {Mm,m ≥ 0} is very good and there is no need to consider the
chain with n > 1. We consider the cases a = 10, 50 and 100, and for each of them we run the
chain for n = 1, 2, 10 and 20. We found that the trace plots do not depend on the initial values. In
Figure 1, we give the trace plots of M

(n)
m when M

(n)
0 = 0. Observe that convergence improves as

n increases for any fixed value of a; however the improvement is more glaring from the graph for
large a. When a = 100 the convergence of the chain for n = 1 seems to occur at about m = 350,
while for n = 20 the convergence is at about a value between 50 and 75. For these values of n,
the total user times to reach convergence was 0.038 seconds for the former, and 0.066 seconds
for the latter. Moreover, the total user times to simulate 500 iterations of {M(n)

m ,m ≥ 0} were
0.05, 0.071, 0.226, 0.429, 2.299 seconds when n = 1,2,10,20,100, respectively.

Figure 1. Traceplots of the Markov chain {M(n)
m ,m ≥ 0} with α0 the Uniform distribution on (0,1),

a = 10,50,100 and n = 1 (solid blue line), n = 2 (dashed red line), n = 10 (dotted black line) and n = 20
(dot-dashed violet line).
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Figure 2. Traceplots of the Markov chain {M(n)
m ,m ≥ 0} with α0 the Gaussian distribution with parameter

(0,1), a = 10, n = 1,10,20 and M
(1)
0 = −3 (dashed red line), M

(1)
0 = 0 (solid blue line) and M

(1)
0 = 3

(dotted black line).

This behaviour is confirmed in the next example, where the support of the measure α is as-
sumed to be unbounded.

Example 2. Let α0 be a Gaussian distribution with parameter (0,1) and let a = 10. The behavior
of Mm,m ≥ 0 has been considered in [15]. Figure 2 displays the trace plots of M

(n)
m ,m ≥ 0 for

three different initial values (M(n)
0 = −3,0,3), with n = 1,10,20. Also in this case, it is clear

that the convergence improves as n increases. As far as the total user times are concerned, we
drew similar conclusions than in Example 1.

The next is an example in the mixture models context.

Example 3. Let us consider a Gaussian kernel k(x, θ) with unknown mean θ and known variance
equal to 1. If we consider the random density f (x) = ∫

R
k(x, θ)dP(θ), where P is a Dirichlet

process with parameter α, then, for any fixed x, f (x) is a random Dirichlet mean. Therefore, if
we consider the measure-valued Markov chain {P (n)

m ,m ≥ 0} defined recursively as in (12), we
define a sequence of random densities {f (n)

m (x),m ≥ 0}, where f
(n)
m (x) := ∫

R
k(x, θ)dP

(n)
m (θ) =

θm

∑n
1 q

(n)
m,ik(x,Ym,i) + (1 − θm)f

(n)
m−1(x). In each panel of Figure 3, we drew f

(n)
m (x) for differ-

ent values of m when n is fixed. In particular, we fixed α0 to be a Gaussian distribution with pa-
rameter (0,1), and let a = 100; in this case, since the “variance” of P is small, the mean density
E[f ](x) = ∫

R
k(x, θ)α0(dθ) (Gaussian with parameter (0,2)) will be very close to the random
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Figure 3. Plots of f
(n)
m as in Example 3; a = 100, α0 = N (0,1), n = 1,2,10,20 and f

(n)
0 = N (·;−3,1).

function f (x), so that it can be considered an approximation of the “true” density f (x). From
the plots, it is clear that the convergence improves as n increases: when n = 1, only f

(1)
1000(x) is

close enough to the mean density E[f ](x), while, if n = 20, f
(20)
100 (x), as well as the successive

iterations, is a good approximation of f (x). In any case, observe that even if the “true” density
f (x) is unknown, as when a = 1, the improvement (as n increases) is clear as well; see Figure 4,
where 5 draws of f

(n)
m (x), m = 1,100,1000, are plotted for different values of n.

4. Concluding remarks and developments

The paper [12] constitutes, as far as we know, the first work highlighting the interplay between
Bayesian nonparametrics on the one side and the theory of measure-valued Markov chains on
the other. In the present paper, we have further studied such interplay by introducing and investi-
gating a new measure-valued Markov chain {Qn,n ≥ 1} defined via exchangeable sequences of
r.v.s. Two applications related to Bayesian nonparametrics have been considered: the first gives
evidence that {Qn,n ≥ 1} is strictly related to the Newton’s algorithm of the mixture of Dirichlet
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Figure 4. Plots of 5 draws from f
(n)
m as in Example 3; a = 1, α0 = N (0,1), n = 1,2,10,20 and

f
(n)
0 = N (·;−3,1).

process model, while the second shows how {Qn,n ≥ 1} can be applied in order to a define a
generalization of the Feigin–Tweedie Markov chain.

An interesting development consists in investigating whether there are any new applications
related to the Feigin–Tweedie Markov chain apart from the well-known application in the field of
functional linear functionals of the Dirichlet process (see, e.g., [14]). The proposed generalization
of the Feigin–Tweedie Markov chain represents a large class of measure-valued Markov chains
{{P (n)

m ,m ≥ 0}, n ∈ N} maintaining all the same properties of the Feigin–Tweedie Markov chain;
in other terms, we have increased the flexibility of the Feigin–Tweedie Markov chain via a further
parameter n ∈ N. We believe that a number of different interpretations for n can be investigated
in order to extend the applicability of the Feigin–Tweedie Markov chain.

In this respect, an intuitive and simple extension is related to the problem of defining a (bi-
variate) vector of measure-valued Markov chains {(P (n1)

m ,P
(n2)
m ),m ≥ 0}, where, for each fixed

m, (P
(n1)
m ,P

(n2)
m ) is a vector of dependent random probabilities, n1 < n2 being fixed positive
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integers. Marginally, the two sequences {P (n1)
m ,m ≥ 0} and {P (n2)

m ,m ≥ 0} are defined via the
recursive identity (12); the dependence is achieved using the same Pólya sequence (Y

(n2)
m,1 , . . . ,

Y
(n2)
m,n1, . . . , Y

(n2)
m,n2) and assuming dependence in (θ

(n2)
m , θ

(n1)
m ) or between (q

(n2)
m,1 , . . . , q

(n2)
m,n2) and

(q
(n1)
m,1 , . . . , q

(n1)
m,n1). For instance, if, for each m, Zm,Z

(1)
m , . . . ,Z

(n1)
m , . . . ,Z

(n2)
m are independent

r.v.s, Zm with an Exponential distribution with parameter a, Z
(i)
m with an Exponential dis-

tribution with parameter 1, we could define θ
(n2)
m := ∑n2

i=1 Z
(i)
m /(Zm + ∑n2

i=1 Z
(i)
m ), θ

(n1)
m :=∑n1

i=1 Z
(i)
m /(Zm + ∑n1

i=1 Z
(i)
m ). Of course, the dependence is related to the difference between

n1 and n2. Work on this is ongoing.

Appendix

A.1. Weak convergence for the Markov chain {Qn,n ≥ 1}
A proof of the weak convergence of the sequence Qn = ∑n

1 q
(n)
i δYi

of r.p.m.s on X to a Dirichlet
process P is provided here, when the Yj ’s are a Pólya sequence with parameter measure α. The
result automatically follows from Theorem 1(ii), but this proof is interesting per se, since we use
a combinatorial technique; moreover an explicit expression for the moment of order (r1, . . . , rk)
of the k-dimensional Pólya distribution is obtained.

Proposition. Let Qn defined in (5), where {Yj , j ≥ 1} are a Pólya sequence with parameter α.
Then

Qn ⇒ P,

where P is a Dirichlet process on X with parameter α.

Proof. By Theorem 4.2 in [18], it is sufficient to prove that for any measurable partition
B1, . . . ,Bk of X,

(Qn(B1), . . . ,Qn(Bk)) ⇒ (P (B1), . . . ,P (Bk)),

characterizing the distribution of the limit. For any given measurable partition B1, . . . ,Bk of
X, by conditioning on Y1, . . . , Yn, it can be checked that (Qn(B1), . . . ,Qn(Bk−1)) is dis-
tributed according to a Dirichlet distribution with empirical parameter (

∑
1≤i≤n δYi

(B1), . . . ,∑
1≤i≤n δYi

(Bk−1),
∑

1≤i≤n δYi
(Bk)), and

P(#{i: Yi ∈ B1} = j1, . . . ,#{i: Yi ∈ Bk} = jk)
(18)

=
(

n

j1 · · · jk

)
(α(B1))j1↑1 · · · (α(Bk))jk↑1

(a)n↑1
,

where (j1, . . . , jk) ∈ D(0)
k,n with D(0)

k,n := {(j1, . . . , jk) ∈ {0, . . . , n}k : ∑
1≤i≤k ji = n}. For any

k-uple of nonnegative integers (r1, . . . , rk), we are going to compute the limit, for n → +∞, of
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the moment

E

[
(Qn(B1))

r1 · · · (Qn(Bk−1))
rk−1

(
1 −

k−1∑
i=1

Qn(Bi)

)rk
]

(19)

=
∑

(j1,...,jk)∈D(0)
k,n

(
n

j1 · · · jk

)
(α(B1))j1↑1 · · · (α(Bk))jk↑1

(a)n↑1

(j1)r1↑1 · · · (jk)rk↑1

(n)(r1+···+rk)↑1
,

where in general (x)n↑α denotes the Pochhammer symbol for the nth factorial power of x with
increment α, that is (x)n↑α := ∏

0≤i≤n−1(x + iα). We will show that, as n → +∞,

E

[
(Qn(B1))

r1 · · · (Qn(Bk−1))
rk−1

(
1 −

k−1∑
i=1

Qn(Bi)

)rk
]

→ E

[
(P (B1)

)r1 · · · (P (Bk−1))
rk−1

(
1 −

k−1∑
i=1

P(Bi)

)rk
]
,

where P is a Dirichlet process on X with parameter measure α, that is, the r.v. (P (B1), . . . ,

P (Bk−1)) has Dirichlet distribution with parameter (α(B1), . . . , α(Bk−1), α(Bk)). This will be
sufficient to characterize the distribution of the limit Q∗, because of the boundedness of the sup-
port of the limit distribution. First of all, we prove the convergence for k = 2, which corresponds
to the one-dimensional case. In particular, we have

E
[
(Qn(B1))

r1
(
1 − (Qn(B1))

)r2
]

= 1

(n)(r1+r2)↑1

∑
(j1,j2)∈D(0)

2,n

(
n

j1, j2

)
(α(B1))j1↑1(α(B2))j2↑1

(a)n↑1
(j1)r1↑1(j2)r2↑1

= 1

(n)(r1+r2)↑1

r1∑
t1=1

|s(r1, t1)|
t1∑

s1=1

S(t1, s1)

r2∑
t2=1

|s(r2, t2)|
t2∑

s2=1

S(t2, s2)

×
∑

(j1,j2)∈D(0)
2,n

(
n

j1, j2

)
(α(B1))j1↑1(α(B2))j2↑1

(a)n↑1
(j1)s1↓1(j2)s2↓1,

where (x)n↓1 := (−1)−n(−x)n↑1 and s(·, ·) and S(·, ·) are the Stirling number of the first and
second kind, respectively. Let us consider the following numbers, where s1, s2 are nonnegative
integers and n = 1,2, . . . ,

C(s1,s2)
n :=

∑
(j1,j2)∈D(0)

2,n

(
n

j1, j2

)
(α(B1))j1↑1(α(B2))j2↑1

(a)n↑1
(j1)s1↓1(j2)s2↓1,
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and prove they satisfy a recursive relation. In particular,

C
(s1,s2)
n+1 =

∑
(j1,j2)∈D(0)

2,n+1

(
n + 1

j1, j2

)
(α(B1))j1↑1(α(B2))j2↑1

(a)(n+1)↑1
(j1)s1↓1(j2)s2↓1

=
n∑

j1=0

(
n + 1

j1 + 1

)
(α(B1))(j1+1)↑1(α(B2))(n−j1)↑1

(a)(n+1)↑1
(j1 + 1)s1↓1(n − j1)s2↓1

= (n + 1)(α(B1) + s1 − 1)

(a + n)
C(s1−1,s2)

n + n + 1

(a + n)
C(s1,s2)

n ,

so that the following recursive equation holds

C
(s1,s2)
n+1 = (n + 1)(α(B1) + s1 − 1)

(a + n)
C(s1−1,s2)

n + n + 1

(a + n)
C(s1,s2)

n . (20)

Therefore, starting from C
(0,0)
n = 1, C

(0,1)
n = nα(B2)/a, we have

C(1,1)
n =

n−1∑
i=0

(i + 1)α(B1)

(a + i)
C

(0,1)
i

n−1∏
j=i+1

j + 1

a + j

= �(n + 1)α(B1)

�(a + n)

n−1∑
i=0

�(a + i)

�(i + 1)
C

(0,1)
i

= �(n + 1)α(B1)

�(a + n)

n−1∑
i=0

�(a + i)

�(i + 1)

iα(B2)

a
= α(B1)α(B2)(n)2↓1

(a)2↑1
,

and by (20) we obtain C
(s1,s2)
n = (α(B1))s1↑1(α(B2))s2↑1(n)(s1+s2)↓1/(a)(s1+s2)↑1. Thus,

lim
n→+∞ E

[
(Hn(B1))

r1
(
1 − (Hn(B1))

)r2
]

=
r1∑

t1=0

|s(r1, t1)|
t1∑

s1=0

S(t1, s1)

r2∑
t2=0

|s(r2, t2)|
t2∑

s2=0

S(t2, s2) lim
n→+∞

C
(s1,s2)
n

(n)(r1+r2)↑1

= |s(r1, r1)|S(r1, r1)|s(r2, r2)|S(r2, r2)
(α(B1))r1↑1(α(B2))r2↑1

(a)(r1+r2)↑1

= (α(B1))r1↑1(α(B2))r2↑1

(a)(r1+r2)↑1
.

The last expression is exactly E[(P (B1))
r1(1 − P(B1))

r2 ], where P(B1) has Beta distribution
with parameter (α(B1), α(B2)).
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This proof can be easily generalized to the case k > 2. Analogously to the one-dimensional
case, we can write

E

[
(Qn(B1))

r1 · · · (Qn(Bk−1))
rk−1

(
1 −

k−1∑
i=1

Qn(Bi)

)rk
]

= 1

(n)(r1+···+rk)↑1

∑
(j1,...,jk)∈D(0)

k,n

(
n

j1 · · · jk

)
(α(B1))j1↑1 · · · (α(Bk))jk↑1

(a)n↑1
(j1)r1↑1 · · · (jk)rk↑1

= 1

(n)(r1+···+rk)↑1

r1∑
t1=0

|s(r1, t1)|
t1∑

s1=0

S(t1, s1) · · ·
rk∑

tk=0

|s(rk, tk)|
tk∑

sk=0

S(tk, sk)

×
∑

(j1,...,jk)∈D(0)
k,n

(
n

j1 · · · jk

)
(α(B1))j1↑1 · · · (α(Bk))jk↑1

(a)n↑1
(j1)s1↓1 · · · (jk)sk↓1

and, as before, define

C(s1,...,sk)
n :=

∑
(j1,...,jk)∈D(0)

k,n

(
n

j1 · · · jk

)
(α(B1))j1↑1 · · · (α(Bk))jk↑1

(a)n↑1
× (j1)s1↓1 · · · (jk)sk↓1

and prove they satisfy a recursive relation. Observe that C
(s1,...,sk)
n /(n)(r1+···+rk)↑1 is the moment

of order (r1, . . . , rk) of the k-dimensional Pólya distribution by definition. Therefore, for k > 2

C(s1,...,sk)
n =

n∑
jk=0

(
n

jk

)
(α(Bk))jk↑1(a − α(Bk))(n−jk)↑1(jk)sk↓1

(a)n↑1

×
∑

(j1,...,jk−1)∈D(0)
k−1,n−jk

(
n − jk

j1 · · · jk−1

)
(α(B1))j1↑1 · · · (α(Bk−1))jk−1↑1

(a − α(Bk))(n−jk)↑1

× (j1)s1↓1 · · · (jk−1)sk−1↓1

=
n∑

jk=0

(
n

jk

)
(α(Bk))jk↑1(a − α(Bk))(n−jk)↑1(jk)sk↓1

(a)n↑1

× (α(B1))s1↑1 · · · (α(Bk−1))sk−1↑1(n − jk)(s1+···+sk−1)↓1

(a − α(Bk))(s1+···+sk−1)↑1
,

where the last equality follows by induction hypothesis (we already proved the base case k = 2
in (20)). Then, following the same steps of the one-dimensional case, we can recover a recursive
equation for C

(s1,...,sk)
n ,

C
(s1,...,sk)
n+1 = (n + 1)(α(Bk) + sk − 1)

a + n
C

(s1,...,sk−1,sk−1)
n + n + 1

a + n
C(s1,...,sk)

n . (21)
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Starting from C
(0,...,0)
n = 1, C

(0,...,0,1,0,...,0)
n = nα(Bj )/a and

C(1,...,1)
n =

n−1∑
i=0

(i + 1)α(Bk)

(a + i)
C

(1,...,1,0)
i

n−1∏
j=i+1

j + 1

a + j

= �(n + 1)

�(a + n)

(α(B1))s1↑1 · · · (α(Bk−1))sp−1↑1α(Bk)

(a − α(Bk))(s1+···+sk−1)↑1

n−1∑
i=0

�(a + i)

�(1 + i)
C

(1,...,1,0)
i

= �(n + 1)

�(a + n)

(α(B1))s1↑1 · · · (α(Bk−1))sk−1↑1α(Bk)

(a − α(Bk))(s1+···+sk−1)↑1

× (−1)k+1
n−1∑
i=0

�(a + i)

�(1 + i)

(a − α(Bk))i↑1(−i)(k−1)↑1

(a)i↑1

× �(−a + α(Bk) − i + 1)�(−k − a + 2)

�(−a − i + 1)�(−a + α(Bk) + 2 − k)

= α(B1) · · ·α(Bk)(n)k↓1

(a)(k↑1)

,

by repeated application of (21), we obtain

C(s1,...,sk)
n = (α(B1))s1↑1 · · · (α(Bk))sk↑1(n)(s1+···+sk)↓1

(a)(s1+···+sk)↑1
.

Thus,

lim
n→+∞ E

[
(Qn(B1))

r1 · · · (Qn(Bk−1))
rk−1

(
1 −

k−1∑
i=1

Qn(Bi)

)rp
]

=
r1∑

t1=0

|s(r1, t1)|
t1∑

s1=0

S(t1, s1) · · ·
rk∑

tk=0

|s(rk, tk)|
tk∑

sk=0

S(tk, sk) lim
n→+∞

C
(s1,...,sk)
n

(n)(r1+···+rk)↑1

= |s(r1, r1)|S(r1, r1) · · · |s(rk, rk)|S(rk, rk)
(α(B1))r1↑1 · · · (α(Bk))rk↑1

(a)(r1+···+rk)↑1

= (α(B1))r1↑1 · · · (α(Bk))rk↑1

(a)(r1+···+rk)↑1

= E

[
(P (B1))

r1 · · · (P (Bk−1))
rk−1

(
1 −

k−1∑
i=1

P(Bi)

)rk
]
,

where P is a Dirichlet process with parameter α. �
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A.2. Solution of the distributional equation

Here, we provide an alternative proof for the solution of the distributional equation (3) introduced
by [11].

Theorem. For any fixed integer n ≥ 1, the distributional equation

P (n) d= θ

n∑
i=1

q
(n)
i δYi

+ (1 − θ)P (n)

has the Dirichlet process with parameter α as its unique solution, assuming the independence
between P (n), θ, (q

(n)
1 , . . . , q

(n)
n ) and (Y1, . . . , Yn) in the right-hand side.

Proof. From Skorohod’s theorem, it follows that there exist n independent r.v.s ξ1, . . . , ξn such
that ξi has Beta distribution with parameter (1, n − i) for i = 1, . . . , n and q

(n)
1 = ξ1 and q

(n)
i =

ξi

∏
1≤j≤i−1(1 − ξj ) for i = 2, . . . , n; in particular, by a simple transformation of r.v.s, it follows

that (q
(n)
1 , . . . , q

(n)
n ) is distributed according to a Dirichlet distribution function with parameter

(1, . . . ,1). Further, since ξn = 1 a.s., then
∑

1≤i≤n q
(n)
i = 1 a.s. and it can be verified by induction

that

1 −
j∑

i=1

q
(n)
i =

j∏
i=1

(1 − ξi), j = 1, . . . , n − 1.

Let B1, . . . ,Bk be a measurable partition of X. We first prove that conditionally on Y1, . . . , Yn,
the finite dimensional distribution of the r.p.m.

∑
1≤i≤n q

(n)
i δYi

is the Dirichlet distribution with
the empirical parameter (

∑
1≤i≤n δYi

(B1), . . . ,
∑

1≤i≤n δYi
(Bk)). Actually, since((

n∑
i=1

q
(n)
i δYi

)
(·,B1), . . . ,

(
n∑

i=1

q
(n)
i δYi

)
(·,Bk)

)

=
(

n∑
i=1

q
(n)
i δYi

(B1), . . . ,

n∑
i=1

q
(n)
i δYi

(Bk)

)

=
( ∑

i:Yi∈B1

q
(n)
i , . . . ,

∑
i:Yi∈Bk

q
(n)
i

)
,

then, conditionally on the r.v.s Y1, . . . , Yn, the r.v. (
∑

i:Yi∈B1
q

(n)
i , . . . ,

∑
i:Yi∈Bk

q
(n)
i ) is distributed

according to a Dirichlet distribution with parameter (n1, . . . , nk), where ni = ∑
1≤j≤n δYj

(Bi)

for i = 1, . . . , k. Conditionally on Y1, . . . , Yn, the finite dimensional distributions of the right-
hand side of (3) are Dirichlet with updated parameter ((α(B1) + ∑

1≤i≤n δYi
(B1), . . . , α(Bk) +∑

1≤i≤n δYi
(Bk)). This argument verifies that the Dirichlet process with parameter α satisfies

the distributional equation (3). This solution is unique by Lemma 3.3 in [33] (see also [37],
Section 1). �
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A.3. Proofs of the theorems in Section 3

Proof of Theorem 3. The proof is based on the “standard” result that properties (e.g., weak
convergence) of sequences of r.p.m.s can be proved via analogous properties of the sequences of
their linear functionals.

First of all, we prove that if g : X �→ R is a bounded and continuous function, then {G(n)
m ,m ≥

0} with G
(n)
m := ∫

X
g(x)P

(n)
m (dx) is a Markov chain on R with unique invariant measure �g .

From (12), it follows that {G(n)
m ,m ≥ 1} is a Markov chain on R restricted to the compact set

[− supX |g(x)|, supX |g(x)|] and it has at least one finite invariant measure if it is a weak Feller
Markov chain. In fact, for a fixed y ∈ R

lim inf
x→x∗ P

(
G(n)

m ≤ y
∣∣G(n)

m−1 = x
)

= lim inf
x→x∗ P

(
θm

n∑
i=1

q
(n)
m,ig(Ym,i) ≤ y − x(1 − θm)

)

≥
∫

(0,1)

lim inf
x→x∗ P

(
n∑

i=1

q
(n)
m,ig(Ym,i) ≤ y − x(1 − z)

z

)
P(θm ∈ dz)

=
∫

(0,1)

P

(
n∑

i=1

q
(n)
m,ig(Ym,i) ≤ y − x∗(1 − z)

z

)
P(θm ∈ dz)

= P
(
G(n)

m ≤ y
∣∣G(n)

m−1 = x∗),
since the distribution of

∑
1≤i≤n q

(n)
m,ig(Ym,i) has at most a countable numbers of atoms and

θm is absolutely continuous. From Proposition 4.3 in [36], if we show that {G(n)
m ,m ≥ 0} is φ-

irreducible for a finite measure φ, then the Markov chain is positive recurrent and the invariant
measure �g is unique. Let us consider the following event E := {Y1,1 = Y1,2 = · · · = Y1,n}. Then

for a finite measure φ we have to prove that if φ(A) > 0, then P(G
(n)
1 ∈ A|G(n)

0 ) > 0 for any G
(n)
0 .

We observe that

P
(
G

(n)
1 ∈ A

∣∣G(n)
0

) = P
(
G

(n)
1 ∈ A

∣∣G(n)
0 ,E

)
P
(
E|G(n)

0

) + P
(
G

(n)
1 ∈ A

∣∣G(n)
0 ,Ec

)
P
(
Ec|G(n)

0

)
≥ P

(
G

(n)
1 ∈ A

∣∣G(n)
0 ,E

)
P(E).

Therefore, since P(E) > 0, using the same argument in Lemma 2 in [12], we conclude that
P(G

(n)
1 ∈ A|G(n)

0 ,E) > 0 for a suitable measure φ such that φ(A) > 0. Finally, we prove the

aperiodicity of {G(n)
m ,m ≥ 0} by contradiction. If the chain is periodic with period d > 1, the

exist d disjoint sets D1, . . . ,Dd such that P(G
(n)
m ∈ Di+1|G(n)

m−1 = x) = 1 for all x ∈ Di and for

i = 1, . . . , d − 1. This implies P(z
∑n

i=1 q
(n)
m,ig(Ym,i) + (1 − z)x ∈ Di+1) = 1 for almost every z

with respect to the Lebesgue measure restricted to (0,1). Thus, P(
∑n

i=1 q
(n)
m,ig(Ym,i) ∈ Di+1) = 1

for i = 0, . . . , d − 1. For generic α and g, this is in contradiction with the assumption d > 1. By
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Theorem 13.3.4(ii) in [22], G
(n)
m converges in distribution for �g-almost all starting points G

(n)
0 .

In particular, {G(n)
m ,m ≥ 0} converges weakly for �g-almost all starting points G

(n)
0 .

From the arguments above, it follows that, for all g bounded and continuous, there exists
a r.v. G such that G

(n)
m ⇒ G as m → +∞ for �g-almost all starting points G

(n)
0 . There-

fore, for Lemma 5.1 in [18] there exists a r.p.m. P such that P
(n)
m ⇒ P as m → +∞ and

G
d= ∫

X
g(x)P (·,dx) for all g ∈ C(R). This implies that the law of P is an invariant measure

for the Markov chain {P (n)
m ,m ≥ 0}. Then, as m → +∞,∫

X

g(x)dP (n)
m (·,dx) ⇒

∫
X

g(x)P (·,dx)

and the limit is unique for any g ∈ C(R). Since for any random measure ζ1 and ζ2 we know that

ζ1
d= ζ2 if and only if

∫
X

g(x)ζ1(·,dx) = ∫
X

g(x)ζ2(·,dx) for any g ∈ C(R) (see Theorem 3.1.

in [18]), the invariant measure for the Markov chain {P (n)
m ,m ≥ 0} is unique. By the definition

of {P (n)
m ,m ≥ 0}, it is straightforward to show that the limit P must satisfy (3) so that P is the

Dirichlet process with parameter α. �

Proof of Theorem 4. The proof is a straightforward adaptation of the proof of Theorem 2 in
[12], using

f (G
(n)
1 ) = log

(
1 +

∣∣∣∣∣θ1

n∑
i=1

q
(n)
1,i g(Y1,i ) + (1 − θ1)G

(n)
0

∣∣∣∣∣
)

≤
n∑

i=1

log
(
1 + |g(Y1,i )|

) + log
(
1 + (1 − θ1)

∣∣G(n)
0 |)

instead of their inequality (8). �

Proof of Theorem 5. As regards (i), given the definition of stochastically monotone Markov
chain, we have that for z1 < z2, s ∈ R,

p
(n)
1 (z1, (−∞, s)) = P

(
θ1

n∑
i=1

q
(n)
1,i Y1,i + (1 − θ1)z1 < s

)

≥ P

(
θ1

n∑
i=1

q
(n)
1,i Y1,i + (1 − θ1)z2 < a

)

= p
(n)
1 (z2, (−∞, s)).

As far as (ii) is concerned, we first prove that, under condition (15), the Markov chain {M(n)
m ,m ≥

0} satisfies the Foster–Lyapunov condition for the function V (x) = 1+|x|. This property implies
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the geometric ergodicity of the {M(n)
m ,m ≥ 0} (see [22], Chapter 15). We have

pV (x) =
∫

X

(1 + |y|)p(x,dy) = 1 + E

[∣∣∣∣∣θ1

n∑
i=1

q
(n)
1,i Y1,i + (1 − θ1)x

∣∣∣∣∣
]

≤ 1 + E[θ1]
n∑

i=1

E
[∣∣q(n)

1,i Y1,i

∣∣] + |x|E[1 − θ1]

≤ 1 + n

n + a

n∑
i=1

E
[∣∣q(n)

1,i Y1,i

∣∣] + a

n + a
|x| = 1 + n

n + a
E[|Y1,1|] + a

n + a
|x|.

Therefore, we are looking for the small set C(n) such that the Foster–Lyapunov condition holds,
that is, a small set C(n) such that

1 + n

n + a
E[|Y1,1|] + a

n + a
|x| ≤ λ(1 + |x|) + b1C(n) (x) (22)

for some constant b < +∞ and 0 < λ < 1. If C(n) = [−K(n)(λ),K(n)(λ)], where

K(n)(λ) := 1 − λ + n/(n + a)E[|Y1,1|]
λ − a/(n + a)

,

then, condition (22) holds for all

λ ∈
(

a

n + a
,1

)
, b ≥ 1 − λ + n

n + a
E[|Y1,1|].

As in the proof of Theorem 3, we can prove that the Markov chain {M(n)
m ,m ≥ 0} is weak Feller;

then, since C(n) is a compact set, it is a small set (see [35]). As regards (iii), the proof follows by
standard arguments. See, for instance, the proof of Theorem 1 in [15]. �

Proof of Remark 1. As we have already mentioned, the geometric ergodicity follows if a
Foster–Lyapunov condition holds. Let V (x) = 1 + |x|s ; then, if E[(1 + |∑1≤i≤n q

(n)
1,i Y1,i |)s] <

+∞, it is straightforward to prove that the Foster–Lyapunov condition PV (x) ≤ λV (x) +
b1

C̃(n) (x) holds for some constant b < +∞, and λ such that

E[(1 − θ1)
s] = �(a + s)�(a + n)

�(a)�(a + s + n)
< λ < 1

and for some compact set C̃(n). Of course (16) implies E[(1 + |∑1≤i≤n q
(n)
1,i Y1,i |)s] < +∞; in

fact, conditioning on the random number N of distinct values Y ∗
1,1, . . . , Y

∗
1,N in Y1,1, . . . , Y1,n,

1 ≤ N ≤ n, we have∣∣∣∣∣
n∑

i=1

q
(n)
1,i Y1,i

∣∣∣∣∣ ≤
N∑

i=1

q̃
(n)
1,i |Y ∗

1,i | ≤ max{|Y ∗
1,1|, . . . , |Y ∗

1,N |}.
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Since {Y ∗
1,1, . . . , Y

∗
1,N } are independent and identically distributed according to α0, then

E

[∣∣∣∣∣
n∑

i=1

q
(n)
1,i Y1,i

∣∣∣∣∣
s]

≤
∫ +∞

0
ysN(A0(y))N−1α0(dy) ≤ N

∫ +∞

0
ysα0(dy) ≤ nE[|Y1,i |s] < +∞,

where A0 is the distribution corresponding to the probability measure α0, and this is equivalent
to E[(1 + |∑1≤i≤n q

(n)
1,i Y1,i |)s] < +∞. �
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