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Abstract. Sequential monotherapy is the most widely used therapeutic approach in the treatment
of HBV chronic infection. Unfortunately, under therapy, in some patients the hepatitis virus mutates
and gives rise to variants which are drug resistant. We wonder whether those patients would have
benefited from the choice of combination therapy instead of sequential monotherapy. To study
the action of these two therapeutic approaches and to explain the emergence of drug resistance,
we propose a stochastic model for the infection within a patient who is treated with two drugs,
either sequentially or contemporaneously, and who, under the first kind of therapy develops a
strain of the virus which is resistant to both drugs. Our stochastic model has a deterministic
approximation which is a slight modification of a classic 3-strain model. We discuss why stochastic
simulations are more suitable than the study of the deterministic approximation, when modelling
the rise of mutations (this is mainly due to the amplitude of the stochastic fluctuations). We
run stochastic simulations with suitable parameters and compare the time when, under the two
therapeutic approaches, the resistant strain first reaches detectability in the serum viral load. Our
results show that the best choice is to start an early combination therapy, which allows to stay drug
resistance free for a longer time and in many cases leads to viral eradication.
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1. Introduction

Hepatitis B virus is the cause of one of the most common infections in the world. Its consequences,

such as the liver cirrhosis and the hepatocellular carcinoma, affecting approximately 25% of patients

with chronic HBV infection, are important causes of morbidity and mortality worldwide [1, 27, 31,

35]. Antiviral therapy has demonstrated to have an important role in reducing both the markers

of liver disease progression and, above all, the evolution to cirrhosis and hepatocellular carcinoma

[35]. It has been shown that high serum levels of HBV-DNA (> 104 copies/ml) are predictive of an

increased risk of hepatocellular carcinoma, regardless of the transaminase level and the presence of

liver cirrhosis [11]: therefore it is clear that the chronic patient with high viral loads needs to be

treated with antiviral therapy (which should be considered a preventive and anti-cancer therapy

[35]).

So far antiviral drugs are mainly used in a sequential monotherapy (that is, only one drug

is employed at a time and if an increase in viral load is observed, then the drug is substituted

with another one). Some unsolved problems remain today: viral eradication (certified by the

disappearance of HBsAg or cccDNA), which would allow the discontinuation of the therapy, is

obtained in only 10% of treated patients [28]. On the other hand, the long term treatment with
1



sequential monotherapy [10, 21, 52], is likely to select drug-resistant strains, because of the onset of

viral breakthrough and mutant escape (that is the emergence of variant viruses) under the selective

pressure of medications [24, 46].

As stated in the international guidelines, the combination therapy (that is, therapy with a cocktail

of drugs) has a well-defined role in the treatment of chronic hepatitis B, in selected categories of

patients, such as those with decompensated cirrhosis, HIV co-infection, pre-existing mutations and

post-liver transplantation [10, 21, 52, 57]. To date, only a few studies have attempted to compare the

effectiveness of the two different approaches (combination versus monotherapy) in treatment-naive

patients. These studies did show promising results in favor of combination therapy ([22, 43, 59, 60]).

We conjecture that combination therapy, as a therapy for chronic HBV infection, is preferable

to sequential monotherapy. Our conjecture is based on the following observation: both in in vitro

and in vivo studies, the antiviral drugs for treatment of hepatitis B have shown a non-competitive

but rather additive and potentially synergistic mechanism of action ([15, 17, 43, 47, 64]). These

observations reveal potential advantages of combination therapy, in terms of strength of antiviral

effects and diminished or delayed resistance. Moreover, despite being a stable DNA virus, hepatitis

B virus replicates in the host cell through an RNA phase [39], which makes it similar to the

Human Immunodeficiency Virus (HIV). The natural history of HIV infection has been radically

transformed by the introduction of combination antiviral therapy (Highly Active Antiretroviral

Therapy, HAART) [9]. Therefore we believe that this kind of therapy should also be beneficial for

HBV treatment. In particular we infer that under combination therapy the appearance of drug

resistance is less likely, or at least, occurs after a longer time.

The behaviour of drug-resistant strains is a priori unpredictable. Therefore, we believe that it is

important to use a mathematical model, which takes into account the emergence of mutants of the

virus. The usual pattern of viral load under treatment, that has been captured by mathematical

models introduced for instance in [45] and [58], is a rapidly decaying phase followed by a slower

decaying phase (see for instance Figure 1 and Figure 2 in [58]). The standard mathematical model

for viral dynamics within a single patient is given by a three ordinary differential equations system

(in short, ODEs system):





Ṫ = λ− δ′T − αV T ;

Ẏ = αV T − δY ;

V̇ = pY − cV ;

(1.1)

where T denotes target (uninfected) hepatocytes which are produced at rate λ, die at rate δ′T and

are infected at a rate αV T ; Y denotes infected hepatocytes which die at rate δY (δ possibly larger

than δ′) and V denotes free virus. Virions are produced from infected cells at rate pY and are

cleared from bloodstream at rate cV . The system has no exact solutions but approximate solutions

may be obtained under different hypotheses.
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If the patient undergoes treatment, the drug acts against reproduction and/or infection. In the

model this is explained by introducing the efficacy parameters ε ∈ [0, 1] ([45, 58]) and η ∈ [0, 1]

([33, 40]). In (1.1) one must replace α by (1 − η)α and p by (1 − ε)p. The parameters ε and η

respectively indicate the ability of treatment to block viral production or infection (the extremal

values 0 and 1 refer to no ability at all and complete ability, respectively). Of course the behaviour

under no treatment is retrieved setting η = ε = 0. This model has been used in several papers

(for chronic HBV infection, HIV infection or acute HBV infection) to fit experimental data under

treatment with different drugs, leading to estimates for some of the parameters involved, mainly

for ε, c and δ ([13, 14, 29, 33, 40, 44, 58, 62, 63]).

Unfortunately, in a certain fraction of patients, after an initial decrease, the serum viral load

starts increasing and one may eventually face secondary therapeutic failure, which is conventionally

defined as a rebound of at least 1 log 10 in viral load above the lowest level previously reached.

This failure is named secondary as it happens after a more or less prolonged time during which

the viral load drops, as opposed to primary therapeutic failure, which is when the drug is not able,

from the beginning of the cure, to determine a decay in the viral load. Secondary failure is due

to the emergence of drug-resistant strains (which are usually not observed without therapy). In

the literature one can find several attempts to model drug resistance: in [37] and [61] there are

two HIV strains infecting CD4+ cells (one susceptible and one resistant to therapy). In [49] and

[50] the standard model (1.1) is mimicked: there are separate equations for the free susceptible

virus and the free resistant one; also infected cells are considered separately when infected with the

resistant or with the susceptible strain. Each of these models is deterministic: a fixed fraction of

the reproductions of the susceptible virus leads to mutation (reverse mutations, from the resistant

strain to the susceptible one, are considered as negligible). Nevertheless the true nature of the

interactions between target cells, infected cells, free virus and immune system is stochastic. It is

well-known that the use of deterministic models instead of stochastic ones is justified by the large

number of interacting particles. We recall in Section 2 the theorems which are the basis of this

approximation. It has already been observed (see [48]) that in reality even if a particular strain

is generated by mutation, there is some probability that it will disappear due to stochasticity.

Moreover stochastic fluctuations are far from being negligible and often frequencies of mutants

are very small (see Theorem 2.4 and the comments thereafter). We therefore develop a stochastic

3-strain model (Section 2) to which we devote our study.

The idea is that the mutations are pre-adaptive, linked to random errors of the replicative

process. Hence, the antiviral therapy does not determine any resistant strains, but simply selects

them [36, 39, 42, 46, 48, 49, 50]. Our main question is whether patients who during sequential

monotherapy develop drug resistance, leading to secondary treatment failure, would have benefited

from the choice of combination therapy instead (that is, drug resistance would not have appeared,

or at least it would have at a later time). Thus we model the situation where the physician has two
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drugs at hand: drug A and drug B, drug A being the one which is known to be the more efficient.

Note that this is the simplest case where the dilemma between sequential and combination therapy

arises (two being the minimum number of drugs possible in combination therapy).

We suppose that the patient is treatment-naive and has a high serum viral load of HBV virions,

of a type (usually the wild-type) that we call type 1. By hypothesis, if cured with drug A, the

patient will develop a resistant strain, type 2 virus, whose serum viral load will increase. Let us

stress here that by definition strain 2 of the virus is the one that first emerges during therapy, as

resistant to drug A. Its genotype is a priori unknown. Therapy with drug B will prove effective in

striking type 2 down, but eventually another mutation will arise (type 3 mutants, again a priori

of unknown genotype). Our main question is whether providing drug A and drug B together can

significantly delay the instant when, the concentration of the variant 3 in serum exceeds the limit

of detection (that is, with current tests at hand, approximately 20 copies/ml). If so, that would be

an argument in favour of combination therapy.

Here is the outline of the paper. In Section 2 we recall the mathematical results which allow us to

approximate the average behaviour of stochastic models with deterministic models. We introduce

our stochastic model (Definition 2.1) and discuss why, when mutants viral loads are low, the

description by means of the stochastic model is more accurate than the one with the deterministic

model.

In Section 3 we analyze the equilibrium points of the ODEs system (2.3), which is the determinis-

tic approximation of our stochastic model (the system has no exact solutions). The stability of the

equilibria, depending on the reproductive ratios of the three types, is discussed (see Table 1). The

emergence under therapy of drug-resistant strains which are not otherwise observed is explained

assuming that when present together with the wild type, the viral loads of type 2 and type 3 are

small (in absolute value or at least if compared to the viral load of type 1).

In Section 4 we first discuss how we can derive the unknown parameters of the infection. The idea

is to make some assumptions on the equilibrium viral loads of the 3 strains and to associate to any

plausible set of viral loads a corresponding parameter set. This leads to 46 different parameter sets

which are tested with stochastic simulations, under sequential or combination therapy. Different

initial conditions are considered (see Tables 4, 5, 6).

Section 5 is devoted to the discussion of the consequences of our results onto the choice of the best

therapeutic approach in the cure of chronic HBV infection. In particular our results suggest that

combination therapy is the best choice if started at the early stages of the chronic HBV infection.

2. Stochastic model and deterministic approximation

The simplest stochastic model for viral reproduction is the branching process ([23]). This model

is very rough (the behaviour of the average number of particles is either exponential growth,

stationarity or exponential decrease), therefore to add complexity, one introduces space and/or
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interaction between particles, see [18]. Adding space one obtains the branching random walk

where the reproductive capacity of the virus depends on its “location” (which may represent not

only position but also type): its behaviour on complex networks has been studied for instance in

[5, 6, 65]. In order to obtain a more realistic behaviour, where only a certain maximal viral load

can be achieved (or at least, growth slows down when the viral population is too large), we can put

interaction into play (logistic competition is perhaps the simplest interaction). Spatially displaced

interacting particle systems have been studied for instance in [2, 3, 4].

The model that we introduce here is not spatial, and is essentially a modification of the stochastic

model which lies underneath (1.1). We first reduce the number of unknowns in (1.1) to two. Indeed

we assume that, by homeostasis, the total number of hepatocytes is constant, that is T + Y = H0,

where H0 is fixed. Namely we suppose that, whenever an infected hepatocyte dies, it is replaced

(almost immediately) by an uninfected one. This means that infected hepatocytes are not destroyed

by the immune system at a too fast rate. This is in agreement with the common belief that cytotoxic

T lymphocytes may directly inhibit viral replication and thus inactivate HBV without killing the

infected hepatocyte, and that in chronically infected patients, infected hepatocytes escape immune

recognition, sparing massive liver damage (see [12, 19, 32]). This is particularly true during the first

stage of the disease, the compensated phase (which lasts years under a correct antiviral therapy)

or in the large group of HBV infected people called inactive carriers [53]. This assumption allows

us to deal only with the dynamics of Y and V and to replace T with H0 − Y . Now we partition

V into the three types of virions V1, V2, V3 and Y into Y1, Y2 and Y3 (according to the type of

infection).

The process is characterized by the following positive parameters:

(a) the infection parameters α1, α2, α3, where αi corresponds to the rate at which virions of type

i infect target hepatocytes (i = 1, 2, 3);

(b) the production parameters p1, q2, r3, i.e. the rates at which hepatocytes which are infected

with type 1, type 2 and type 3 virus respectively, produce virions of the same type;

(c) the mutation parameters p2 and q3, i.e. the rates at which hepatocytes which are infected with

type 1 and type 2 virus respectively, produce virions of type 2 and type 3;

(d) the hepatocytes clearance rates δ1, δ2, δ3, where δi corresponds to the rate at which hepatocytes

carrying type i infection are removed and thus replaced by target hepatocytes (i = 1, 2, 3);

(e) the free virions clearance rates c1, c2, c3, where ci corresponds to the rate at which virions of

type i are cleared from bloodstream (i = 1, 2, 3).

Definition 2.1 (Stochastic model). Given the positive parameters αi, δi, ci (i = 1, 2, 3) and p1,

q2, r3, p2, q3, the stochastic process (Y1(t), Y2(t), Y3(t), V1(t), V2(t), V3(t))t≥0 is a continuous time

Markov chain with values in N
6. The transition rates qk,k+l (k ∈ N

6, l ∈ Z
6) are as follows, for all
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k 6= 0,




αi

(
1− Y1

H0
− Y2

H0
− Y3

H0

)
Vi if l = ei, i = 1, 2, 3;

δiYi if l = −ei, i = 1, 2, 3;

p1Y1 if l = e4;

p2Y1 + q2Y2 if l = e5;

q3Y2 + r3Y3 if l = e6;

ciVi if i = 1, 2, 3 and l = −e4,−e5,−e6, respectively;

0 otherwise;

(ei being the elements of the natural base of R6).

Although this is a random process, results by Kurtz prove that its dynamic behaviour is approx-

imated by the solution of an ODEs system ([25], [26], see also [51] for an example of application in

epidemic models). These results apply to density dependent processes, hence we must consider a

modification of our process.

Definition 2.2 (Density dependent process and density process). A one-parameter family of con-

tinuous time Markov chains (X(N)(t))t≥0 with state space E ⊆ Z
d and transition rates (q

(N)
ij ) is

called density dependent if there exists a continuous function f : Rd × Z
d → R, such that

q
(N)
k,k+l = Nf

(
k

N
, l

)
, l 6= 0 and k, l ∈ Z

d.

Suppose (X(N)(t))t≥0 is a density dependent process. By rescaling with N we get the density process

(XN (t))t≥0 := ( 1
NX(N)(t))t≥0.

Under certain conditions (XN (t))t≥0 converges to a deterministic process that is the solution of

a system of first order ODEs that is governed by the following function F :

F (x) =
∑

l∈Zd

lf(x, l),

as stated in [25, Theorem 3.1] (a slightly different version of the statement, claiming almost sure

convergence, can be found in [20, Theorem 2.1, p.456]). We recall the theorem here.

Theorem 2.3 (Deterministic Approximation). Suppose that there exists an open set E ⊆ R
d such

that the function F is Lipschitz continuous on E and

sup
x∈E

∑

l

|l|f(x, l) < ∞; lim
r→∞

sup
x∈E

∑

|l|>r

|l|f(x, l) = 0.

Then, for every trajectory (x(s, x0), s ≥ 0) satisfying the following system of ODEs
{

d
dsx(s, x0) = F (x(s, x0))

x(0, x0) = 0
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(where x(s, x0) ∈ E, 0 ≤ s ≤ t), limN→∞XN (0) = x0 implies that for every δ > 0,

lim
N→∞

P( sup
0≤s≤t

|XN (s)− x(s, x0)| > δ) = 0.

This theorem implies that the process (XN (t))t≥0 can be approximated to first order by a deter-

ministic process, for large N. If the density process (XN (t))t≥0 is initially close to x0, it will tend

to stay close to the trajectory (x(s, x0), s > t) in some appropriate time-interval. The behaviour of

the random fluctuations of the density process (XN (t))t≥0 around its deterministic approximation

is given by the following theorem ([20, Ch.11], see also [51]).

Theorem 2.4 (Fluctuations). If for all compact set K ⊂ E we have
∑

l |l|2 supx∈K f(x, l) < ∞
and f(·, l) and ∂F are continuous, then the process {

√
N(XN (s) − x(s, x0))}s≥0 converges in law

to a fixed process V .

This result implies that order of magnitude of the stochastic fluctuations of XN around its

deterministic approximation x, is 1/
√
N .

In our case, taking xi = Yi/N , i = 1, 2, 3, xi = Vi−3, i = 4, 5, 6, N = H0, we have

f(x, l) =





αi (1− x1 − x2 − x3)xi+3 if l = ei, i = 1, 2, 3;

δixi if l = −ei, i = 1, 2, 3;

p1x1 if l = e4;

p2x1 + q2x2 if l = e5;

q3x2 + r3x3 if l = e6;

cixi if l = −ei, i = 4, 5, 6;

0 otherwise.

Thus F has the following expression and it is easily checked that the hypotheses of Theorem 2.3

are satisfied:

F (y1, y2, y3, v1, v2, v3) =




α1 (1− y1 − y2 − y3) v1 − δ1y1
α2 (1− y1 − y2 − y3) v2 − δ2y2
α3 (1− y1 − y2 − y3) v3 − δ3y3

p1y1 − c1v1
p2y1 + q2y2 − c2v2
q3y2 + r3y3 − c3v3




. (2.2)

An estimate for H0 is 2 · 1011 ([54], also in accordance with the result of 139·106 cells/g in [55] and

an average weight for a human liver of 1.5·103g). Thus we may infer that, in a time interval of at

least 30-40 years, the trajectories of the solution of the following system of ODEs

(ẏ1, ẏ2, ẏ3, v̇1, v̇2, v̇3)
T = F (y1, y2, y3, v1, v2, v3). (2.3)

approximate the trajectories of the stochastic process
(
Y1(t)
H0

, Y2(t)
H0

, Y3(t)
H0

, V1(t)
H0

, V2(t)
H0

, V3(t)
H0

)

t≥0
. Nev-

ertheless, by Theorem 2.4, the fluctuations are of order 1/
√
2 · 1011 ≈ 2.2 · 10−6. Thus when a

fraction of infected hepatocytes or Vi(t)/H0 is smaller than 10−6 then the approximation is far
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from being accurate. This is particularly true at the early stages of the infection (all the Vis are

low) or when a mutation has just appeared (V2 and/or V3 are low).

Remark 2.5 (The model under therapy). The stochastic model we defined in (2.1) and its approx-

imation, that is the solution of (2.3) are not only models for the case where there is no therapy,

but also where there is therapy with drug A or B or both. We only have to change the parameters

involved by therapy. To be precise, we denote by εA, ηA the efficacies parameters of drug A against

strain 1, by εB1, ηB1 and εB2, ηB2 the efficacies parameters of drug B against strain 1 and strain

2 respectively, and by εC , ηC the efficacy parameters of the combination of drug A and B against

strain 1.

If therapy with drug A only is in act, then we must replace α1, p1 and p2 by (1−ηA)α1, (1−εA)p1

and (1 − εA)p2 respectively; if we use drug B only then we replace α1, p1, p2, α2, q2 and q3 by

(1− ηB1)α1, (1− εB1)p1 (1− εB1)p2, (1− ηB2)α2, (1− εB2)q2 and (1− εB2)q3 respectively; in the

case of combination therapy, then α1, p1 and p2 must be replaced by (1 − ηC)α1, (1 − εC)p1 and

(1− εC)p2 respectively, while α2, q2 and q3 are modified as in the case of the cure with B only (by

hypothesis, drug A has no impact on the type 2 infection).

3. Analysis of the deterministic model

The ODEs system (2.3) has no exact solution, thus in order to understand its behaviour, we start

by analyzing its equilibria. Before going into the details of the analysis, we make some assumptions

on the parameters:

(1) The viral clearance parameters ci do not depend on the type, namely c := c1 = c2 = c3.

(2) p2 ≪ p1, q3 ≪ q2 and also p2 and q3 have small absolute values.

For the first assumption we note that the cis depend only on the lifetime of virions in bloodstream,

thus on the antibodies production of the infected patient. We assume that this production does

not depend on the variant (this may of course not be the case, but here we want to avoid a large

number of unknown parameters). In (2), p1+p2 and q2+q3 represent the reproduction rates of type

1 and type 2 infected hepatocytes respectively; p1 and q2 are the rates of conformal reproductions,

while p2 and q3 are the rates of non-conformal reproductions. Assumption (2) follows, since the

probability of mutation is very small.

An important role in the stability of the equilibria is played by the basic reproductive ratios of

the three variants

R1 =
α1p1
cδ1

, R2 =
α2q2
cδ2

, R3 =
α3r3
cδ3

. (3.4)

Note that if the patient is undergoing therapy the corresponding infection and production param-

eters have to be changed according to Remark 2.5. For instance, under therapy with drug A, the

basic reproductive ratio of the type 1 variant becomes (α1p1(1− ηA)(1− εA))/(cδ1).
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There are four equilibrium points, that is, solutions of F (x) = 0 (F taken from (2.2)): the

disease-free state and three infected equilibria X1 (with all variants present), X2 (where the first

variant is cleared) and X3 (with only the third mutant present). An equilibrium point x is locally

asymptotically stable if all the eigenvalues of JF (x) are negative, where JF (x) is the Jacobian

matrix of F .

JF (x) =




−(α1v1 + δ1) −α1v1 −α1v1 α1β 0 0
−α2v2 −(α2v2 + δ2) −α2v2 0 α2β 0
−α3v3 −α3v3 −(α3v3 + δ3) 0 0 α3β
p1 0 0 −c 0 0
p2 q2 0 0 −c 0
0 q3 r3 0 0 −c




,

where β = 1− y1 − y2 − y3.

3.1. Disease-free equilibrium. X0 = (0, 0, 0, 0, 0, 0). JF (X0) has six eigenvalues:

−δ1 − c±
√
4α1p1 + (δ1 − c)2

2
,
−δ2 − c±

√
4α2q2 + (δ2 − c)2

2
,
−δ3 − c±

√
4α3r3 + (δ3 − c)2

2
.

These eigenvalues are real and they are all negative (hence X0 is locally asymptotically stable) if

Ri < 1 for all i = 1, 2, 3. If at least one Ri is larger than 1, then there is at least one eigenvalue

which is positive and X0 is locally asymptotically unstable.

3.2. The infected equilibrium without type 1 and type 2. X3 = (0, 0, y3,3, 0, 0, v3,3). It has

biological meaning (that is, y3,3 and v3,3 are positive) if and only if R3 > 1, since

v3,3 =
R3 − 1

R3

r3
c
, y3,3 = 1− 1

R3
=

c

r3
R3v3,3.

JF (X1) has six eigenvalues:

−α3r3(c+ δ1)±
√
(α3r3(c− δ1))2 + 4α1α3cδ3p1r3

2α3r3
,

−α3r3(c+ δ2)±
√
(α3r3(c− δ2))2 + 4α2α3cδ3q2r3

2α3r3
,

−α3r3 − c2 ±
√
4c3δ3 + (α3r3 − c2)2

2c
.

Easy computations show that X3 is locally asymptotically stable if and only if R3 > 1, R3 > R1

and R3 > R2.

3.3. The infected equilibrium without type 1 infection. X2 = (0, y2,2, y3,2, 0, v2,2, v3,2). It

has biological meaning if and only if R2 > 1 and R2 > R3, since

v2,2 =
q2
c

(R2−1)(R2−R3)
R2(R2−R3+R3q3/r3)

, v3,2 =
q3(R2−1)

c(R2−R3+R3q3/r3)
= q3

q2
R2

R2−R3
v2,2

y2,2 =
c
q2
v2,2, y3,2 =

c
r3

R3

R2
v3,2.

Two eigenvalues are

1

2

(
−c− δ1 ±

√
(δ1 − c)2 + 4α1p1(1− y2,2 − y3,2)

)
,
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which are negative if and only if R1 < 1/(1− y2,2 − y3,2) = R2. The other four eigenvalues are the

solutions of a quartic equation and have expressions which are too involved to be studied here. We

prefer to study the approximated solutions obtained substituting q3 ≈ 0 (and v3,2 ≈ 0, which is

plausible if R2 −R3 is not too small compared with R2 − 1) in the characteristic polynomial:

1

2

(
−α2v2,2 − δ2 − c±

√
(α2v2,2 + δ2 − c)2 + 4α2q2(1− y2,2 − y3,2)

)

1

2

(
−c− δ3 ±

√
(δ3 − c)2 + 4α3r3(1− y2,2 − y3,2)

)
.

Computations show that these approximate eigenvalues are all negative if and only if v2,2 > 0 and

R2 > R3 respectively. Thus X2 is locally asymptotically stable if and only if R2 > 1, R2 > R1

and R2 > R3.

3.4. The infected equilibrium with type 1. X1 = (y1,1, y2,1, y3,1, v1,1, v2,1, v3,1), where

v1,1 =
p1
c y1,1, v2,1 =

R1

R2

q2
c y2,1, v3,1 =

R1

R3

r3
c y3,1,

y2,1 =
R2

R1−R2

p2
q2
y1,1, y3,1 =

p2q3
q2r3

R2R3

(R1−R2)(R1−R3)
.

(3.5)

As for y1,1, it has a complicated expression which is of no interest here (but can be obtained from

the relation y1,1 + y2,1 + y3,1 = 1− 1/R1). Here is its approximation if one substitutes q3 ≈ 0:

y1,1 ≈
(R1 − 1)(R1 −R2)

R1(R1 −R2 +R2(p2/q2))
.

Thus X1 has biological meaning if R1 > 1, R1 > R2 and R1 > R3. The eigenvalues of JF (X1) have

too complicated expressions, which make them untreatable. We study the approximate solutions

obtained with the substitutions q3 ≈ 0, p2 ≈ 0 (and v2,1 ≈ 0, which is plausible if p2 is small and

R1−1 is not too small compared with R1−R2) in the characteristic polynomial. The approximated

eigenvalues are

1

2

(
−α1v1,1 − δ1 − c±

√
(α1v1,1 + δ1 − c)2 + 4α1p1(1− y1,1 − y2,1 − y3,1)

)
,

1

2

(
−c− δ2 ±

√
(δ2 − c)2 + 4α2q2(1− y1,1 − y2,1 − y3,1)

)
,

1

2

(
−c− δ3 ±

√
(δ3 − c)2 + 4α3r3(1− y1,1 − y2,1 − y3,1)

)
.

Substituting y1,1+ y2,1+ y3,1 = 1− 1/R1, we get that X1 is locally asymptotically stable if R1 > 1,

R1 > R2 and R1 > R3 and unstable otherwise.

The conditions for stability can be summarized by Table 1.

3.5. Drug resistance explained by the model. Let us discuss how the presence of these equi-

libria and their stability can be biologically interpreted, and how this interpretation reflects onto

the parameters. We are modelling the infection within a chronic patient, therefore with no treat-

ment all three variants have reproductive ratios larger than 1. Moreover we believe that type 1 has

largest “fitness” and that type 2 has larger “fitness” than type 3, in the sense that variants are more
10



R1 R2 R3 Equilibria

R1 < 1 R2 < 1 R3 < 1 X0 stable, other Xis unstable
R1 > 1 R2 < R1 R3 < R1 X1 stable, other Xis unstable
R1 < R2 R2 > 1 R3 < R2 X2 stable, other Xis unstable
R1 < R3 R2 < R3 R3 > 1 X3 stable, other Xis unstable

Table 1. Stability of the equilibria as a function of R1, R2, R3.

fit if, when present together at equilibrium, they have prevailing serum viral loads. We also define

the fittest variant to be the one with larger reproductive ratio (in a moment we will show that this

assumption leads to prevailing viral loads). Therefore in the beginning R1 > R2 > R3 > 1. With

no cure, after an appropriate amount of time, the system tends to lie in a neighbourhood of X1.

The effect of therapy is to lower the corresponding Ri, namely the new Ri becomes Ri(1−η)(1−ε),

where η and ε are the efficacy parameters of the drug acting against variant i. Thus, if the patient

is given drug A, then type 1 is cured and the system moves towards equilibrium X2, where variant

2 emerges and variant 1 disappears. If also type 2 is cured, with drug B (R2 is lowered), the new

equilibrium will be X3, that is, the patient will show drug resistance. The disease-free equilibrium

represents the desirable state where the patient is permanently cured, and can be reached, accord-

ing to the deterministic model, only if we have a drug at hand which acts also against the third

variant (by assumption, here X0 cannot be reached).

We believe that the reason why drug-resistant mutants are not observed unless under therapy

is the fact that, even if mutations do happen, nevertheless in the equilibrium together with the

wild type, mutants are numerically negligible. In other words, we assume that v2,1 and v3,1 are

negligible if compared to v1,1. From (3.5) we have

v2,1
v1,1

=
R1

R1 −R2
· p2
p1

;

v3,1
v1,1

=
R1R2

(R1 −R2)(R1 −R3)
· p2q3
p1q2

,

whence the negligibility of the variants at X1 follows when p2 and q3 are small (with respect to p1

and q2 respectively) and R1 −R2 and R1 −R3 are not too small.

In the following figures we can see the behaviour of the viral loads of the three variants with

no therapy (Figure 1, converging towards X1), when curing only variant 1 (Figure 2, converging

towards X2) and with the combination therapy (Figure 3, converging towards X3). Note that the

scales are different for the three variants and that on the vertical axis we have the total number of

virions divided by H0.

The plots are obtained with MatLab R2013b, by numerical solutions of the differential equations

system with set of parameters (measured in days−1): c = 0.65, δ1 = δ2 = δ3 = 0.0143, p1 = 2.6,

p2 = 8.0997 · 10−10, q2 = 0.2889, q3 = 10−7, r3 = 0.26, α1 = 4.7668 · 10−3, α2 = 4.29 · 10−2,
11



α3 = 4.7666 · 10−2 (this is one of the sets obtained as plausible in Section 4). In Figure 1 the

initial condition is v1(0) = 0.8, v2(0) = 10−7, v3(0) = 10−9, y1(0) = 0.2, y2(0) = v2(0) · cR2

q2R1
,

y3(0) = v3(0) · cR3

r3R1
. The values for v1(0) and y1(0) are taken from the literature on untreated

chronic patients, v2(0) and v3(0) are arbitrarily chosen (smaller than v2,1 and v3,1 respectively),

yi(0) is taken multiplying vi(0) by yi,1/vi,1, i = 2, 3. This means that we believe that the ratio

of infected hepatocytes to viral load is the same before reaching equilibrium and at equilibrium

(this hypothesis was confirmed by the stochastic simulations run in Section 4). We used the ode15s

command (due to the stiffness of the solution, other more accurate methods did not produce smooth

plots). In Figure 2 the initial condition is v1(0) = 0.8, v2(0) = 10−5, v3(0) = 10−7, y1(0) = 0.2,

y2(0) = v2(0) · cR2

q2R1
, y3(0) = v3(0) · cR3

r3R1
(we suppose that cure intervenes after some time of

infection and variants have had the time to develop). The healing parameters are εA = 0.9 and

ηA = 0.5. We used the ode45 command (which is usually the most accurate method). In Figure 3

the initial condition is v1(0) = 0.8, v2(0) = 10−1, v3(0) = 10−4, y1(0) = 0.2, y2(0) = v2(0) · cR2

q2R1
,

y3(0) = v3(0) · cR3

r3R1
(we cure type 1 and 2, thus they are both strong at the beginning). The healing

parameters are εA = 0.9, ηA = 0.5, εB = 0.85, ηB = 0.5. Again we used the ode45 command.
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Figure 1. Viral loads of the three types with no therapy.
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Figure 2. Viral loads of the three types curing only type 1.
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Figure 3. Viral loads of the three types with therapy against types 1 and 2.

4. Numerical comparison under sequential or combination therapy

4.1. Parameters and initial conditions. In order to understand the behaviour of the viral loads

of the three variants of the virus, with or without therapy, we need to perform numerical simulations

of the stochastic model. We stress that we believe that the true nature of the problem is stochastic.

The deterministic approximation, which is traditionally employed, may not be accurate for low

viral loads, due to the amplitude of the stochastic fluctuations (Theorem 2.4). Moreover, according

to the deterministic model, it suffices that some virions of type 3 (which has reproductive ratio

larger than 1) are produced by mutation, and the infection cannot be stopped unless one finds a

cure against these mutants. In reality, by stochasticity, sometimes mutants are produced but then

also wiped out. We therefore devote our study mainly to stochastic simulations.

We need to know the numerical values of the parameters involved, and of the initial condition.

The twelve parameters are: the infection parameters α1, α2 and α3; the clearance parameters c,

δ1, δ2 and δ3; the production parameters p1, p2, q2, q3, r3.

From [58] we have c = 0.65 day−1 and δ1 = 0.0143 day−1. We assume that the clearance

parameter of the infected hepatocytes does not depend on the type of virus which infected the

cell, that is δ1 = δ2 = δ3 = 0.0143 day−1. The production parameter p1 can be obtained from the

relation p1 = cv1,1/y1,1 (see (3.5)). The values of v1,1 and y1,1 differ in different patients, we take

average values in chronic patients. The order of magnitude of the initial viral load in the patients

of [58] ranged from 107 to 109 copies/ml: for simplicity’s sake, we take a viral load ṽ1,1 = 0.67 · 108

copies/ml. Note that this corresponds to v1,1 = 1 (or a total of 2 · 1011 free virions in the blood –

assuming 3 · 103ml of serum), since the coordinates of the equilibria of Section 3 represent the total

number of infected hepatocytes and of free virions, rescaled by dividing by H0 = 2 · 1011). It is

usually assumed that a percentage varying between 5% and 40% of the total number of hepatocytes

is productively infected in chronic HBV patients (see [8]). We take y1,1 = 0.25, whence p1 = 2.6

day−1.

We are still missing seven parameters: α1, α2, α3, p2, q2, q3, r3. We observe that different set of

parameters lead to different equilibria, in particular to different viral loads corresponding to v1,1,
13



c δ1 p1 v1,1 y1,1
0.65 day−1 0.0143 day−1 2.6 day−1 1 0.25

Table 2. Parameters from the literature.

v2,1, v3,1, v2,2, v3,2 and v3,3. Indeed these viral loads are functions of the parameters (see equations

in Section 3). With some algebraic effort, we can write six of the missing parameters as functions

of the six equilibrium viral loads and of the seventh parameter. Thus we derive expressions for α1,

α2, α3, p2, q2 and r3, depending on v1,1, v2,1, v3,1, v2,2, v3,2, v3,3 and q3. We choose q3 arbitrarily:

we assume that it is equal to 10−7 (it must be very small). Besides v1,1, which has been observed in

the literature, the other viral loads are unknown. They depend on the strains involved, which are

by definition a priori unknown. Therefore we let the equilibrium viral loads vary among plausible

values. The choice of the plausible values is made according to some criteria:

(1) type 2 and type 3 have, at X1, negligible viral loads with respect to type 1, that is v1,1 ≫
v2,1 ≥ v3,1;

(2) viral loads of a fixed type increase when the competitors are erased, that is, v3,3 > v3,2 >

v3,1, v2,2 > v2,1;

(3) we believe that the fact that type 1 has the largest fitness is also reflected by the fact that

when type 1 is removed from the system, the other two types can never exceed type 1’s

initial viral load, that is v1,1 ≥ vi,j for all i, j.

In principle, we let v2,1 and v3,1 vary from 9 to 4 orders of magnitude less than v1,1; v2,2 and v3,2

from 7 to 2 orders of magnitude less than v1,1; v3,3 from 7 to 1 order of magnitude less than v1,1.

As a second step, we compute the corresponding parameters α1, α2, α3, p2, q2 and r3. A set

of viral loads is possible only if the corresponding parameters have the correct biological meaning,

namely we require that

(1) all the parameters are positive;

(2) p1 ≥ q2 ≥ r3 (type 1 has a faster production rate, and type 2 is faster than type 3);

(3) p2/p1 and q3/q2 are small (error-free replications are less likely than mutations);

(4) at equilibria, the percentage of infected hepatocytes lies between 5% and 40%.

These requirements allow us to drop many of the plausible values. In Table 3 we write the range

of the viral loads ṽi,j (recall that ṽi,j = vi,j · (2 · 1011)/(3 · 103)). We let the loads vary from the

ṽ2,1 ṽ3,1 ṽ2,2 ṽ3,2 ṽ3,3
min 6.7 6.7 · 10−2 6.7 · 102 6.7 · 103 6.7 · 102
max 6.7 · 102 6.7 6.7 · 105 6.7 · 106 6.7 · 106

Table 3. Range of equilibrium viral loads (in copies/ml).

minimum to the maximum, with a multiplicative step of 10 (thus, for instance the possibilities for
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ṽ2,1 are 6.7, 67 and 670). Among the 33 · 42 · 5 plausible cases from Table 3, only 46 satisfy all our

requirements. Moreover, for all these 46 parameter sets we got p2/p1 ≤ 10−5 and q3/q2 ≤ 10−3.

We performed stochastic simulations for all the 46 parameter sets (named “cases” hereafter).

The aim is to compare sequential monotherapy (drug A followed by drug B) with combination

therapy (drug A together with drug B), thus the efficacy parameters are needed. From [58] we have

ε(adefovir) = 0.993, while from [45] we have ε(lamivudine) ranging from 0.87 to 0.96 depending on

the dosage. In our numerical tests, we choose εA = 0.97 and εB1 = εB2 = 0.85: we assumed that

the first drug is highly efficient against the wild type, while the second drug, which acts also on

type 2, is less efficient. Although some papers assume that η is neither 0 nor 1 (see for instance

[33, 40]), there are no explicit estimates of this parameter for the various drugs, hence we picked

ηA = ηB1 = ηB2 = 0.5 ([33] used as a plausible value 0.5).

As for the combination efficacies, we observe that combination therapy has a larger efficacy in

reducing the production rates (compared to single drug therapy); for instance [29] showed that,

at the dosage of their trial, lamivudine only has ε = 0.94, while combined with famciclovir it gets

ε = 0.988. Therefore it seems reasonable to rule out antagonism in combination therapy, and

consider only synergism, where εC ≥ max(εA, εB1) and ηC ≥ max(ηA, ηB1). The simplest way

to model synergism is to suppose that whenever a virus is the target of two drugs together, the

effects add in an independent manner. Namely, if drug A prevents a fraction ηA of virions of type

1 from infecting target hepatocytes, drug B will prevent a fraction ηB1 of the remaining virions

from infecting target hepatocytes, and the effect on replication will be analogous (just taking the

εs). In mathematical words, the combined efficacies of the cocktail drug A + drug B against

production of type 1 and against infection of new cells respectively, are εC = 1− (1− εA)(1− εB1)

and ηC = 1 − (1 − ηA)(1 − ηB1). If the patient is given drug A and drug B in combination, then

the viral load of type 1 decays more rapidly (R1 is multiplied by (1− ηC)(1− εC)) and the system

moves directly from X1 to X3.

4.2. Simulations. We simulated the course of the infection during a time lapse of 20 years (with

a six-hour step), monitoring the random time T when the viral load of type 3 exceeds 20 copies/ml

comparing therapy with only drug A, sequential monotherapy and combination therapy. We used

MatLab R2013b: we discretized time with a step tstep of 6 hours. At the beginning of each of

these time intervals v1, v2, v3, y1, y2 and y3 are updated. The removal of virions from bloodstream

and the recovery of infected hepatocytes is simulated through a binomial distribution: for instance

if at a certain time we have V virions of type 1, after a time lapse tstep there will be a remaining

number equal to B(V, exp(−c ·tstep)). In order to simulate reproductions, for each type of virus, we

divided the infected hepatocytes in random subpopulations I0, . . . , Il, according to a multinomial

distribution. Indeed, Ij , j = 0, . . . , l− 1, is the set of infected hepatocytes which produce j virions

during the time interval and Il is the set of those producing at least l virions (in this case we update
15



the production with exactly l virions for each hepatocyte in Il). The error is kept minimal, since

l is chosen such that the probability of producing l − 1 virions is smaller than 10−11. Similarly, to

update the number of infected hepatocytes, the target hepatocytes are randomly partitioned into

those which will not be infected in the time interval and those which get infected by one of the

virus types. It is worth noting that MatLab is able to simulate binomials B(n, p) up to n = 107

and requires long machine time when n > 106. Thus we created a new command which uses the

normal or Poisson approximation when n is large.

In sequential therapy, drug B is prescribed when ṽ2(t) > 667 cp/ml (recall that, according to

[11], one wishes to keep serum viral loads below 104 cp/ml). In all simulations, ṽ1(0) = 0.67 · 108

cp/ml, y1(0) = 0.25. The behaviour of the system highly depends on the initial values of ṽ2(0)

and ṽ3(0). In Table 4, T̄ is the average of the observed values of T among the 46 possible cases,

in Table 5 the cases were only 42 since in the remaining 4 the viral load of type 2 at equilibrium

together with the other strains was 6.7 cp/ml and therefore the system (which supposedly started

some time in the past with no mutants) cannot reach ṽ2 = 67. Moreover, in the last column of

Table 5, T̄ is the average of T among the 6 cases where combination therapy did not eradicate the

disease.

It appears that, if we want to delay the appearance of type 3 virions and we start therapy before

that third type mutations have taken place, then sequential monotherapy is slightly better than

monotherapy with drug A, but the advantage is small and is not even present in all cases. Indeed

the delay obtained with sequential therapy, with respect to monotherapy, ranges from -2% to 6% if

ṽ2(0) = 6.7 cp/ml and from -1% to 5% if ṽ2(0) = 67 cp/ml. On the other hand, in these situations

combination is strikingly better than sequential therapy. Combination therapy reaches the goal of

eradicating the disease in most cases and when it does not, the delay obtained, with respect to

monotherapy, ranges from 32% to 128%.

only A sequential combination
T̄ = 5.17 years T̄ = 5.28 years disease always eradicated

Table 4. Comparison with ṽ2(0) = 6.7 cp/ml and ṽ3(0) = 0 cp/ml.

only A sequential combination healed combination
T̄ = 4.67 years T̄ = 4.76 years 36/42 cases T̄ = 7.84 years

Table 5. Comparison with ṽ2(0) = 67 cp/ml and ṽ3(0) = 0 cp/ml.

The advantage of combination therapy becomes less clear if simulations are started with ṽ3(0) >

0. For instance if ṽ3(0) = 1 cp/ml, then combination therapy was better than sequential therapy

only in 10 out of 46 cases and worse in 32 out of 46 cases (they were substantially equivalent in the
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remaining 4 cases). It is not a priori clear how long it would take for a patient which is chronically

infected with the wild type virus, to develop mutating strains with a sufficiently high viral load to

make combination therapy a worse choice. We simulated chronic patients with no mutants which

start developing mutations but undergo no therapy whatsoever for 10 years and, starting from

the viral loads reached after these 10 years, we simulated other 10 years of therapy. The results

are stated in Table 6, where the two therapeutic approaches are considered equivalent if the delay

ranges in ±2%. It is important to note that there is complete healing in 11 of the 28 cases where

combination is preferable and even when sequential therapy is preferable the delay is at most 25%

of the corresponding time with combination therapy.

sequential combination seq. better comb. better equiv.
T̄ = 2.97 years T̄ = 3.90 years 13/46 28/46 5/46

Table 6. Comparison with ṽ2(0) random.

ṽ2(0) min delay when better max delay when better
7 always healing always healing
67 32% 128%
Random 2% 209%

Table 7. Delays with combination compared to sequential therapy.

Here are the plots of the viral load of type 3 in a case where combination therapy leads to healing.

The values of the parameters are (as usual, in day−1 units) c = 0.65, δ1 = δ2 = δ3 = 0.0143,

p1 = 2.6, p2 = 3.6459 · 10−7, q2 = 5.5182 · 10−4, q3 = 10−7, r3 = 5.7630 · 10−5, α1 = 4.7732 · 10−3,

α2 = 19.3360, α3 = 181.7917. Figure 4 has initial conditions ṽ1(0) = 0.67 · 108 cp/ml, ṽ2(0) = 67

cp/ml, ṽ3(0) = 0. Figure 5 corresponds to the initial conditions ṽ1(0) = 0.67 ·108 cp/ml, ṽ2(0) = 67

cp/ml, ṽ3(0) = 1 cp/ml. The plots of the viral loads of type 1 and 2 are not qualitatively different

from the ones in Section 3.

5. Discussion

Drug resistance is a well-known cause of therapeutic failure. The simplest case where one can

test the ability of combination therapy (versus sequential monotherapy) to fight drug resistance, is

the case of a 3-strain infection with two drugs available (which act only against two variants of the

virus). The drug-resistant strains that will emerge under therapy are a priori unknown. This gives

the need of a general mathematical model for viral dynamics. The usual deterministic models do

not take into account stochastic fluctuations, which are not negligible when the viral loads of some

of the variants are low.
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Figure 4. Viral loads of type 3, under combination (left) or sequential therapy (right).

Figure 5. Viral loads of type 3, under combination (left) or sequential therapy (right).

In this paper we propose a stochastic model and simulate it with MatLab R2013b. We assume

that the reason why drug-resistant strains only appear during therapy is competition: the resistant

strains are less fit than the wild-type (together with the wild-type strain, even if present, mutants

remain numerically negligible). This assumption is considered the most likely explanation of drug

resistance, see [48]. We also believe that the drug-resistant variants emerge quite slowly, due to a

reduced speed of replication. The assumptions are reflected by some constraints on the infection,

production and mutation parameters of type 2 and type 3 strains. In order to run simulations we

need the numerical values of these parameters: the ones relative to the wild-type are taken from

the literature (Table 2). A mutation parameter (q3) is chosen arbitrarily, while the others are given

as functions of q3 and of the equilibrium viral loads that type 2 and type 3 can reach, with or

without therapy. Letting the equilibrium viral loads vary among plausible values (Table 3) we get

46 possible parameter sets (corresponding to 46 possible couples of type 2 and type 3 strains).
18



Our numerical analysis shows that combination therapy is by far the best choice if started at the

early stages of the chronic infection, while it seems that the advantage is not striking if therapy is

in act when drug-resistant mutants are already numerous and have started to significantly infect

the hepatocytes. This difference is not surprising, since if type 3 mutants are absent, they are

generated only by mutation from type 2, hence the need of lowering the number of type 2 virions

and infected cells. On the other hand, if type 3 mutants are already present, in some cases the

competition with other strains might slow the proliferation of the type 3 infection. In this model,

if drug-resistant strains are already present in abundance, the cure may open the way for their

proliferation. Nevertheless, we believe that in reality early therapy is always convenient, since

the probability that drug-resistant strains are already near equilibrium (together with the wild-

type) is very low, being these drug-resistant strains quite slow at reproduction. This is confirmed

by stochastic simulations run starting from a configuration with no mutants at the beginning:

in typical cases the mutants take years to reach equilibrium (which is another reason why drug-

resistant strains are seldom observed before therapy).

Moreover, we want to stress that our result are robust with respect to the arbitrary parameters.

Indeed we checked with simulations also q3 = 10−6, ηA = 0.25, ηB = 0.25 (one change at a time)

and got the same qualitative results (what changed was the actual time of detection of type 3, not

which was the best therapy).

It is worth noting that, even if we were forced to make some arbitrary parameter choices and

the model is not fitted to any data (which is intrinsic in the problem itself since we want to

address unknown variants of the HBV), nevertheless the order of magnitude of the time before drug

resistance that we obtained is in accordance with the time observed in case trials. For instance in

[30, Table 1] many patients report, with different drugs, resistance after a treatment period ranging

from 3 to 6 years.

The biological and clinical importance of this model is to show a clear advantage in favor of

the combination strategy, as it could lead to a greater delay in the development of drug-resistant

variants, which have less fitness than the wild type (drug sensitive) strain, but are able eventually

to escape from the therapy. The analysis of the model also puts emphasis on the need of an early

antiviral therapy.

By the way, there is also clinical evidence that the best choice is a broad spectrum early therapy:

for instance in [56] the authors observed that the emergence of entecavir-resistant strains is more

likely to appear in patients which were already lamivudine-resistant (rather than in treatment-naive

patients).

Another important point in favor of this regimen in the clinical practice is that the use of a

combination therapy could allow treating physicians to retrieve older and less expensive molecules

in developing countries, which truly are the settings where hepatitis B is most prevalent. In

addition, this approach could be a valid alternative in case of toxicity/intolerance to newer drugs,
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such as for people with renal diseases unable to take tenofovir (which to date appears to be the

most promising drug in HBV therapy).

Concerning the type of combination therapy, ideally the best combination therapy for HBV

infection should consider the association between a high power drug and a high genetic barrier

drug. Power is the speed with which a drug causes the suppression of viral replication hence it is

proportional to the efficacy parameter ε introduced in Section 4). The genetic barrier represents

the number of mutations needed by the virus to replicate effectively in the presence of the therapy:

the higher is the genetic barrier of a drug, or of a combination regimen, the smaller set of mutants

are resistant to the treatment. Of course, nowadays entecavir or tenofovir are molecules which

are both powerful and show a low incidence of mutations. Indeed, after 4 years of treatment [30]

only 1.2% and 0% of the patients respectively, developed drug-resistance. Nevertheless, in principle

sooner or later drug-resistant mutants may appear with any drug, which is one argument in favour

of combination therapy even with these drugs at hand. Recent results show the appearance of drug

resistance in coinfected HBV-HIV patients, treated with tenofovir ([38]). The authors identify in

poor compliance to therapy the reason of this failure; it is our opinion that this is another aspect

to keep in mind.

In conclusion, we suggest to intervene in the natural history of HBV infection immediately and

with a broad-spectrum approach: a combination of powerful and high genetic barrier drugs. We

believe that combination therapy is less likely to select resistant strains, especially in patients with

a suboptimal compliance.
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