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Abstract 

In this work, a novel injectable biocomposite hydrogel is produced by internal gelation, using 

pectin as organic matrix and hydroxyapatite either as crosslinking agent and inorganic 

reinforcement. Tunable gelling kinetics and rheological properties are obtained varying the 

hydrogels composition, with the final aim of developing systems for cell immobilization. The 

reversibility by dissolution of pectin-hydroxyapatite hydrogels is achieved with saline 

solutions, to possibly accelerate the release of the cells or active agents immobilized. Texture 

analysis confirms the possibility of extruding the biocomposites from needles with diameters 

from 20 G to 30 G, indicating that they can be implanted with minimally – invasive 

approaches, minimizing the pain during injection and the side effects of the open surgery.  

L929 fibroblasts entrapped in the hydrogels survive to the immobilization procedure and 

exhibit high cell viability. On the overall, these systems result to be suitable supports for the 

immobilization of cells for tissue regeneration applications. 
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1. Introduction  

Biocomposites, composite materials produced by natural sources, are commonly formed by an 

organic phase, prevalently polymeric, and an inorganic reinforcement [1,2]. Bone itself is an 

example of biocomposite material, being composed of collagen, the organic polymeric phase, 

which is intercalated by the inorganic hydroxyapatite phase [3, 4]. 

The aim of this work is focused on the formulation of novel injectable biocomposite 

hydrogels for minimally-invasive surgery, following an internal gelation method and 

employing the polysaccharide pectin as organic matrix and hydroxyapatite as inorganic phase.  

In the last decade, polysaccharide-based hydrogels have attracted more and more attention for 

biomedical applications, due to their high tissue-like water content, good biocompatibility and 

easy manufacturing [5-10]. These natural hydrogels are particularly suitable as injectable 

systems for regenerative medicine and tissue augmentation, due to the possibility of safely 

immobilizing stem cells in the hydrogel network, and to deliver them to the pathological site. 

However, some of the major goals of cell immobilization still need to be addressed, such as 

the cell migration outside of the hydrogel network and the formation of a new extracellular 

matrix in the damaged tissue, to accelerate the physiological healing process. 

Injectable gels can be implanted by mini-invasive surgical procedures, thus requiring shorter 

preparation time and causing less morbidity than in the open surgery approach. These 

materials may cover a wide range of mechanical properties that can be tailored to the site of 

injection and therefore to their final application [5-10]. The number of commercially available 

injectable gels has increased significantly in the last years and recent efforts have been 

focused on the elimination of the deleterious foreign body and inflammatory reactions caused 

by some of the early injectable materials [11, 12].  

Pectin is a natural polymer, easily available, mainly produced from citrus fruits and apples 

peel that has been recently exploited to reproduce the extracellular matrix for cell housing and 

tissue regeneration [13-17]. 
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Low methoxyl (LM) pectins, e.g. pectins characterized by a degree of esterification (DE) 

lower than 50%, form polyelectrolyte complexes in the presence of divalent ions, such as Ca2+ 

[8-23]. The gelling mechanism involves a chain-chain association of galacturonans and the 

creation of junction zones via calcium ions complexation, thus resulting in the formation of a 

physical gel. The mechanism of LM pectin gelation can be explained as a cooperative two-

stage process involving an initial dimerization, by the ionic complexation of the carboxyl 

groups of pectin chains through Ca2+ ions, followed by subsequent aggregation of the dimers 

[23]. The initial dimer associations are constituted by electrostatic interactions, efficiently 

stabilized by intermolecular hydrogen bonding and van der Waals forces. The second stage 

instead is characterized by weaker dimers associations, mainly governed by electrostatic 

interactions, and easily disrupted by counterions, such as Na+ ions [23]. 

Pectin external gelation, promoted by the use of water-soluble calcium sources, such as 

CaCl2, gave interesting results for the formation of microspheres for cell immobilization [13-

15]. However, an internal gelation mechanism, employing poorly water-soluble Ca2+ sources, 

may improve the homogeneity of the hydrogels and provide tunable gelling kinetics. 

Hydroxyapatite was selected exploiting its scarce water solubility to obtain a double effect: 

pectin cross-linking with Ca2+ ions from the dissolved hydroxyapatite and inorganic 

reinforcement from the un-dissolved fraction, thus acting as reactive filler. Furthermore, 

combining the inorganic filler with the polymeric matrix can be used as a strategy to increase 

the mechanical properties of the injectable biocomposites. 

Though polyelectrolyte complexes and pectin- based hydrogels have been reported several 

times in the literature [5-17], as far as we know, the production of pectin biocomposites by 

internal gelation using hydroxyapatite as source of calcium ions has never been exploited, and 

these systems hold great potentialities for tissue engineering applications.  
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2. Experimental Section  

2.1 Materials 

Low methoxyl (LM) Pectin (Pectin classic CU 701, batch 01001018, DE= 42%, Mw= 

261 kDa and Mn= 92 kDa measured by intrinsic viscosity and GPC analysis, 

respectively 24), was kindly provided by Herbstreith & Fox (Neuebuerg, Germany). 

Calcium hydroxyapatite powder (granulometry: d<40 µm, batch 79), custom- produced 

and provided by Eurocoating S.p.A (Pergine, Trento, Italy) was used for the 

preparation of the injectable gels. 

Other chemicals, such as sodium hydroxide, ultrapure water, ethanol and sodium 

chloride, were supplied by Sigma Aldrich and used as received. 

 

2.2 Methods 

 

2.2.1 Gel preparation  

Pectin and hydroxyapatite gels, named PectHA, were produced according to the 

procedure developed by the authors and described in an international patent [25]. 

Various hydrogels formulations were prepared with increasing concentrations of pectin 

(from 3% w/v to 7% w/v) and hydroxyapatite (from 0.3% to 0.5%). 

Briefly, a 6% (w/v) pectin solution (the pH adjusted to reach a final 0.05 mM NaOH in 

the hydrogels) was diluted with the appropriate amount of hydroxyapatite in water 

suspension. Soon after preparation, the mixtures were poured into 2 ml glass syringes 

and were left at room temperature for 24 h to stabilize the gel networks.  

After preparation, gels were kept at room temperature in the glass syringes and 

extruded with 30G needles before any characterization (unless otherwise specified). 

0.5 g of the hydrogel samples were extruded into Petri dishes 24h after preparation and 

their pH was measured with a Eutech pH meter (EuTech Instruments, Europe B.V., 
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Nijkerk, Netherlands) with a double pore slim electrode (Hamilton Bonaduz AG, 

Switzerland), appositely designed for soft gels and food measurements.  

 

2.2.2 Rheological properties  

Time sweeps, oscillation measurements and temperature ramp were performed with an 

AR-1500ex Rheometer (TA instrument, USA) using a parallel plate geometry (20 mm 

diameter, 1.2 mm gap) to evaluate the rheological properties of the gels. All the 

rheological measurements were performed within the linear viscoelastic region. 

According to previous rheological studies of biological soft tissues, such as brain or 

adipose tissue [26-28], and injectable hydrogels [29-34], the following testing 

procedures and parameters were chosen.  

To determine the gel point, i.e. the liquid-to-solid transition in soft materials [35], time 

sweeps were assessed in oscillatory mode at constant shear frequency (=0.7 Hz), 

stress amplitude (σ= 5.0 Pa) and temperature (T = 25°C) for 60 minutes.  

Frequency sweep measurements were performed at σ =5 Pa over a frequency range of 

0.1 - 10 Hz, at temperatures of 25°C and 37° C. This narrow range of frequency refers 

to the physiological stresses to which soft tissues are commonly subjected [30-33]. 

Storage modulus (G’) and complex viscosity (η*) values were extrapolated at the 

frequency of 0.7 Hz, which is typically used to compare the rheological properties of 

injectable hydrogels [31-33]. To determine the aging dynamic, the results of frequency 

sweep tests for a 3% (w/v) pectin solution gelled in presence of 0.5% (w/v) 

hydroxyapatite were considered for a period of time ranging between 35 minutes, 

roughly corresponding to the gel point, and 180 minutes.  

Temperature sweep studies were assessed to determine the variation of complex 

viscosity with temperature at a fixed frequency (f=0.1 Hz). The experiments were 

carried out by heating the samples with a temperature ramp of 2.5°C/min from 20°C to 
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60° C. This temperature range includes either the physiological temperatures (36°C - 

42°C) either a simulation of the environmental temperatures that the hydrogels might 

experience in stock conditions. 

 

2.2.3 Determination of injectability  

The injection forces needed to extrude the injectable PectHA hydrogels from syringes 

with different needles (with internal diameters of 25G and 30G) or without a needle 

were evaluated with a texture analyser (TA.XT plus, Texture Technologies). The glass 

syringes containing 2 ml of the biocomposite hydrogels were placed in the texture 

analyser and exposed to a constant injection speed of 100 mm/min at 30 mm 

displacement (extruding approximately the 90% of the gel volume). The average force 

required to inject the gel was calculated in a distance range of 10 to 20 mm. Samples 

were tested in triplicates and the results are expressed as the average injection force, 

with the standard deviations indicating the error.  

 

2.2.4 In vitro dissolution  

Gel solubility was evaluated by incubating PectHA samples in 0.9% (w/v) NaCl (154 

mM) solutions as dissolving medium. The protocol assessed in this work consisted in 

injecting 0.1 g of the biocomposite hydrogel in a glass vial containing 0.5 ml of 0.9% 

(w/v) NaCl. The gels were immersed in the NaCl solution, then, at each time stage (0, 

10, 20 and 60 minutes), the dissolved gel was aspirated with a syringe, through a 18 G 

needle, and the remaining gel was weighted in its wet form. The weight loss was 

calculated with the following equation (Equation 1): 

100]/)([ 00  wwwW t    (1) 

where wt is the wet weight of the extruded gel at time point t and w0 is the wet weight 

at time 0. 
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2.2.5 Cell culture 

L929 murine fibroblasts (American Type Culture Collection, Rockville, MD) were 

cultured in RPMI-1640 medium (Gibco) supplemented with 10% fetal bovine serum, 

1% L-glutamine, 1% sodium pyruvate, and 1% antibiotics (Sigma-Aldrich, St. Louis, 

MO, USA). The cells were incubated at 37 °C with 5% CO2, routinely trypsinized after 

confluency, counted, and seeded on 96 multi-well culture plates. 

 

2.2.6 Indirect cytocompatibility  

The indirect cytocompatibility assay was performed on PectHA samples according to 

ISO10993-5 standard practice. Briefly, 0.4 g of the samples, appositely prepared in 

sterile conditions, were extruded from the syringe and incubated in 2 ml of ultrapure 

water (Sigma). After 24h of incubation, the extracts were collected and tested with the 

MTT assay. 

L929 cells were seeded at a density of 104 cells/well in a 96-well culture plate. After 12 

h of incubation, the culture medium was removed and 40 µl of the extract with 160 µl 

of fresh culture medium were added in each well. The negative control consisted in 40 

µl of ultrapure water instead of the extract. 

Cells where then incubated at 37°C in a 5% CO2 atmosphere, and 3-(4,5- 

dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed 

after 48h of incubation. The sample was removed and replaced by 100 µL of fresh 

culture medium without serum. 10 µL of MTT solution (5 mg/mL in phosphate-

buffered saline) was added to each well and the cell cultures were incubated for 3h. 

After removing the MTT solution, 100 µL of acid isopropanol (Sigma Aldrich) were 

added to solubilize the formazan salts produced by viable cells. Aliquots of 200 µL 

were sampled, and the absorbance was measured at 595 nm by a Biorad iMark 

microplate reader (BioRad Laboratories, Hercules, CA) [24]. 
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All measurements regarding cell viability were tested in triplicate. ANOVA test was 

used to compare the data, and the results were considered statistically different when p 

< 0.05. 

 

2.2.7 L929 cell immobilization 

To evaluate the potentiality of pectin-hydroxyapatite hydrogels for regenerative 

medicine, cell immobilization was performed using L929 fibroblasts. Briefly, the 

fibroblasts (cell density= 8x105 cells/ml) were suspended in a 6% (w/v) pectin solution 

prepared in 0.9% (w/v) NaCl. The cell-polymer suspension was cross-linked with 0.5% 

(w/v) hydroxyapatite water suspension, to gain a final pectin concentration of 3% 

(w/v). 0.5 mL of the gelling mixture was then put in each well of a 48-wells culture 

plate. After gelation, 1 ml of culture medium was added in each well and the plates 

were incubated in controlled atmosphere (T=37° C, 5% CO2). 

To evaluate cell viability, Trypan Blue assay was performed after 1h, 2h, 4h and 24h of 

incubation, as follows. Cell pellets were recovered after dissolving the hydrogels with 1 

ml of 0.9% (w/v) NaCl added with 5mM EDTA and centrifuging the samples at 1300 

rpmi for 3 minutes. Then, the pellet was re-suspended with 80 µL of Trypan blue 

solution and 20 µL of fresh culture medium. 6.6 µL of the sample was drawn into 

KOVA Slide2 chamber (Glasstic Slide 10, KOVA International) and the cells were 

counted at the optical microscope (Olympus IX50). Cell viability (%) was expressed as 

(live cell number/ number of immobilized cells)*100. 

 

3. Results  

The internal gelation of pectin with hydroxyapatite resulted in the production of 

homogeneous soft hydrogels. Their tunable gelling kinetics allowed to load the 

hydrogels in disposable glass syringes, and possibly to inject them, prior to gelling.  
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The initial pH of 6% (w/v) pectin solution was 4.30 ± 0.20. When adding the cross-

linker, i.e. hydroxyapatite, the pH slightly increased, until reaching pH 4.70 ± 0.2 for 

each formulation.  

 

3.1 Determination of the gel point 

Time sweep tests were assessed to evaluate the possibility to obtain in situ gelling 

systems or to manufacture gels that can be loaded in syringes during the gelling 

process. An example of the gel point is reported in Figure 1: during gelation, the 

sample changes from a liquid-to-solid like behaviour. 

 

Figure 1. Storage modulus, loss modulus and tan δ of P5H03 gel. The gel point, 
indicated by the circle, occurs at 14 minutes, where the crossover of storage and loss 
moduli is reached and the value of tan δ is 1. 
 

Rheological measurements allow direct determination of the gel point, that is the time 

at which G’ and G” cross each other [16, 35]. In such an experiment, the evolution of 

G’ and G” is measured in small amplitude oscillatory shear as a function of cross-

linking time t. The frequency  is kept constant throughout. At the beginning of the 

experiment, the value of G” is higher than G’ and, after gelation, this order is reversed 

(Figure 1). Table 1 lists the experimental gelling time obtained for pectin hydrogels 

prepared by using different concentration of polymer and cross-linking agent. 
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According to the collected data (Table 1), the use of higher amounts of hydroxyapatite 

resulted in faster gelling kinetics, while no clear trends were observed when pectin 

concentrations were varied up to 7% (w/v).  

 

Table 1. Gelling time of PectHA gels (ω= 0.7 Hz, T= 25° C). 

Formulation Pectin 
(%) 

Hydroxyapatite 
(%) 

Gelling 
time 
(min) 

P3H0.3 3 0.3 48 
P3H0.5 3 0.5 35 
P5H0.3 5 0.3 14 
P5H0.5 5 0.5 9 
P7H0.3 7 0.3 33 
P7H0.5 7 0.5 19 

 

 

3.2 Aging dynamic  

After reaching the gel point, the storage and loss moduli of pectin hydrogels were 

observed to increase up to 3h after preparation. For longer times, the rheological 

properties were kept almost constant (Figure S1). Accordingly, the aging dynamic of 

the hydrogels was evaluated up to 3 hours. The double-log plot in Figure 2 shows the 

effect of frequency on the two dynamic moduli, G’ and G”.  

 

Figure 2. Storage (G’, filled symbols) and loss (G’’, empty symbols) moduli of P3H05 
biocomposite hydrogel as function of frequency and at different aging times: 35, 45 
and 180 min. 
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For all samples G’ exceeded G” by approximately a factor 5. A slightly linear 

behaviour was found for all the tested samples, thus indicating the possibility to 

calculate a realistic value of the coordination number as reported by Bohlin et al. [36]. 

Recalling basic theory, in a relaxation experiment a critical gel is characterized by a 

power law of the relaxation modulus (Equation 2) 

퐺(푡) = 퐴푡      (2) 

where A represents the gel strength and n is the relaxation exponent [37]. In our 

experiment we performed an oscillatory test at fixed frequency, , that is qualitatively 

equivalent to a transient experiment at time t = 1/; thus, it may be assumed that 

Equation 2 transforms into Equation 3: 

퐺(휔) = 퐴휔      (3) 

This critical gel is inherently assumed as the onset of a solid and therefore it relaxes in 

an infinite time and does not flow, the viscosity being infinite. In physical gelation, an 

important cooperative mechanism in pectin gelling, the stoichiometry of the physical 

cross-link is not easily controlled and the cross-link themselves may be labile with time 

under stress. Gels of this kind were referred as “weak” gels by de Gennes [38] since 

their cross-links have a binding energy ~ kT and so fluctuate in number and position, 

causing an actual fluctuation in the state of gelation. This process gives rise to a finite 

terminal relaxation time so that any applied strain can be eventually relaxed. To predict 

the suggested flow character, Mita et al. [39] proposed that the real structure of such a 

material is substituted by cooperative arrangement of flow units, to form a strand. 

Bohlin [36] demonstrated that in a relaxation experiment G ~ t-1/z, where z is the 

coordination number. Applying this approach to physical gels, it can be suggested that 

the extent of interactions is measured by the interaction factor z that assumes the 

meaning of the number of rheological units correlated with one other in the three 
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dimensional structure. Thus, in a dynamic oscillatory experiment G* can be calculated 

as described in Equation 4 

퐺∗(푤) = 	 퐺 (휔) + 퐺 (휔) = 퐴 휔 /    (4) 

Where Af is similar to A of Equation 2 and 3, but refers to a flowing gel and may be 

interpreted as the strength of the interactions between those units [40]. The double log 

plot in Figure 3 (main body) shows as an example the effect of frequency on the 

complex modulus G* for different aging times. For the sake of clarity, only three 

curves are here shown (t= 35 – 45 – 180 minutes).  

 

Figure 3. Evolution of G* with frequency at different aging times: = 35 min, ▲= 45 
min and =180 min. In the insets, z and Af parameters as calculated by fitting the 
experimental data with Equation 4. 

 

As expected, G* varies as a power law of frequency for all the tested samples (i.e. a 

straight line in the log-log representation). The upper left inset shows that the 

interaction parameter z calculated from the fitting of experimental data with Equation 4 

grows roughly linearly with gelation time, increasing from ≈ 5.5 at t = 35min to ≈ 6.5 

at t = 60 min. This linear dependence of z from time (t) is limited however to aging 

times not exceeding 60 minutes, and is followed by a plateau value of the interaction 

parameter ≈ 6.5 which is independent of sample aging up to 72 hours (data not shown). 
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The latter observation, together with the fact that Af grows from ≈ 180 Pa*s1/z when t = 

35 min to ≈ 450 Pa*s1/z at t = 180 min (lower right inset of Figure 3), indicates that the 

number and the strength of the interactions is increasing with aging time. It is 

important to mention that the presence of these new links do not affect the overall 

viscoelastic properties of the gel network, being 1/tan ≈ 5 for all the tested samples, as 

reported above.  

 

3.3 Rheological characterization of the extruded hydrogels 

To determine the rheological properties of the hydrogels after injection, frequency 

sweep tests were performed on pectin hydrogels extruded by 30 G needles, 24h after 

preparation. 

A first clear evidence that can be extracted from the dynamic measurements 

shown in Figure 4 is that the magnitude of the storage modulus G’ (Pa) and of 

the complex viscosity increase with pectin concentration and hydroxyapatite 

content.  

A detailed analysis of the different curves shows that the frequency dependence 

of the elastic modulus remains the same regardless of polymer and gelling agent 

concentration, as it is clearly shown by a constant slope of ≈ 0.1. Thus, all gels 

have a similar number of coordination. The shift of the storage modulus along y-

axis towards higher values is following the increase of the solid content of the 

gels, resulting from pectin and un-dissolved hydroxyapatite. Considering that the 

pH, and therefore the hydroxyapatite solubility, is similar for all of the produced 

hydrogels, the gel structure is retained, being dependent on the amount of free 

calcium ions available for the crosslinking. 

Tan δ values were comparable for all the considered formulations, all of them resulting 

< 1, thus indicating the solid-like behaviour of the gels [5].  
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Figure 4. Storage modulus (A), tan delta (B), and complex viscosity (C) of PectHA 
samples. 
 

The rheological properties of each formulation were extrapolated at  = 0.7 Hz and T= 

30° C, as reported in Figure 5 and in Table 2. 

 

Figure 5. Storage modulus of PectHa gels extrapolated at ω=0.7 Hz, T= 30°C. Images 
of P3H03, P3H05, P5H03 and P5H05 extruded gels are reported to show the 
macroscopic texture of the hydrogels. Scale bar= 1cm. 
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Table 2. Dynamic rheological properties of PectHa gels at ω=0.7 Hz and T= 30°C 
Sample G’ (Pa) G’’ (Pa) |η*| (Pas) Tan δ 
P3H03 536 116 122 0.17 
P3H05 705 111 160 0.15 
P5H03 4521 751 1024 0.12 
P5H05 6131 758 1389 0.12 
P7H03 6825 993 1865 0.14 
P7H05 8227 1061 1550 0.12 

 

According to the results, hydrogels with tunable rheological properties were obtained. 

Further rheological characterization was performed to evaluate PectHa samples under 

temperature ramps (Figure 6). 

 

Figure 6. Temperature ramp test on PectHa hydrogels. 
 

PectHa gels prepared with higher amounts of hydroxyapatite resulted stable over the 

whole range (20°C – 60°C) of temperature investigated (Figure 6). On the contrary, 

P3H03, P5H03 and P7H03 formulations showed a slightly decreasing trend of complex 

viscosity, associated to the weakening of the gel network at higher temperatures 

(Figure 6), probably due to the rupture of the secondary interactions, such as hydrogen 

bonds and van der Waals forces.  

 

 3.4 Injectability test 

To measure the forces required to extrude the gels through a syringe, PectHa samples 

were tested with a texture analyzer. Gels were extruded from needles with different 
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diameters (25G and 30G) and without needle (the internal diameter of the tip of the 

syringe being 1.47 mm). The injection force was increasing in the first seconds of the 

experiment, probably due to the extrusion of the air retained in the needle hub of the 

syringe, then it stabilized to a value that was kept constant until the end of the 

experiment (Figure 7A). In some cases, the injection force was oscillating up to the 

end of the test, probably due to a slight non-homogeneity of the biocomposites. These 

samples were not considered to calculate the mean injection force. 

 

Figure 7. Plot of the injection forces required to extrude P3H05 by a 25G needle 
syringe (A) and average injection forces of different needle sizes (B). The extrusion by 
30G needle syringes was not achieved for P5H05, P7H03 and P7H05 formulations (x 
symbols). 
 

The injection force was calculated as the average force from 10 mm to 20 mm 

displacements (Figure 7A). The extrusion from different needles showed a remarkable 

increase of the injection force associated to the reduction of the needle diameter 

(Figure 7B).  
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According to the results of the rheological analysis (Figure 4 and 5), the gels with 

lower pectin concentrations resulted softer and more flexible and therefore easier to 

extrude from small diameter needles. 

 

3.5 Hydrogel controlled reversibility 

The competing binding of monovalent ions, such as Na+ [21], can be exploited to 

trigger the complete dissolution of the hydrogels. This chararcteristic can provide a 

simple tool to remove the implanted hydrogels by inducing their dissolution. 

Each formulation was dissolved after 30 minutes of static incubation in the dissolving 

medium (0.9% w/v NaCl, Figure 8) and the resulting small gel fragments were 

collected with a 18G needle syringe.  

 

Figure 8. Dissolution test on PectHa samples. The complete dissolution was reached 
when the dissolved sample could be completely collected in a 18G needle syringe, i.e. 
when the samples lost more than 80% of their initial weight (red line). 

 

The dissolution rate resulted to be correlated to the hydrogel composition: the less 

entangled and less cross-linked hydrogels (P3H03, P3H05 and P5H03), i.e. the 

hydrogels with lower amounts of pectin and hydroxyapatite, respectively, were 

dissolved faster than the stronger formulations (such as P5H05, P7H03 and P7H05). 

This effect can be explained according to the increased spacing among pectin chains 
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and to the more deformable structure of the weakest hydrogels, which may lead to a 

faster diffusion of Na+ ions in the gel structure. 

 

3.6 Stability in different media and indirect cytocompatibility 

Before performing the in vitro characterization with L929 cell lines, the stability of the 

produced hydrogels was evaluated in the culture medium and in other aqueous media 

buffered at different pH, in the absence of Na+ ions, to simulate either the gastric either 

the intestinal pH. After a first swelling phase, the hydrogels maintained a constant 

weight (Figure S2). 

The cytocompatibility of L929 cells exposed to the gel extracts resulted comparable or 

higher than with the viability of the control (L929 cells cultured without the gel 

extracts) for each analyzed formulation. The viability of cells cultured in the presence 

of the P5 extracts resulted significantly lower than the viability of P7 extracts, as 

indicated by the analysis of variance (ANOVA) in Figure 9.  

On the overall, these experiments indicate that PectHA gels are cytocompatible 

towards the fibroblast model. 

 

Figure 9. Indirect cytotoxicity of PectHA gels after 48h of incubation. The reported 
values are related to the viability of L929 cells cultured without the gels extracts 
(100%). A statistically significant difference was observed among P5H03 and P7H05 
samples (*, p < 0.05) and among P5H05 and P7H05 samples (**, p < 0.01). 
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3.7 L929 cell immobilization 

Figure 10 reports the results of the relative cell viability of L929 fibroblasts 

immobilized in P3H05 biocomposite hydrogels. As shown in the results, cells 

survived to the immobilization procedure and kept a constant viability up to 24h, 

thus indicting that P3H05 hydrogels can provide an ECM-like environment able 

to support cell viability in the short-term culture. 
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Figure 10. Relative cell viability of L929 fibroblasts immobilized in P3H05 hydrogels. 
The percentage of live cell is expressed taking as reference (100%) the total number of 
immobilized cells. 

 

 

4. Discussion  

Natural polysaccharide-based hydrogels have been exploited in a wide range of 

biomedical and pharmaceutical applications. In the last decade, they are receiving 

increased attention as injectable gels for regenerative medicine [10, 41, 42]. The main 

aim of this work was to prepare and characterize an injectable biocomposite suitable for 

regenerative medicine applications, the matrix being pectin and the reinforcement 

hydroxyapatite. Though many examples of biocomposites produced with natural 

polysaccharides and hydroxyapatite are available in the literature [43-47], the amount of 

hydroxyapatite is usually predominant over that of the natural polymer, which is mainly 

employed as a plasticizer for the reinforcing particles. According to their mechanical 
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strength, these biocomposites are mostly exploited for bone regeneration or as bone 

cements [43-48].  

Our aim consisted in using the hydroxyapatite prevalently as a cross-linking agent of 

pectin, minimizing its role as reinforcement (Figure 11). Therefore, very low amounts of 

hydroxyapatite (300 mg/ml to 500 mg/ml) were used to produce the injectable 

biocomposites, but nonetheless obtaining injectable systems with different properties.  

The mechanism of pectin gelling is commonly referred as internal gelation, and it is 

based on the slow dissolution of poorly soluble sources of mutivalent cations dispersed in 

pectin solutions [16]. As the pH of pectin is slightly acid (pH= 4.30 ± 0.20), 

hydroxyapatite can slowly dissolve releasing the Ca2+ ions that cross-link the carboxylate 

(COO-) groups of pectin chains. However, a certain amount of hydroxyapatite is not 

dissolved and remains in the polymeric matrix as reinforcement phase. The presence of 

un-dissolved hydroxyapatite, even at 0.3% (w/v) concentration, indicates that  Ca2+  is 

saturating pectin solutions, at the equilibrium, for all the formulations employed in this 

work. Thicker hydrogels are resulting from the higher amount of un-dissolved 

hydroxyapatite. The results of the gel point (Table 1) clearly indicate a faster gelling 

kinetic for the higher hydroxyapatite concentrations. It could be hypothesized that the 

larger surfaces available, the faster the dissolution is. 

The polymeric hydrogels employed as injectable or implantable biomaterials should have 

a pH as near as possible to neutral in order to support cell viability and to avoid the 

necrosis of the surrounding tissues. Thus, the preparation of the pectin – hydroxyapatite 

biocomposite hydrogels was optimized with the addition of NaOH so to reach a suitable 

range of pH for each formulation. 

The gelling kinetic of the injectable hydrogels was tuned to be sufficiently slow to 

promote the formation of the gel directly within the syringe, and prior to injection. 

Nevertheless, it was necessary to find the best possible compromise with the crosslinking 
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rate, to prevent hydroxyapatite precipitation.   

The internal gelation of the low methoxyl pectin used in this work occurred within 9 and 

50 min after preparation, depending upon the concentration of the reagents (Table 1).  

A slow gelling kinetic is needed for the loading of cells, drugs or other bioactive 

molecules, due to the technical time required for the immobilization process. Therefore, 

the hydrogels prepared in this work appears suitable for the immobilization technology. 

Later increase of the storage modulus was related to internal strengthening of the gel 

network by intermolecular forces [23], until reaching a stable gel network within the first 

three hours of the gel formation process. This result accomplished the desirable gelling 

kinetics, avoiding the use of external stimuli (temperature, pH, photoinitiators) and 

preventing hydroxyapatite precipitation, providing a tight control over the final 

morphology and properties of the gel. The gelling time appeared mostly dependent upon 

the concentrations of hydroxyapatite, rather than the concentration of pectin solutions 

(Table 3).  

The rheological tests discussed in this work give useful information for the application of 

these gels as injectable biomaterials. Our preliminary data already bear clear evidence of 

the progressive overall aging of the gel structure although a full rheological 

characterization is needed to understand such a complex aging behaviour [49, 50]. 

However, our data can support the pectin gelling mechanism described by Braccini et al, 

as a cooperative two-stage process involving an initial dimerization followed by 

subsequent aggregation of the dimers [23].  

Among the rheological parameters evaluated in this study, the storage modulus (G′) 

provides quantitative information on the ability of the hydrogel to resist to deformation 

that can occur during injection or after implantation, by the neighbouring tissues. The 

complex viscosity instead can be related to the spreading behaviour of the hydrogel once 
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injected and therefore, to its ability to remain in the desired site rather than to disperse in 

the physiological milieu. 

The rheological properties, as well as the injection forces required to extrude the pectin-

hydroxyapatite biocomposites, were strictly correlated to pectin concentrations (Figures 

4-6) and resulted similar to the properties of injectable hydrogels commercially available 

as soft tissue fillers or to the properties of hydrogels proposed in the research for cell 

immobilization [29-34, 51]. Furthermore, the increase of the amount of the inorganic 

phase improved the rheological properties of the biocomposite (Figure 5). 

Thicker gels, i.e. gels with higher storage modulus and complex viscosity, that required 

higher extrusion force, may be felt stiffer or lumpier when injected and may potentially 

induce trauma to the tissue: post-injection pain, inflammation, edema and erythema. 

Softer gels, instead, could minimize the pain when injected but are unsuitable for load 

bearing tissues.  

The injectability of the produced biocomposites resulted in accordance with other 

injectable systems found in the literature [52, 53]. The injection of pectin biocomposites 

through the 30G needle appeared difficult for the softer formulations and not possible for 

those formulations with highest amounts of pectin and hydroxyapatite. As described in 

the literature [54], the injection force should be below 50 N for feasible injections and to 

minimize the pain during injection. Accordingly, 25G needle seems the most appropriate 

needle to be used to inject PectHA biocomposites. 

When designing injectable biomaterials, the reversibility of the gelling process is an 

interesting clue to demonstrate the possibility of controlling the degradation or 

dissolution of the hydrogels after the injection.  

As previous works demonstrated that the polymeric network of pectin gels is easily 

disrupted by competing monovalent ions [21], a saline solution (0.9% NaCl) was chosen 

as dissolution medium. The obtained results supported the hypothesis that the gel network 
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could be easily dissolved due to the competitive ion binding between sodium and calcium 

ions, and to the consequent disruption of the egg-box structure of the gel. This result is 

particularly interesting to externally modulate the release of drugs or cells possibly 

immobilized or to dissolve and remove the gel in the case of adverse reactions.  

According to the results of the indirect cytocompatibility assay, P3H05 formulation was 

chosen to perform a preliminary immobilization study. The aim of this characterization 

was to prove that the immobilization procedure was not harmful for a model cell line 

(L929 fibroblasts) and that the gel network was sufficiently permeable to oxygen and 

nutrients, to support the viability of the entrapped cells. A slight decrease of cell viability 

was observed in the first hour after immobilization (Figure 10), then it was maintained 

almost constant until the end of the experiment (24h), indicating that pectin-

hydroxyapatite hydrogels provide an adequate environment for the cells. 

On the basis of the performed characterization, the described pectin-hydroxyapatite 

biocomposites show interesting features that can be further exploited with minimally 

invasive approaches for tissue engineering and regenerative medicine.  

 

 

 
 

5. Conclusions 

Pectin-hydroxyapatite hydrogels produced by internal gelation were developed with 

the purpose of designing injectable biocomposites for tissue regeneration. The 

biocomposites were optimized in terms of pH, gelation kinetics and rheological 

properties. Varying the concentrations of the reagents (pectin and hydroxyapatite), 

tunable systems were obtained. 

Due to their rheological and texture characteristics, pectin-hydroxyapatite hydrogels 

were extruded from syringes with small needle sizes, and therefore appeared 
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appropriate for the development of minimally-invasive procedures. The indirect 

cytocompatibility assay and the immobilization test primarily confirmed the 

suitability of these biocomposites to support the immobilization of cells and 

therefore to develop injectable systems for tissue regeneration. 

 

Acknowledgements 

This work was partially supported by grants from Fondazione Cassa di Risparmio di 

Trento e Rovereto, SG2329/2011-2011/0206 and from the CARIPLO Foundation, Italy 

(Project No. 2012-0842). 

The authors wish to acknowledge Herbstreith & Fox (Neuenburg, Germany) and 

Eurocoating (Pergine, Trento, Italy) for kindly providing, respectively, the LM pectin and 

hydroxyapatite powders used in this work. The authors are also grateful to Mauro Bonvini 

for technical support. 

 

 

 

 

 

References  
 
[1] S. Ramakrishna, J. Mayer, E. Wintermantel, K.W.  Leong, Biomedical applications of 

polymer-composite materials: a review, Composites Sci. Technol. 61 (2001) 1189-

1224. 

[2] A.K. Mohanty, M. Misra, G. Hinrichsen, Biofibres, biodegradable polymers and 

biocomposites: An overview, Macromol. Mater. Eng. 276-277 (2000) 1-24. 

[3] B.R. Lawn, J.J. Lee, H. Chai, Teeth: Among Nature's Most Durable Biocomposites, 

Annu. Rev. Mater. Res. 40 (2010) 55-75. 



    

 - 25 - 

[4] K.A. Athanasiou, C.F. Zhu, D.R. Lanctot, C.M. Agrawal, X. Wang, Fundamentals of 

biomechanics in tissue engineering of bone, Tissue Eng. 6 (2000) 361-381. 

[5] J.J. Marler, A. Guha, J. Rowley, R. Koka, D. Mooney, J. Upton, J.P. Vacanti, Soft-

tissue augmentation with injectable alginate and syngeneic fibroblasts, Plast. Reconstr. 

Surg. 105 (2000) 2049-2058. 

[6] D. Macaya, M. Spector, Injectable hydrogel materials for spinal cord regeneration: a 

review, Biomed. Mater. 7 (2012) 012001. 

[7] A.A. Amini, L.S. Nair, Injectable hydrogels for bone and cartilage repair, Biomed. 

Mater. 7 (2012) 024105. 

[8] C.L. Salgado, E.M.S. Sanchez, C.A.C. Zavaglia, A.B. Almeida, P.L. Granja, 

Injectable Biodegradable Polycaprolactone-Sebacic Acid Gels for Bone Tissue 

Engineering, Tissue Eng. A 18 (2012) 137-146. 

[9] S.J. Bidarra, C.C. Barrias, K.B. Fonseca, M.A. Barbosa, R.A. Soares, P.L. Granja, 

Injectable in situ crosslinkable RGD-modified alginate matrix for endothelial cells 

delivery, Biomaterials 32 (2011) 7897-7904. 

[10] F. Munarin, P. Petrini, S. Bozzini, M.C. Tanzi, New perspectives in cell delivery 

systems for tissue regeneration: naturally - derived injectable hydrogels, J. Appl. 

Biomater. Funct. Mater. 10 (2012) 67-81. 

[11] L.D. Grunebaum, I.B. Allemann, S. Dayan, S. Mandy, L. Baumann, The risk of alar 

necrosis associated with dermal filler injection, Dermatol. Surg. 35 (2009) 1635-1640. 

[12] U.S. Zimmermann, T.J. Clerici, The histological aspects of fillers complications, 

Semin. Cutan. Med. Surg. 23 (2004) 241-250. 

[13] F. Munarin, S.S. Guerreiro, M.A. Grellier, M.C Tanzi, M.A. Barbosa, P. Petrini, P.L. 

Granja, Pectin-based injectable biomaterials for bone tissue engineering, 

Biomacromolecules 12 (2011) 568-577. 



    

 - 26 - 

[14] F. Munarin, P. Petrini, S. Farè, M.C. Tanzi, Structural properties of polysaccharide-

based microcapsules for soft tissue regeneration, J. Mater. Sci. Mater. Med. 21 (2010) 

365-375. 

[15] F. Munarin, P. Petrini, M.C. Tanzi, M.A. Barbosa, P.L. Granja, Biofunctional 

chemically modified pectin for cell delivery, Soft Matter 8 (2012) 4731-4739. 

[16] H.R. Moreira, F. Munarin, R. Gentilini, L. Visai, P.L. Granja, M.C. Tanzi, P. Petrini, 

Injectable pectin hydrogels produced by internal gelation: pH dependence of gelling 

and rheological properties, Carbohydr. Polym. in press, DOI: 

10.1016/j.carbpol.2013.12.057. 

[17] H.E. Kokkonen, J.M. Ilvesaro, M. Morra, H.A. Schols, J. Tuukkanen, Effect of 

Modified Pectin Molecules on the Growth of Bone Cells, Biomacromolecules 8 (2007) 

509-515. 

[18] C.M.G.C. Renard, J. Thibault, Degradation of pectins in alkaline conditions: kinetics 

of demethylation, Carbohydr. Res. 286 (1996) 139-150. 

[19] Y. Fang, S. Al-Assaf, G.O. Phillips, K. Nishinari, T. Funami, P.A. Williams, 

Binding behavior of calcium to polyuronates: Comparison of pectin with alginate, 

Carbohydr. Polym 72 (2008) 334-341. 

[20] I. Fraeye, I. Colle, E. Vandevenne, T. Duvetter, S. Van Buggenhout, P. Moldenaers, 

A. Van Loey, M. Hendrickx,  Influence of pectin structure on texture of pectin–

calcium gels, Innov. Food Sci. Emerg. Technol. 11 (2010) 401-409. 

[21] F. Munarin, M.C. Tanzi, P. Petrini, Advances in biomedical applications of pectin 

gels, Int. J. Biol. Macromol. 51 (2012) 681-689. 

[22] I. Braccini, R.P. Grasso, S. Pérez, Conformational and configurational features of 

acidic polysaccharides and their interactions with calcium ions: a molecular modeling 

investigation, Carbohydr. Res. 317 (1999) 119-130. 



    

 - 27 - 

[23] I. Braccini, S. Pérez, Molecular basis of C(2+)-induced gelation in alginates and 

pectins: the egg-box model revisited, Biomacromolecules 2 (2001) 1089-1096. 

[24] F. Munarin, S. Bozzini, L. Visai, M.C. Tanzi, P. Petrini, Sterilization treatments on 

polysaccharides: effects and side effects on pectin, Food Hydrocoll. 31 (2013) 74-84. 

[25] P. Petrini, M.C. Tanzi, L. Giuliano, F.  Munarin, P. Robotti, G. Bianchi, Composite 

material comprising pectin and calcium phosphate and method for its realization, 

International patent n. WO/2012/007917, 2012. 

[26] L. Yoo, V. Gupta, C. Lee, P. Kavehpore, J. Demer, Viscoelastic properties of bovine 

orbital connective tissue and fat: constitutive models, Biomech. Model. Mechanobiol. 

10 (2011) 901-914. 

[27] P.N. Patel, C.K. Smith, C.W.J. Patrick, Rheological and recovery properties of 

poly(ethylene glycol) diacrylate hydrogels and human adipose tissue, J. Biomed. 

Mater. Res. A 73A (2005) 313-319. 

[28] M. Hrapko, J.A.W. van Dommelen, G.W.M. Peters, J.S.H.M. Wismans, The 

mechanical behaviour of brain tissue: large strain response and constitutive modelling, 

Biorheology 43 (2006) 623-636. 

[29] B. Wang, Y. Cao, L. Yang, Y. Wang, Rheological properties of PLGA-PEG-PLGA 

copolymers for ophthalmic injection, J. Appl. Polym. Sci. 125 (2012) 370-375. 

[30] J. Kablik, G.D. Monheit, L. Yu, G. Chang, J. Gershkovich, Comparative physical 

properties of hyaluronic acid dermal fillers., J. Dermatol. Surg. 35 (2009) 302-312. 

[31] S. Santoro, L. Russo, V. Argenzio, A. Borzacchiello, , J. Appl. Biomater. Biomech. 

2 (2011) 127-136. 

[32] S.J. Falcone, R.A. Berg, Crosslinked hyaluronic acid dermal fillers: a comparison of 

rheological properties, J. Biomed. Mater. Res. A Rheological properties of cross-

linked hyaluronic acid dermal fillers 87A (2008) 264-271. 



    

 - 28 - 

[33] H. Sundaram, B. Voigts, K. Beer, M.  Meland, Comparison of the rheological 

properties of viscosity and elasticity in two categories of soft tissue fillers: calcium 

hydroxylapatite and hyaluronic acid, Dermatol. Surg. 36 (2010) 1859-1865. 

[34] B.A. Aguado, W. Mulyasasmita, J. Su, J.; K.J. Lampe, S.C. Heilshorn, Improving 

viability of stem cells during syringe needle flow through the design of hydrogel cell 

carriers, Tissue Eng. A. 18 (2012) 806-815. 

[35] H.H. Winter, Gel Point, Encyclopedia of Polymer Science and Technology, John 

Wiley & Sons, Inc. 2002. 

[36] L. Bohlin, A theory of flow as a cooperative phenomenon, J. Colloid Interface Sci. 

74 (1980) 423-434. 

[37] H.H. Winter, F. Chambon, Analysis of Linear Viscoelasticity of a Crosslinking 

Polymer at the Gel Point, J. Rheol., 30 (1986) 367-382. 

[38] P.G. de Gennes, Scaling Concepts in Polymer Physics; Cornell University Press, 

Ithaca, USA, 1979. 

[39] T. Mita, L. Bohlin, Shear stress relaxation of chemically modified gluten, Cereal 

Chem. 60 (1983) 60-93. 

[40] D. Gabriele, B. Cindio, P. D'Antona, A weak gel model for foods, Rheol. Act. 40 

(2001) 120-127. 

[41] W. Zhao, X. Jin, Y. Cong, Y. Liu, J. Fu, Degradable natural polymer hydrogels for 

articular cartilage tissue engineering, J. Chem. Technol. Biotechnol. 88 (2013) 327-

339. 

[42] F. Khan, S.R.  Ahmad, Polysaccharides and their derivatives for versatile tissue 

engineering application, Macromol. Biosci. 13 (2013) 395-421. 

[43] M. Swetha, K. Sahithi, A. Moorthi, N. Srinivasan, K. Ramasamy, N. Selvamurugan, 

Biocomposites containing natural polymers and hydroxyapatite for bone tissue 

engineering, Int. J. Biol. Macromol. 47 (2010) 47, 1-4. 



    

 - 29 - 

[44] G. Turco, E. Marsich, F. Bellomo, S. Semeraro, I. Donati, F. Brun, M. Grandolfo, A. 

Accardo, S. Paoletti, Alginate/Hydroxyapatite Biocomposite For Bone Ingrowth: A 

Trabecular Structure With High And Isotropic Connectivity, Biomacromolecules, 10 

(2009) 1575-1583. 

[45] C. Korach, G. Halada, H.  Mubarez, Effects of Processing Conditions on Chitosan-

Hydroxyapatite Biocomposite Mechanical Properties. Springer, New York, USA 

2011, p. 125-130. 

[46] A.S. Asran, S. Henning, G.H. Michler, Polyvinyl alcohol–collagen–hydroxyapatite 

biocomposite nanofibrous scaffold: Mimicking the key features of natural bone at the 

nanoscale level, Polymer 51 (2010) 868-876. 

[47] F.L. De Paula, I.C. Barreto, M. H. Rocha-Leao, R. Borojevic, A.M. Rossi, F.P.  

Rosa, M. Farina, droxyapatite-alginatebiocomposite promotes bone mineralization in 

different length scales in vivo, Front. Mater. Sci. China 3 (2009) 145-153. 

[48] F. Brun, G. Turco, A. Accardo, S. Paoletti, Automated quantitative characterization 

of alginate/hydroxyapatite bone tissue engineering scaffolds by means of micro-CT 

image analysis, J. Mater. Sci. Mater. Med. 22 (2011) 2617-2629. 

[49] H.H. Winter, Transient Networks, Progress Colloid Polym. Sci. 75 (1987) 104-110. 

[50] E. Secchi, T. Roversi, S. Buzzaccaro, L. Piazza, R. Piazza, Biopolymer gels with 

physical cross-links: gelation kinetics, aging, heterogeneous dynamics, and 

macroscopic mechanical properties, Soft Matter 9 (2013) 3931-3944. 

[51] A. Fattahi, P. Petrini, F. Munarin, Y. Shokoohinia, M.A. Golozar, J. Varshosaz, 

M.C. Tanzi, Polysaccharides Derived from Tragacanth as Biocompatible Polymers 

and Gels, J. Appl. Polym. Sci. 129 (2013) 2092-2102. 

[52] W. Rungseevijitprapa, R. Bodmeier, Injectability of biodegradable in situ forming 

microparticle systems (ISM), European J. Pharm. Sci. 36 (2009) 524-531. 



    

 - 30 - 

[53] S.M.  Oliveira, I.F. Almeida, P.C. Costa, C.C. Barrias, M.R.P. Ferreira, M.F.  Bahia, 

M.A. Barbosa, Characterization of Polymeric Solutions as Injectable Vehicles for 

Hydroxyapatite Microspheres, AAPS Pharm. Sci. Tech. 11 (2010) 852-858. 

[54] W. Rungseevijitprapa, R. Bodmeier, Injectability of biodegradable in situ forming 

microparticle systems (ISM), European J. Pharm. Sci. 36 (2009) 524-531. 

 


