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Dynamic reconfiguration capabilities o↵ered by modern FPGA devices can
improve performance, flexibility and reusabilty of embedded systems. On the
other hand, due to the increasing complexity of modern on–chip applications,
di↵erent and heterogeneous modules are now embedded on the same platform,
requiring a design–paradigm shift towards a communication–centric approach.
In this work we propose a design flow that, relying on the automatic analysis
of a set of applications that will run on a given FPGA platform, generates a
reconfigurable interconnection infrastructure that maximizes the overall com-
munication performance.
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1.1 Introduction

As the logic density of FPGAs steadily grows at Moore’s pace, design practices
try to keep up with the increasing complexity, and possibly take advantage of
it. One of the most natural trends is to raise the level of abstraction relying
on already designed and engineered components (generally called Intellectual
Properties, IPs), and instantiating and connecting them to team up towards
the desired functionality. As the number of such components increases, the
communication between them becomes more relevant, and the design of the
infrastructure to support it more sensible. Naive approaches such as point-
to-point ad hoc channels fail to scale, for at least two reasons: the quadratic
growth with the number of endpoints does not a↵ect only obvious resources
such as area and routing time (and cleverness) of the synthesis algorithm, but
also e↵ort of the designers, who have to devise adaptors between components
exposing di↵erent interfaces and having di↵erent protocols.

Inspiration is then sought where communication scenarios of comparing
complexity have already been faced, namely in the field of communication
networks. As a wide set of abstractions, tools, concepts and architectures
become available to the designers, ecosystems on FPGAs are increasingly seen
as Networks of interconnected components, even though on a single Chip
(hence Networks–on–Chip, NoCs). The NoC architecture is a micro-network
of interconnects integrated on a single chip; in particular, it consists of a set
of switches organized in a specified topology (that may be regular, such as a
mesh-grid or rings, or irregular) and its communication paradigm is based on
packet-switching (similarly to the standard telecommunication networks).

To put more complexity into the picture comes the remarkable and pecu-
liar ability of FPGAs of being dynamically reconfigured; this feature allows
to change at runtime the set of applications (consisting of several computing
components and of the underlying communication infrastructure connecting
them) running on the system. In this scenario, let us consider a typical system
in which di↵erent applications are executed at di↵erent instants of time: pro-
filing such a system, it would be possible to determine its application working
points, that is the sets of applications and computations that typically clus-
ter together during execution. When the system is in any of these points, the
computational cores are executing defined tasks. Now, it is clear that, for each
such point, there exists an ideal communication infrastructure, that is the one
(be it a Network–on–Chip with some topology and features, or a bus based
system) that maximizes the goal functions of interest (the throughput, the
inverse of energy consumption, etc.) for that particular working point. One of
the things possible with dynamic reconfiguration would be to seek and locate
all the working configurations of a system (let’s call the set of such config-
urations S = s1, s2, ..., sn), to design the ideal communication networks for



Design Methodologies for Reconfigurable NoC–based Embedded Systems 5

each s 2 S, and then to reconfigure the infrastructure each time the system
switches to a new point.

The only problem would be, of course, the overhead costs (energy and
time) of reconfiguring the network. At the other extreme, one could ex-
ploit the information, gathered through profiling, to design a one size fits
all compromise network, which would maximize all the goals on an aver-
age of the working points, weighted upon their relative mean execution time.
Such a network would be a function of the whole set S, plus the infor-
mation on the relative execution times ET of the di↵erent working points
(ET : S 7! [0 � 1],

P
i ET (si) = 1). Now, if we had some additional informa-

tion on how the systems switches between working points (ex: every 100ms it
typically runs s1 for 30ms, then switches to s3 for 40ms, then to s5 for 30ms,
and then back all over to s1), it would be possible to think of a “third way”:
defining a set of communication structures, one for every working point, each
suboptimal with respect to the corresponding point, but requiring less time
to be reconfigured, and better than the compromise network. Being able to
do this requires the ability to design networks lowering the overhead required
to switch between them.

Main contribution of this work is an overall design flow for the reconfig-
urable NoC-based embedded systems implemented onto FPGA devices run-
ning a set of applications evolving in time and organized in working points.
The design flow supports the designer from the initial specification of the sys-
tem towards the definition of the partially-reconfigurable implementation to
be synthesized by means of the Xilinx Partial Reconfiguration (PR) flow [25];
moreover the various design steps automate the exploration of the network
design space in order to optimize the reconfiguration overhead, while keep-
ing the performance as high as possible. As it will be discussed further on,
the proposed flow represents a step forward w.r.t. the literature since it sup-
ports the designer in all the various design steps and, moreover, the proposed
algorithms produce better results and achieve higher performance.

The text is structured as follows: Section 1.2 presents the flow for the gen-
eration of the set of reconfigurable NoCs, while Section 1.3 discusses the state
of the art in NoC design flows, and Section 1.4 analyzes timing performance
of the proposed design flow for reconfigurable NoC–based architectures with
respect to the state of the art. Then, Section 1.5 puts the network genera-
tor to the test with some benchmarks, and finally, Section 1.6 draws some
conclusions.

1.2 The Proposed Design Flow

The proposed approach aims at defining a complete design flow that auto-
matically generates a NoC-based partially-reconfigurable system onto Xilinx
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FPGA devices, starting from the specification of the set of applications that
have to be deployed on the target platform. Since the applications that run
on the target system change over time, goals of the proposed design flow are
to find an optimized NoC for each set of applications that can be executed
at the same time and to provide the designer with all the information needed
in order to physically place all the components on the target reconfigurable
device [6]. This information can be used to feed the Xilinx PR flow [25], which
automatically generate all the complete and partial bitstreams to dynamically
reconfigure at run-time the target FPGA device.

As described by the Xilinx PR flow ([25]), the target reconfigurable archi-
tecture can be considered as composed of two di↵erent portions: a static part
and a reconfigurable part as shown in Figure 1.1. The reconfigurable part can
be further divided into a matrix of tiles, each one representing a reconfigurable
region of the device. Tiles are assumed to be homogeneous (w.r.t. their size,
their shape and the amount of reconfigurable resources within a single tile).
The communication channels between the static part and the reconfigurable
one and among the reconfigurable regions can be established by using special
hardware interconnection components called proxy logic, automatically placed
by the PR synthesis tool along each edge of each reconfigurable region, in order
to meet the constraints specified by [25]. The system that will be implemented
on such architecture is modeled with a structural specification composed of
a set of reconfigurable modules interconnected each other. As shown in Fig-
ure 1.1, there is a main controller, placed in the static part, that is devoted
to the communications with the outside, the coordination of all the activities
of the system and the reconfiguration of the reconfigurable part. Moreover,
the system contains a set of reconfigurable modules, each one hosting a set
of processing cores (e.g. processors, HW accelerators, memories, ...) together
with the network interface with a time-multiplexed fashion; reconfigurable ar-
eas may also host the various switches of the NoC infrastructure. It is worth
noting that in the presentation we will consider only the reconfigurable part,
since it is the focus of the proposed optimization approach.

The design flow is composed by a set of consecutive steps shown in Figure
1.2. At the beginning the designer has to define an high level model based
of the system to be deployed on the FPGA device; the model is based on
graphs and captures the organization of the system’s application in various
working points to be loaded in di↵erent time instants. Then, the second phase
aims at instantiating for each application working point a set of NoC com-
munication infrastructures, and the next two steps at mapping and routing of
the application working point on each communication infrastructure. Then,
among the generated mapping and routing solutions, for each working point
the optimal one is chosen according to a set of metrics. Finally, these solutions
are placed on the FPGA device grid and integrated in order to minimize the
reconfiguration time to pass from a working point to the next one. As shown
in the figure, each step generates a set of intermediate solutions according to
the specific analysis that is performed; such solutions are then used to feed
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FIGURE 1.1
Target architecture schema with reconfigurable part divided into homogeneous
tiles.

the subsequent step. During the various refinements performed by the steps,
solutions previously identified may be discarded, and at the end of the flow,
the output is a single solution representing the optimized implementation of
the reconfigurable system.

The single steps are discussed in detail in the following sections, presenting
the overall goals and the algorithms that have been defined to automate the
optimization process. Moreover, a running example is used to exemplify the
various performed activities. It is worth noting that one of the characteristics
of the flow is its high modularity; therefore, if a more e�cient implementation
of any algorithm will be identified in the future, it can be integrated by simply
replacing the current one.

1.2.1 High Level Specification

The first phase of the proposed flow is the definition of a high level model of
the system specification in terms of a set of communication graphs (CGs).

The system specification received in input consists in a set of applications
that have to be implemented in the FPGA device. Each application is specified
in terms of a set of communicating master and slave processing cores. Usually,
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Reconfiguration 
Minimization

Bitstream Generation

FIGURE 1.2
The proposed Design Flow schema

the applications are organized in a sequence of working points. In particular,
each working point describes the set of applications loaded at the same time
on the device (without exceeding the available resources) and in execution
in a specific time period. Then, according to the specified schedule, or based
on the input request, the system will evolve at runtime from a working point
to another one. Figure 1.3 describes an example of sequence of three work-
ing points; each working point contains a set of unconnected communication
graphs modeling the contained applications. It is worth noting that, the same
application may appear in di↵erent working points as well as the same type
of core may be required by di↵erent applications.

For each application working point a specific communication graph is de-
fined, that models the connections among the cores of each application. Nodes
in the graph represent the processing cores while the edges the communica-
tions between pairs of master and slave cores. The edges are characterized
in terms of various parameters, such as the required communication through-
put. For the purpose of this work, two main connection constraints have been
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App B App D

Working Point 1 Working Point 2 Working Point 3

FIGURE 1.3
A sequence of three di↵erent working points

considered, namely the latency value, that specifies the maximum latency
that the communication infrastructure can introduce in the communication
between the cores, and the throughput value, that defines the through-
put that the communication infrastructure has to support between the two
connected cores (specified in terms of absolute values or with a percentage
with respect to the total workload of the network). This last constraint will
be used during the routing phase to find the path from the source core to
the destination core that will ensure the required communication throughput.
Moreover, the designer can set the switch throughput upper bound ; this value
represents the maximum throughput that each switch can handle. It will be
used to discriminate feasible solutions during the routing phase.

This information can either be specified by the designer, or can be auto-
matically obtained with some profiling techniques (as shown in the example
in Section 1.5).

Running example

In order to better explain how the proposed framework works, let us consider
the scenario in which two applications (A and B) have to be deployed at run–
time on a reconfigurable target system in two di↵erent working points A and
B. In particular, application A is an example of an application able to perform
generic matrix computation over 3 di↵erent MicroBlaze processors (M0, M1
and M2) that work in parallel using 3 di↵erent memories (S0, S1 and S2). M0
acts as a manager of the other two processors. When M0 starts its execution, it
reads data from its private memory (S0) and then spreads this information on
two other memories, each one connected to a single MicroBlaze processor, so
that each processor can read its information and work on its main memory. In
order to perform this type of work, the overall system must ensure a specific
throughput for each connection. Let us consider a fast communication link
(high throughput and low latency) for each connection between a processor
and its main memory, and a medium one (medium throughput and latency)
for the connections between M0 and the two memories S1 and S2.

On the other hand, Application B is an example of a simple graphic ac-
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celerator application that consists of 3 di↵erent MicroBlaze processors (M0,
M1 and M2) and 5 memories (S0, S1, S2, S3, S4 and SHM). M0 is the co-
ordinator that controls and delegates every task to the other processors M1
and M2. M0, M1 and M2 are connected to a shared memory (SHM) in which
common data must be stored, and each communication link to this shared
memory requires a medium–high throughput and a medium latency in order
to ensure a good data communication. As for application A, M1 and M2 have
their own main memory (S1 and S2) in common with the coordinator, and
the corresponding communication link requires a low throughput due to the
random accesses to this particular memory. Moreover, both M1 and M2 are
supported with a dedicated memory (S3 and S4, respectively), connected with
a high throughput and a low latency link.

During the first phase of the design flow, the communication graphs of
application working points A and B are defined as shown in Figure 1.4. Ap-
plication working point A consists of 3 masters and 3 slaves with 5 commu-
nication links, while Application working point B consists of 3 masters and
5 slaves with 9 communication links. The graphs are annotated with latency
and throughput requirements.

Working Point A Working Point B
FIGURE 1.4
Communication graphs of Working Points A and B.

1.2.2 Communication Infrastructures Generation

For each application working point described in the specification in input, a
set of NoC infrastructures is generated; each of them is derived from a specific
template by instantiating the minimum number of switches required by the
applications. The current implementation of this phase supports both stan-
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dard and custom NoC–based communication infrastructures: ring, star, mesh,
spidergon and custom (usually a composition of the previous topologies). Note
that this phase instantiates only the backbone structure of the provided set
of target topologies; this means that, so far, no mapping activity of the cores
to the NoC infrastructure is performed.

Running example

Some of the topologies generated in this phase for the running example are
reported in Figure 1.5: (i) a 2x3 mesh and (ii) a spidergon with diameter1 3
for application working point A and (iii) a 3x3 square–mesh and (iv) a ring
with 8 elements for application working point B.

1.2.3 Mapping

The mapping phase aims at deploying the working points of the system spec-
ification received in input on the communication infrastructures generated in
the previous step. In particular, the activity is performed for each pair com-
posed by an application working point and an instantiated communication
infrastructure; the output is the specification of the position in the communi-
cation infrastructure where each core of the working point is mapped on. All
pairs for which no feasible mapping solution are identified are automatically
discarded and no more considered in the subsequent phases.

Currently, three di↵erent algorithms have been developed to find the best
feasible mapping solution (or at least a good sub–optimal solution) for a large
set of di↵erent target reconfigurable systems. In particular, one exhaustive
and two genetic algorithms have been developed: Smart Exhaustive, GA1ver
and GA2ver, that are discussed in the following sections. In an empirical
evaluation we carried out, we have noted that each algorithm outperforms the
other ones depending on the characteristics of the considered working point,
in particular according to the number of cores. For this reason, the design
flow automatically selects the algorithm to be used for each working point
according to its size, as discussed in the following.

Smart Exhaustive Algorithm

The Smart Exhaustive algorithm can be used only with very small applica-
tion working points (up to 12 cores), since it evaluates all the feasible mapping
solutions of a given (application working point–communication infrastructure)
pair, computing the average latency on all the connections between the cores
and storing this value for each solution that has been found.

Algorithm 1 shows the pseudo–code of this smart exhaustive algorithm; its

1The diameter has been considered as the maximum number of hops between every
couple of cores.
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FIGURE 1.5
Topologies generated for Working Points A and B.

inputs are the number of working point’s cores (elements) and the number of
the infrastructure switches on which the elements have to be mapped (slots).

This algorithm includes a set of rules and policies that allow the exclusion
of all the unfeasible solutions in an early stage of the process and to reduce
the computational time required for the completion of the task. All these
checks are performed within the SmartSelection() function (Lines 5 and 9 of
Algorithm 1). In particular, once a single core is mapped on a single switch
port of the communication infrastructure, the rules adopted for the selection
of the next core to be mapped are the following ones:

• first rule: if some cores have already been mapped on the selected com-
munication infrastructure, then the subsequent core to be mapped has to
be selected among the cores that are directly connected to (at least) one
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Algorithm 1: SmartExhaustive (elements, slots)

Create a temporary array solution: temp1

Create a list of temporary array solutions to be evaluated: evaluation list2

Create a list of final array solutions: solutions list3

for i � 1 to elements do temp[i] � �1;4

elem � SmartSelection();5

AddConfigurationsWith(elem, temp, slots, evaluation list, solutions list);6

while ( evaluation list is not empty) do7

temp � evaluation list.pop();8

elem � SmartSelection();9

AddConfigurationsWith(elem, temp, slots, evaluation list, solutions list);10

end11

if ( solutions list is empty) then Exit();12

else13

ComputeFitness(solutions list);14

SortByFitness(solutions list);15

end16

return solutions list;17

Algorithm 2: AddConfigurationsWith (elem, temp, slots, evaluation list, solutions list)

for i � 1 to slots do1

if (i is free) � (constraints of element elem in position i are satisfied) then2

new � temp;3

new[elem] � i;4

if ( new is a final solution) then solutions list.push(new);5

else evaluation list.push(new);6

end7

end8

of the mapped cores. This rule makes it possible to firstly complete all the
dependencies among the mapped and the unmapped cores before starting
with the mapping of unconnected cores;

• second rule: if there are more than one core that is directly connected to
(at least) one of the mapped cores (as specified by the first rule), then
the core with the highest number of connections with the already mapped
cores is selected as the subsequent core that has to be mapped;

• third rule: if no cores have already been mapped or if there are no cores
that are directly connected to (at least) one of the mapped cores, then the
subsequent core to be mapped is selected among the cores that have the
highest number of connections with the lowest latency constraint (since
these are the most strict constraints).

GA1ver

The GA1ver algorithm shown in Algorithm 2 is a custom single–objective
genetic algorithm. This algorithm is suitable for small or medium application
working points (12 - 20 cores).

In GA1ver, each individual represents a possible mapping solution among
the computational cores and the switches; i.e. the individual chromosome en-
codes for each computational core the switch on which it is mapped onto.
Then, to evolve the population custom crossover and mutation operators have
been defined. The crossover operator takes two individuals and combines them
in the following way: all the computational cores that are mapped in the same
position in both the individuals, will be mapped in the same position also
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in the o↵spring, while all the other computational cores will be randomly
mapped in the other available locations. The mutation operator modifies a
single individual by randomly swapping the locations of two di↵erent com-
putational cores. The GA1ver has been developed in order to minimize the
average latency on all the connections between the couple of computational
cores that have to communicate in the target reconfigurable system.

It is important to note that, in GA1ver, all the individuals represent feasi-
ble solutions (mapping solutions in which there are no constraints violations,
Line 7 of Algorithm 2). Obviously, both crossover (Lines from 15 to 29 of
Algorithm 2) and mutation (Lines from 30 to 35 of Algorithm 2) have to be
redefined accordingly to the new definition of individual, thus both of them
are applied as many times as required in order to produce a feasible solution
(since they are intrinsically random, each time they are applied it is possible
to obtain a di↵erent output).

GA2ver

In order to further speed–up the mapping task, a di↵erent version of the ge-
netic algorithm has been developed that does not check, during the iterations,
if a solution is feasible or not (fast version flag on Lines 7, 25 and 34 of Al-
gorithm 2). Once the execution of the algorithm is completed, thus the set
of mapping solutions has been successfully obtained, a filter function discrim-
inates whether a solution is feasible or not considering the communication
graph constraints (Line 40 of Algorithm 2). Thanks to this optimization, it is
possible to decrease the total execution time of the mapping algorithm with
respect to GA1ver. This algorithm can be e↵ectively applied on the applica-
tion working points that present a medium-large size (this algorithm has to be
preferred for working points consisting of more than 16 computational cores).

Running example

Each application working point of the running example have been mapped on
the communication infrastructures generated in the previous phase. Figure 1.6
shows the mapping solutions (the ones related to the topologies presented in
Figure 1.5) that have been obtained with the GA2ver algorithm in less than
0.01 ms.

Considering the solutions (ii) in Figure 1.6, it is possible to see that this
spidergon topology has unused switches (sw0 and sw7 ). This is because the
spidergon topology is a regular topology that must ensure the minimum num-
ber of hops between each couple of processing elements; thus, without these
two unused switches the resulting topology is no more a spidergon. A topology
that after the mapping phase has unused switches is called over–dimensioned
solution.

Another interesting consideration is that every latency constraint is not
only satisfied but also minimized, when possible. An example can be seen
considering the solution (i) of Figure 1.6, in which the latency constraint
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Algorithm 3: GeneticMapping (slots, fast version)

Create a list of final array solutions: solutions list;1

Generation of the initial population as follows:2

repeat3

Create a temporary solution: temp4

for i � 1 to slots do temp[i] � i;5

for i � 1 to slots do Swap(temp, i, RandomSelection(1, slots));6

if ( temp is feasible) � ( fast version is true) then solutions list.push(temp);7

until ( solutions list.size() < slots � POPULATION) ;8

ComputeFitness();9

SortByFitness();10

repeat11

for i � slots � SELECTION to slots � POPULATION do12

a � RandomSelection(1, slots � SELECTION);13

b � RandomSelection(1, slots � SELECTION);14

Crossover operation:15

for j � 1 to slots do16

solutions list[i][j] � solutions list[a][j];17

fixed[j] � (solutions list[a][j] == solutions list[a][j]) ? true : false;18

end19

for j � 1 to slots do20

if ( fixed[j] is false) then21

tmp � RandomSelection(1, slots);22

if ( fixed[rnd] is false) then23

Swap(solutions list[i], j, rnd);24

if ( fast version is false) � ( solutions list[i] is not feasible) then25

Swap(solutions list[i], j, rnd);26

end27

end28

end29

Mutation operation:30

a � RandomSelection(1, slots � SELECTION);31

b � RandomSelection(1, slots � SELECTION);32

Swap(solutions list[i], a, b);33

if ( fast version is false) � ( solutions list[i][j] is not feasible) then34

Swap(solutions list[i], a, b);35

end36

ComputeFitness();37

SortByFitness();38

until (number of required ITERATIONS is reached) ;39

if ( fast version is true) then CleanSolutions(solutions list);40

return solutions list;41

between m0 and s2 were 4 (as pictured in Figure 1.4) and the actual hops
between these two processing elements are only 2: sw2 and sw4.
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FIGURE 1.6
Mapping solutions for Working Points A and B.

1.2.4 Routing

This phase performs for each identified mapping solution the search of all the
minimal routing paths between each couple of cores (master–slave), generating
the best routing solution based on the throughput constraints and on the
switch throughput upper bound value. The computational requirements of
this phase are quite small with respect to the rest of the flow and we never
noticed scalability issues for the routing phase in all the synthetic and real-
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world case studies we have analyzed, so it has not been necessary to employ a
complex and optimized routing technique to accomplish this task (even though
any custom routing algorithm can be easily substituted, if needed, to the one
proposed in our approach). In particular, the proposed algorithm performs a
recursive iteration over the mapping solutions provided by the previous phase,
executing for each one of them the following steps, until a valid solution is
found:

1. compute all the possible (and minimal) routing paths from each
source to its corresponding target;

2. store the di↵erent throughput values on each link;

3. select the routing paths that minimize the average throughput on
the links;

4. verify that the solution is valid.

In particular, a routing solution can be considered a valid solution only when
these two constraints are satisfied:

• all the throughput constraints specified in the high level specification phase
are satisfied;

• all the switches of the current communication infrastructure have to handle
no more than the switch throughput upper bound value provided in input by
the designer during the high level specification.

If there is no valid routing solution, the overall mapping solution is discarded
from the next phases. Moreover the routing paths ensure also the latency con-
straints in order to exclude all the solutions that have two neighbor elements
that, for instance, exploit a longer routing path to communicate.

Running example

Table 1.2.4 presents an example of routing solution (obtained in less than
0.002 ms) that refers to the (iii) 3x3 mesh solution of Figure 1.6.

Considering all communication paths in Table 1.2.4, it is possible to cre-
ate the list of switches involved in the communication, giving for each entry
the exact amount of throughput needed, as can be seen in Table 1.2. Each
throughput value is under the upper bound of 110.

1.2.5 Evaluation and Selection

During this step, for each application working point the various mapping and
routing solutions generated during the previous steps, are evaluated. In par-
ticular, di↵erent cost factors are computed in order to select the best–fitting
communication infrastructure for the specific application working point con-
sidering the objective functions specified by the designer. The current imple-
mentation of the framework considers the following objective functions, which
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SRC – TRG Throughput Paths Found Paths list (sw ids)
m2 – s2 5 1 5, 2

m2 – shm 30 1 5, 4
m2 – s4 50 1 5, 8

m1 – shm 30 1 3, 4
m1 – s1 10 1 3, 0
m1 – s3 50 1 3, 6
m0 – s2 10 1 1, 2

m0 – shm 30 1 1, 4
m0 – s1 10 1 1, 0

TABLE 1.1
Routing solution of the (iii) 3x3 square–mesh mapping solution of application
working point B.

Switch sw0 sw1 sw2 sw3 sw4 sw5 sw6 sw7 sw8
Throughput

needed 20 50 20 90 90 90 50 0 50

TABLE 1.2
Throughput needed by each switch considering the routing solution for the
(iii) 3x3 square–mesh topology and a switch throughput upper bound value
of 110.

are among the most important metrics for NoC design [3]: area minimization
(that also impacts on the power minimization); throughput variance mini-
mization; maximum throughput minimization; average latency minimization.
In addition, it is also possible to associate weights to these functions, in order
to give more importance to a subset of them (in particular, it is possible to
employ a linear combination of the previously presented objectives). Accord-
ing to the objective functions values obtained from each infrastructure, only
one communication infrastructure for each input application working point is
selected.

Running example

After the mapping and routing phase, the evaluation and selection phase it-
erates over the four mapped and routed solutions of Figure 1.6, to select the
best–fitting communication infrastructure with respect to the provided objec-
tive functions. The results obtained considering the area, throughput variance,
maximum throughput and average latency objective functions are presented
in Table 1.3. In particular, the table shows that the selected communication
infrastructures, considering the total normalized values, are the 2x3 mesh for
application working point A and the ring for application working point B,
respectively; the bold highlighted values in these tables represent that the
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corresponding metrics is minimized for that particular communication infras-
tructure.

App. Topology Area Thr. Max Avg Total
Working (slices) Variance Thr. Lat. (norm.)

Point
A 2x3 mesh 4145 422.22 105 2 317,12
A spidergon w/ d=3 5073 1192.19 105 2 400
B 3x3 mesh 5733 1009.88 90 2 371,97
B ring w/ el=8 5083 425 100 2.44 330,75

TABLE 1.3
Reasoning results for application working points A and B.

1.2.6 Placement

After the selection of the best communication infrastructure for each appli-
cation working point, the subsequent phase consists in the placement of the
communication infrastructures on the target physical device. Since the target
architecture is based on a grid of tiles, the placement phase aims at finding
the location of each element of the application working point (a switch or
a master/slave core along with its network interface) in a single tile of the
architecture in such a way that all the elements can be correctly connected
among them.

The whole placement essentially consists of two stages: (i) the initializa-
tion stage is performed through the partitioning of the target device and the
generation of the placement order vector, and (ii) the second stage is the ac-
tual execution of the algorithm in order to find valid placement solutions. In
particular, the first part of the initialization stage is related to the partitioning
of the target reconfigurable device in an homogeneous grid of reconfigurable
regions. The number of reconfigurable regions in which it will be possible to
split the target device will be evaluated according to the following two values:
(i) the maximum size of the input application working points, evaluated as
total number of elements (cores and switches), and (ii) the size of the com-
ponent with the highest area usage, in order to maintain the homogeneity of
the reconfiguration approach (it has to be possible to place each element of
the system in each reconfigurable region).

The second part of the initialization stage deals with the generation of the
placement order vector (POV ), whose elements represent either cores (master
or slave) or switches. Furthermore, each element also contains (i) the informa-
tion on all its links towards the other elements of the system, (ii) the number
of links that still have to be inserted in the POV and (iii) a link to the fa-
ther element, that is the first element inserted in the placement order vector
directly connected to the selected element. In order to build a good POV, the
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first element that has to be inserted in the vector is the most constrained one,
in other words the element with the highest number of connections towards
the others. Starting from this element, it is possible to fill the POV by insert-
ing the elements directly connected to the already inserted one. Among all
these elements, the following element to be inserted will be the one with the
highest number of connections towards the others, and so on. In this way it is
possible to place in the first positions of the placement order vector the most
constrained elements (the ones with a very large number of connections with
other elements); this choice will lead, during the actual placement process,
to drastically reduce the number of valid solutions in an early stage of the
process, thus reducing the execution time of the whole placement phase.

The Connection Matrix (CM ) represents the partitioned reconfigurable
device and is used to support the placement algorithm; all the cells of the
CM are initialized with a value that represents the maximum number of con-
nections that the selected cell is able to support in the target reconfigurable
architecture. This number depends on the maximum length that each connec-
tion (in the communication layer) can assume; for instance, if the maximum
length is set to 1, only adjacent cells can communicate, while if it is set to 2, it
is possible to skip (at maximum) one cell on each communication channel. The
designer can manually modify this parameter to fine tune the final solution
towards a more spread system (if the parameter is set to a high value, more
than 3 or 4) or a more condensed one (if the parameter is set to a low value,
such as 1 or 2). Two extra sets of rows and columns (the number of elements
of these sets depends on the maximum length that each connection can as-
sume) have been added on each side of the CM and each cell of these rows
and columns has been initialized with a negative value (-1), that is the value
associated with a busy cell. Thus, it is possible to evaluate all the possible
placement solutions on the generated CM by means of a depth first algorithm,
shown in Algorithm 4.

In order to optimize the proposed algorithm, the framework is able to
exploit the specular and symmetrical properties of a rectangular grid. For
instance, the algorithm is not directly applied to the whole matrix of cells,
since it is su�cient to start from a subset of that matrix (that is the portion
of the matrix comprised between a diagonal and a vertical or horizontal axis
of symmetry) and to use the obtained partial set of solutions to obtain the
whole set of solutions by means of geometrical transformations. In this way,
the placement algorithm can compute all the solutions up to 8 times faster.

1.2.7 Reconfigurations Minimization

At this point, the framework has to select for each working point a placement
solution among the ones generated by the previous step. In particular the
choice is performed with the aim of minimizing the reconfigurations needed to
pass from one application working point to the subsequent one (even though
sometimes the working points sequence is not known a priori). Indeed, each



Design Methodologies for Reconfigurable NoC–based Embedded Systems 21
68

Algorithm 4: Placement (POV, CM )

Select the first element, A, from the POV ;1

Remove A from the POV ;2

repeat3

Select a reconfigurable region C;4

if ((connections of C ) � (connections of A )) then5

newCM � CM;6

place (A in C) in newCM;7

(connections of C ) in newCM � �1 ;8

if (POV is empty) then9

add newCM to the Solutions Array;10

else11

repeat12

Select a reconfigurable region C;13

if (D is connected to C ) then14

(connections of C) in newCM � ((connections of C) in newCM) �1 ;15

end16

until (no more reconfigurable regions) ;17

Placement (POV, newCM)18

end19

end20

until (no more reconfigurable regions) ;21

number that is greater or at least equal to the number of connections that the selected element

has to establish with the other elements of the system.

After this assignment, the algorithm checks (Line 5 of Algorithm 1) that all the connections

among the already placed elements and the new one are satisfied, w.r.t. the specified maximum

length of each connection. Then the value of the selected cell is set to -1 (that represents an

occupied cell), Line 8 of Algorithm 1, and each cell of the CM that is at a distance smaller

or equal to the maximum length of each connection is decreased of 1 unit and the subsequent

element to be placed is selected from the placement order vector.

reconfiguration process changes the content of a single reconfigurable region,
holding either a computational core (master or slave) along with its network
interface or a network switch. Minimizing the number of reconfigurations im-
plies the reduction of the reconfiguration timing overhead, since this overhead
is directly proportional to the number of regions that have to be reconfigured.

The main goal of this phase is the maximization of the number of com-
ponents (computational cores and switches) that are physically placed in the
same reconfigurable region for more than one input application working point.
This means that the average number of reconfigurable regions that need to
be reconfigured when switching application working point will be minimized.
This search can be performed in an exhaustive way by considering only a
subset of all the placement solutions. In particular, it is possible to start the
computation from the placement solutions that present the lowest average
physical distance among the connected components (considering the physical
distance among the reconfigurable regions holding connected components). In
this way the search is performed starting from the best placement solutions
and it is concluded when the time slot reserved for this phase (usually some
tens of seconds) is elapsed.

Running example

Finally, the placement and the reconfigurations minimization phases make
it possible to perform a physical placement of the best mapping solutions
and to find di↵erent placements (one for each application working point) that
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FIGURE 1.7
Two placement solutions for Working Points A and B on a 4x4 grid with
hamming distance set to 1 (i) and hamming distance set to 2 (ii).

minimizes the number of reconfigurations needed to pass from one application
working point to another one. The solutions proposed in Figure 1.7 (obtained
in less than 0.15 s) minimize the reconfiguration time to pass from application
working point A to B.

Considering the mapping solutions (i) and (iv) of Figure 1.6, the corre-
sponding placement solutions are reported in Figure 1.7. Two di↵erent place-
ment solutions have been proposed, both found on a 4x4 grid: (i) consid-
ering the maximum hamming distance equal to 1 and (ii) considering the
same distance equal to 2. As shown in Figure 1.7, the total reconfiguration
cost (RC) needed to switch from application working point A to B decreases
with the increment of the hamming distance. These placement solutions have
been selected by the reconfigurations minimization phase among all the valid
solutions in few tens of seconds. Figure 1.8 shows the reconfigurations mini-
mization considering the hamming distance equal to 1. There can be di↵erent



Design Methodologies for Reconfigurable NoC–based Embedded Systems 23

reconfiguration policies that can be exploited to optimize the reconfiguration
cost. As shown in Figure 1.8, three di↵erent cases can be identified.

s0sw0sw1m1

m0sw2sw3s1

sw5 sw4

s2m2

Working Point A Working Point B

from iA to iB and vice versa
RC = 12

gain: 25%

Working Point A Working Point B
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sw5 sw4
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gain: 75%

from iA to B
RC = 10

gain: 37.5%

from iB to A
RC = 7

gain: 56.25%

Master Slave Switch Free BusyLegend: Area gained 
at steady state

Case 1

Case 2

Case 3

FIGURE 1.8
Reconfiguration cost introduced switching from Working Point A to B and
vice versa, considering three possible cases.

Case 1: the first case deals with a reconfiguration that does not consider
any kind of optimization. In particular in Case 1 of Figure 1.8, switching
from one application working point to the next one, refers to the working
point structure found by the placement phase (iA, the initial configuration for
application working point A and iB, the initial configuration for application
working point B), without keeping into consideration the possibility of having
floating communication links or unused tiles. This type of policy produces a
reconfiguration cost (RC) of 12, which means that at least 12 tiles of the grid
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must be reconfigured, corresponding to a 25% of reconfiguration time speed
up.
Case 2: the second case considers a possible initial situation in which, for
instance, the system starts the execution of application working point A and
then switches to application working point B considering two significant op-
timizations. In Case 2 of Figure 1.8, application working point B implements
a communication infrastructure that is a merge of both the infrastructures of
application working points A and B, which means that there can be unused or
floating communication links and also unused tiles. These two optimizations
(A for application working point A and B for application working point B)
bring to a reconfiguration cost (RC) of 10 and 7, for the switch from A to
B and B to A, respectively. The reconfiguration time gained is 37.5% and
56.25%, respectively, when compared to a complete reconfiguration.
Case 3: the last case considers the situation in which the system starts one
application working point and then switches to the other one as described in
Case 2, performing all the previously described reconfigurations. After that,
the system enters in the so called steady state, represented by Case 3 of Figure
1.8. In this scenario, it is possible to keep both unused tiles and floating
communication links and the reconfiguration cost (RC) is 4, with a significant
gain of 75%. Finally, Figures 1.9 (a) and (b) show the physical implementation
on a Virtex 5 XC5VLX110T device of the two placement solutions presented
in Figure 1.7 with the hamming parameter set to 1.

1.3 Related Work

In the past few years a large body of work has addressed the study of the
NoC paradigm and the definition of suitable design flows to reduce design
time and e↵ort, even though most of them focuses on the optimization of the
NoC architecture for a single application. For instance, [8] proposes a set of
specification and generation steps of the µspider NoC design flow. The overall
flow consists in the definition of hardware settings such as: data word size,
communication mode, topology and virtual channels. On the other hand, [5]
describes a monitoring–aware NoC design flow, in order to improve the debug-
ging and performance analysis of automatically generated NoC infrastructure.
Their main target architectures are ASIC–like designs and so the application
is known at design time.

In [17] the authors show that with the integration of the mapping and
the physical planning phases, the resulting NoC design can be improved with
respect to several aspects. The authors target the NoC design for complex
System–on–Chips (SoCs) with heterogeneous processor/memory cores, im-
proving Quality–of–Service (QoS) for the application. Their work presents an
integrated approach for mapping cores onto NoC topologies and NoC physical
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FIGURE 1.9
Implementation of Working Point A and of Working Point B on a Virtex 5
device with the hamming parameter set to 1

planning. [10] proposes a mapping algorithm for energy-aware placement of
the cores considering the communication volume between cores and needed
bandwidth. The presented branch–and–bound algorithm can automatically
map the computational cores onto a generic regular NoC architecture such
that the total communication energy is minimized. At the same time, the
performance of the mapped system is guaranteed to satisfy the specified con-
straints through bandwidth reservation. The same authors propose in [11] an
improvement to their algorithm constructing a deadlock–free deterministic
routing. They show how the routing flexibility can be exploited to expand
the solution space and improve the solution quality. Finally, [2] surveys the
main challenges in application-specific NoC design and outlines an application-
specific NoC design flow and methodology.

X-pipes is an example of a complete flow for designing NoCs and it is
composed of di↵erent phases. In the first phase, the user specifies the objectives
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and constraints that should be satisfied by the designed NoC. In the second
phase, the NoC architecture that optimizes the user objectives and satisfies
the design constraints is automatically synthesized. The last phase of the
flow consists in the automatic generation of the synthetizable HDL code of
switches, network interfaces and links for the designed topology.

All the previously presented works, address the problem of the automatic
generation of e�cient NoCs (such as monitoring–aware or layout–aware NoCs)
that are specifically developed for a particular application (or set of applica-
tions) but that are essentially static; in fact, the NoC reconfiguration is not
taken into account. On the other hand, several works have addressed the def-
inition of reconfigurable NoC architectures (e.g. [12] and [19]), while much
less e↵ort has been spent in the definition of design flows for the development
of reconfigurable and adaptable NoCs, characterized by the possibility of dy-
namically modifying some architectural parameters at run–time. [9] presents
a set of tools that make it possible to control changes in a NoC, showing some
architectural additions and describing a library to change at run-time some
parameters of the NoC, but without proposing a complete design flow. The
work proposed by [15] is a framework for the generation of Multi–Processor
Systems-on-Chip (MPSoCs) based on NoCs. This framework is an extension
of the Xilinx EDK tool-chain to support the automatic generation of NoC–
based MPSoCs, even if no design space exploration is performed and all the
proposed examples are based on a NoC that only consists of a single switch
(no algorithms have been proposed to build a di↵erent NoC topology and to
map cores on it). Finally, the work proposed by [13] addresses the automatic
generation of a run–time reconfigurable NoC–based MPSoC architecture. The
authors present a complete design flow that is able to generate, starting from
the high-level specification, the VHDL code of the desired reconfigurable sys-
tem. In this approach, both the cores and the NoC topology (thus also the
connections among cores and switches) cannot be dynamically changed at
run–time, since they have to be fixed at design–time and implemented as
static components of the final design.

A reconfigurable NoC architecture, called ReNoC, has been presented in
[21]. It enables the network topology to be configured for the application run-
ning on the SoC by using topology switches. However, the customization of
the NoC structure and topology is limited to two main modifications that can
be performed at run-time: router bypass and links insertion. Similarly, in [16]
a reconfigurable NoC architecture has been proposed on which regular and
application specific topologies can be implemented according to the applica-
tion running by means of a configurable communication layer. The concept
of router bypassing has been exploited also in [24], where the authors have
proposed a Dynamic Bypass Circuit and a north-last weave routing algorithm
to realize a dynamically reconfigurable NoC. Another flexible network design
has been proposed in [1]: it is particularly suitable for building networks with
irregular topologies, characterized by low latency and high throughput. In [7],
authors have proposed a reconfigurable NoC by clustering of cores. They have
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NoC Standard From
Rec. Cores topology & Custom Map Route Place HLS

Support Rec. Rec. Topologies Phase Phase Phase to bit
[8] No No No Yes Yes Yes No No
[5] No No No No Yes Yes No No
[10] No No No Yes Yes Yes No No
[12] Yes Yes No No No Yes No No
[9] Yes No Yes Yes No No No No
[15] Yes No No No No No No Yes
[13] No No No No No No No Yes
[22] Partially No No No Yes Yes No No
[4] Yes No No No Yes Yes Yes No
[14] Yes No No Yes No No No No
[20] Yes No No No Yes Yes No No
[21] Partially No Partially Yes Yes Yes No No
[16] Partially No Yes Yes Yes Yes No No
[24] Partially No No No Yes Yes No No
[1] No No Yes Yes Yes Yes No No
[7] Yes No No No Yes Yes Yes Yes
[17] No No No Yes Yes Yes Yes No
[2] No No No Yes Yes Yes Yes No
[19] Yes Yes Yes Yes No Yes No No
P.F. Yes Yes Yes Yes Yes Yes Yes Yes

TABLE 1.4
Comparisons with state–of–the–art solutions.

connected many cores per router which may lead to increase in the complex-
ity and power consumption of the routers. Only one application is taken at
a time for mapping onto the reconfigured NoC. Thus, di↵erently from our
approach, the mapping may not be suitable (or, at least, optimized) for other
applications. However, in all these approaches, the reconfiguration of cores is
not taken into account, thus all the cores belonging to all the applications
that will be executed at run-time on the system have to be configured stat-
ically on the device. In fact, the adaptation of the underlying system to the
currently running application mainly consists in the modification of some pa-
rameters of the communication infrastructure (see also the works proposed
in [22, 4, 14, 20]), while the number, kind and position of computing cores
cannot be dynamically modified, thus severely limiting the flexibility of this
kind of approaches.

Table 1.4 presents a comparison between the proposed flow (named P.F.)
and the solutions found in literature. The terms of comparison have been the
capability of the various approaches to support the following features: 1) run-
time reconfiguration, 2) cores run-time reconfiguration, 3) NoC topology run-
time reconfiguration, 4) standard and custom topologies, 5) mapping phase, 6)
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routing phase, 7) physical placement phase, 8) automatic generation, starting
from the high-level specification, a complete set of bitstreams that are able
to configure on the target device the desired reconfigurable system. Among
the considered approaches, it is possible to state that the most interesting
ones, i.e. the ones supporting the highest number of features, are the works
presented by [17], [2] and [19].

The works proposed by [17] and by [2] support standard/custom topologies
and mapping, routing and placement phases, even though they are essentially
static, since reconfiguration is not taken into account at all. On the other side,
from the reconfiguration point of view, the only approaches that consider the
reconfiguration are [19] and the proposed work. [19] on the contrary of the
proposed approach, it does not include mapping and placement algorithms and
it is not able to automatically generate, starting from the high-level description
of the system, the desired physical implementation.

1.4 Algorithm Performance Analysis

Table 1.5 presents the timing performance of the proposed design flow for re-
configurable NoC–based architectures. In particular, the proposed design flow
has been used to generate a reconfigurable system for di↵erent applications,
varying the number of elements in order to show how the flow execution time
grows. Five applications have been selected: i) application A with 6 cores,
ii) application B with 9 cores, iii) application C with 16 cores, iv) applica-
tion D with 32 cores and v) application E with 64 cores. It is important to
note that all the timing results presented in Table 1.5 are perfectly compat-
ible with the ones required for a design flow, since they are in the order of
tens or hundreds of seconds at maximum. Moreover, di↵erent state–of–the–art
algorithms have been analyzed in order to show in particular the timing per-
formance comparison of the mapping phase. Table 1.6 presents the execution
time2 of di↵erent mapping algorithms plus the routing process, varying the
number of core elements. The listed algorithms, even if considering di↵erent
constraints, perform an optimized mapping of the cores on a 2D mesh commu-
nication infrastructure, the most common NoC topology that can be found in
literature. The timing results of the proposed algorithms have been evaluated
by running them on the same input applications used by the state-of-the-art
approaches (when these applications were explicitly shown) and considering
the average value over 100 executions. Even though it is not possible to com-
pare the timing performance of the di↵erent approaches in a completely fair
way, since they are considering di↵erent constraints and optimization objec-

2For the exhaustive and the genetic algorithms, the execution times have been taken on
a MacBook Pro 2.16 GHz with 2 GB of RAM.
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TABLE 1.5
Design flow timing performance.

App. A App. B App. C App. D App. E
(6 cores) (9 cores) (16 cores) (32 cores) (64 cores)

HLS <1 s <1 s <1 s <1 s <1 s
CIs Generation <1 s <1 s <1 s <1 s <1 s

Mapping
(exhaustive) <1 s <1 s NA NA NA
Mapping
(GA1ver) <1 s <1 s <1 s 151.3 s 1780.4
Mapping
(GA2ver) <1 s <1 s 8.1 s 17.3 s 71.s
Routing <1 s <1 s <1 s <1 s <1 s

Reasoning <1 s <1 s <1 s <1 s <1 s
Placement & Rec.

Minimization <1 s 32.2 s 42.2 s 47.3 s 120.5 s

TABLE 1.6
Timing comparison among di↵erent mapping algorithms.

2x2 mesh 3x3 mesh 4x4 mesh 5x5 mesh 6x6 mesh 10x10 mesh
Algorithm (sec) (sec) (sec) (sec) (sec) (sec)

PLBMR [23] 0.3 1.5 5.5 16.4 44.9 NA
GA [23] 0.9 6.6 65.6 346.6 1370.4 NA
BnB [23] 0.234 1.345 6.768 18.564 55.678 NA
SA [10] NA NA 25.55 181.67 hours prohibitive

BnB [10] NA NA NA 6.52 NA minutes
EPAM-OE[11] NA NA 0.31 NA NA minutes

Exhaustive 0.0002 0.011 NA NA NA NA
GA2ver NA NA 0.003 1.584 3.312 10s of sec

Gain 1170 122.27 103.33 4.11 13.55 NA

tives, the proposed approach, thanks to the automatic run–time selection of
the employed algorithm, has been proved to be very fast, without reducing
the quality of the final mapping solution, and very scalable on real-world ap-
plications, since it is able to rapidly perform the mapping of the cores, on
both very small (2x2 and 3x3) and very large (up to 10x10) meshes.
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1.5 Real-World Case Study

To demonstrate the completeness of the proposed approach, we applied our
methodology to a real-world case study consisting of two di↵erent applications
running on an embedded system provided with a Xilinx Virtex IV FPGA:

• Mathematics Computation (MC), which basically involves a set of matrices
multiplications;

• Edge Detection (ED), which is fundamental in the image processing and in
the computer vision fields and aims at identifying points in a digital image
at which the image brightness has discontinuities.

The target system is a mobile robot that has to continuously perform the
application MC in order to update its coordinates and to reconstruct a geo-
metrical map of the environment, while the application ED is required only
sporadically (in an completely unpredictable way) in order to elaborate the
images acquired by the camera as a reaction to external inputs, such as a
particular noise or a sharp change in the temperature. Thus, it is possible to
identify two di↵erent working scenarios:

• WS1, consisting of an MC application;

• WS2, consisting of an ED application and an MC application (working on
matrices that are smaller w.r.t. the ones employed in WS1 ).

Since the typical timing overhead for a complete reconfiguration of a Virtex
IV FPGA device ranges roughly from 576 ms (for a XC4VLX25) to 1472 ms

(for a XC4VLX60), while the time needed to perform the edge detection is in
the order of hundreds milliseconds, a complete reconfiguration of the device in
order to switch from WS1 to WS2 is clearly unacceptable (the time needed to
switch to the new configuration and then to switch back to the old one when
the computation is completed, which is around 2944 ms on a XC4VLX60,
would be greater than the time needed to compute the data).

In this scenario, we are comparing the proposed solution with a static
approach, where all the cores needed by the two applications are already
present on the FPGA device, even though some of them (such as most of the
memories) are shared between them (thus, they cannot run in parallel). It
is important to note that this constraint considerably limits the possibilities
of the proposed approach (as well as the quality of the solution it is able to
generate), but it is necessary in order to perform a fair comparison with a
static solution. In particular, the resources required on the FPGA device by
the two working scenarios are the following:

• WS1 : up to 16 MC Cores working at around 33 MHz, and 12 memories (to
be split into 3 sets of memories, 2 for the input and 1 for the output values)
with a maximum working frequency of 100 MHz;
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• WS2 : 2 ED Cores working at around 25 MHz, and 4 memories (1 input and
1 output memory for each ED Core) with a maximum working frequency of
100 MHz, plus 8 MC Cores working at around 33 MHz, and 8 memories (to
be split into 3 sets of memories, 2 for the input and 1 for the output values).

The complete system is then composed by 18 computing cores (16 MC Cores
and 2 ED Cores) and 12 memories (some of them are shared between the two
applications). Thus, a system with 64 slots has been designed in order to hold
all the components of the system and of the underlying NoC. In particular,
the NoC switches connecting all the components have been set with a working
frequency of 200 MHz and have been provided with a 5-slot bu↵er for each
one of the four output directions, while the NoC timeout has been set to 450
ns.

Table 1.5 shows a comparison between an optimized static solution and the
one automatically generated by the proposed approach. All the results have
been obtained by means of modeling the system with SystemC and TLM
[18]. It is important to note that the static architecture has to implement a
trade-o↵ between the two applications, while the proposed solution is able to
optimize most of the metrics (such as increasing the average throughput and
decreasing the average number of timed out sessions, dropped flits and hops),
especially for what concerns the working scenario WS2 (with an increment
of more than 35% on the average throughput). The main cost of this opti-

WS1 WS1 WS2 WS2
(Static) (Static) (Proposed) (Proposed)

Average
Throughput (MB/s) 11,50 2,73 11,98 3,70

Transmitted
Packets (per µs) 285 166 296 223

Transmitted
Flits (per µs) 768 396 798 529

Average Timed Out
Sessions (per µs) 1,8 0,8 1,5 0,2
Average Dropped

Flits (per µs) 2,5 1,0 2,2 0,3
Average Number

of Hops(per packet) 3,26 3,74 3,13 2,69
Average Number
of Hops (per flit) 3,26 3,68 3,13 2,72

TABLE 1.7
Comparison between the static and the proposed solution.

mization is the reconfiguration overhead introduced when switching from one
application to the other. The approach presented in this paper makes it possi-
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ble to reduce this reconfiguration overhead to only 18 slots over 64 (only some
of the connections among the NoC switches have to be modified, since all the
computational cores are already present on the device). Obviously, the timing
overhead strictly depend on the particular target device. Table 1.5 shows a
comparison among the timing overhead w.r.t. to di↵erent FPGA target de-
vice. In order to make a fair comparison between the static approach and

FPGA Size Number Size of Rec. Total rec.
Device (slices) of slots each slot overhead overhead

(slices) per slot (ms) (ms)
XCV4VLX15 6144 64 96 5 90
XCV4VLX25 10752 64 168 9 162
XCV4VLX40 18432 64 288 16 288
XCV4VLX60 26624 64 416 23 414

TABLE 1.8
Reconfiguration overhead on di↵erent target FPGA devices.

the partially reconfigurable one, we can compare the time needed to compute
the application ED in WS2 by the static solution with the time needed to
configure the device, compute the ED with the proposed solution and then
configure the FPGA in order to restore the previous configuration of the de-
vice. Figure 1.10 shows this comparison, w.r.t. to the di↵erent target FPGA
devices. As can be easily seen in Figure 1.10, the proposed solution performs
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FIGURE 1.10
Comparison between the static solution and the proposed one (on di↵erent
target devices) w.r.t. the amount of data (in MB) to be processed (horizontal
axis) and the time (in ms) required to perform the computation (vertical
axis).

better than the static one starting from around 2 MB (1920 ⇥ 1080 pixels,
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which means Full HD resolution), since the time required to configure a Virtex
IV XC4VLX15 device and perform the computation with the proposed solu-
tion is smaller than the time required to elaborate the image with the static
solution (and much smaller than performing a complete reconfiguration). Fur-
thermore, the benefits of the proposed approach increase with the growing of
the amount of data to be processed (which is exactly the trend that all the em-
bedded systems are facing nowadays). It is also important to note that, when
the application MC is running in both the working scenarios, the proposed
solution always outperforms the static one, since it has a higher throughput
and a lower number of timed out sessions, dropped flits and average number
of hops.

1.6 Concluding remarks

In this paper we presented a design flow that automatically defines a set of
networks optimizing communication performances for a system with time-
varying requirements. To achieve this goal, the flow is fed with the description
of the communication requirements of the applications that will run on the
system, in the form of Communication Graphs, and produces as output a
set of networks, in which communication performances for the single working
point and switching reconfiguration overheads are traded to maximize overall
throughput. The flow is composed by several algorithms for the mapping, the
routing and the physical placement of the developed reconfigurable system.
In particular, the proposed mapping algorithms have been proved to be up
to more than three order of magnitude faster than the other state-of-the-art
algorithms. In the examples considered, the set of networks generated by the
flow improved the throughput by 35% with respect to the optimal static NoC.
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