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Résumé — Une approximation efficace par XFEM pour écoulements de Darcy dans les milieux

poreux arbitrairement fracturés — Les écoulements souterrains sont fortement influencés par

la présence de failles et de grandes fractures qui modifient la perméabilité du milieu agissant

comme des barrières ou des conduits pour l’écoulement. Une description précise des propriétés

hydrauliques des fractures est donc essentielle pour la modélisation de la migration du pétrole

ou de l’exploitation de ressources non conventionnelles. Toutefois, la largeur de fractures est

souvent petite par rapport à la taille typique des éléments du maillage. Pour résoudre le

problème par une approximation numérique obtenue sans raffinement du maillage, on

remplace les fractures par des surfaces immergées dans la matrice poreuse. Par ailleurs, on veut

permettre aux surfaces d’être indépendantes par rapport à la structure du maillage, en

manipulant les discontinuités à l’intérieur des éléments par la méthode des éléments finis

étendus (XFEM Extended Finite Element Method). On utilise une technique similaire pour

obtenir un outil plus flexible, apte à la résolution du problème dans les régions d’intersection

potentielles entre les fractures.

Abstract — An Efficient XFEM Approximation of Darcy Flows in Arbitrarily Fractured Porous

Media — Subsurface flows are influenced by the presence of faults and large fractures which act

as preferential paths or barriers for the flow. In literature models were proposed to handle fractures

in a porous medium as objects of codimension 1. In this work we consider the case of a network of

intersecting fractures, with the aim of deriving physically consistent and effective interface conditions

to impose at the intersection between fractures. This new model accounts for the angle between frac-

tures at the intersections and allows for jumps of pressure across the intersection. This latter property

permits to describe more accurately the flow when fractures are characterised by different properties,

than other models that impose pressure continuity. The main mathematical properties of the model,

derived in the two-dimensional setting, are analysed. As concerns the numerical discretization we

allow the grids of the fractures to be independent, thus in general non-matching at the intersection,

by means of the Extended Finite Element Method (XFEM), to increase the flexibility of the method

in the case of complex geometries characterized by a high number of fractures.
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INTRODUCTION

Subsurface flows are strongly influenced by the presence

of fractures. While small and micro-fractures can be eas-

ily accounted for by means of upscaling techniques, large

fractures and faults play a more complex role, acting as

paths or barriers for the flow. These effects are very rel-

evant for many applications such as oil migration, oil

recovery, CO2 storage and groundwater contamination

and remediation.

Due to the spatial scales involved, the simulation of

fractured porous media is a very challenging task. The

typical size of these features, compared to the domain

size, is usually such that a very fine mesh is needed to

resolve the fracture width. Moreover, in realistic cases,

the porous media are usually crossed by a large number

of fractures that can intersect each other. If we consider

the finite element method on an unstructured tetrahedral

grid the construction of a good computational grid is

essential to achieve accurate results. However, the con-

formity of the grid to possibly numerous and intersecting

fractures can be a strong constraint and can affect the

quality of the elements. Besides, the mesh refinement

required to capture the faults or fractures aperture leads

to a very high, if not unaffordable, computational cost.

These problems can be in part overcome with the

model reduction strategy proposed in [1, 2] and later

extended in [3]. It consists in a domain decomposition

approach where the fractures are regarded as n� 1
dimensional interfaces inside a n-dimensional porous

matrix, i.e. surfaces in 3D or lines in 2D. This approach

can effectively reduce the number of unknowns in simu-

lations because it removes the need for fine grids inside

the fractures [4, 5]. However, the aforementioned works

are restricted to the case of grids that follow the shape of

faults and fractures. In [6], the authors remove the con-

straint of mesh conformity by means of the Extended

Finite Element Method (XFEM) [7], allowing the frac-

ture to cross the elements of the grid in an arbitrary

way. The XFEM are widely used in the simulation of

the mechanics of fractured media, while their application

to flow problems in the presence of fractures and heter-

ogeneities is still at the beginning. This approach has

reduced the effort in constructing the computational

grid, since this operation does not have to account for

the possibly complicated geometry of the fractures

and, moreover, can be performed only once even if the

position of fractures or faults changes due to multiple

scenarios or sensitivity analysis. The method was, how-

ever, limited to the case of one interface, or at most, of

more non intersecting interfaces [4]. The difficulty in

dealing with intersecting fractures is twofold. On one

hand, suitable coupling conditions have to be introduced

at the intersections between two or more fractures. Fur-

thermore, in an XFEM approach, the elements of the

mesh that are crossed by more than one interface require

an additional enrichment of the finite element space.

Realistic simulations of intersecting faults in a three

dimensional domain are presented in [8], where the con-

tinuity of pressure and mass conservation are enforced at

the intersections. More general coupling conditions are

introduced and discussed in [9] to account for different

properties of the fractures allowing for pressure and

velocity jumps at the intersection, similarly to the condi-

tions derived in [2] for the matrix-fracture system. The

aforementioned work [9] considers the case of a network

isolated by the porous matrix, in the limit case where the

matrix can be regarded as impermeable with respect to

the fractures. The case of an isolated fracture network

in an impermeable matrix is also tackled in [9] by means

of the XFEM method and an optimization strategy to

enforce the coupling conditions at the intersections. In

this paper, we present a discretization strategy for the

fully coupled problem of porous media crossed by inter-

secting fractures, where the fractures exchange fluid

between each other, and with the porous matrix sur-

rounding them. To obtain a method that is as flexible

as possible, in the view of future realistic applications,

we employ the XFEM on two levels. First of all, we

allow the grid of the medium to be non-conforming with

the fractures. Moreover, we allow the grids of the frac-

tures to be arbitrary, i.e. non-matching at the intersec-

tion, and handle the pressure and velocity jumps at the

intersection points with n� 1 dimensional extended

finite elements, as done in [9]. A particular attention is

devoted to the enrichment of the finite element spaces

in the elements crossed by two fractures, where we

extend the method proposed by [10] to allow the solution

to be discontinuous across the two interfaces. In this

work, we have restricted ourselves to the case where each

triangle is crossed at most by two fractures, and each

intersection involves at most two fractures. The first

hypothesis could be removed with a further enrichment

of the finite element space in the cut elements, and a

resulting increase in code complexity and computational

cost. The second hypothesis instead is related to the cou-

pling conditions derived in [9] that are limited to the case

of at most two fractures intersecting in a point. Remov-

ing this assumption will thus require the derivation of

more general coupling conditions and will be the subject

of future works. Finally, we point out that a large variety

of method is available in literature for the simulation of

underground flows in presence of fractures, using dis-

crete fracture models with conforming meshes [11, 12].

The paper is structured as follows: in Section 1, we

present both the physical equations and the reduced
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model, with the interface conditions that couple the

matrix-fracture system and the fracture-fracture system.

In Section 2, we present the numerical discretization of

the problem with an highlight on the enrichment of the

finite element spaces. In Section 3, we present some

numerical experiments to asses the effectiveness of the

proposed method. Finally, the last section is devoted

to conclusions and to ongoing works.

1 MATHEMATICAL MODEL

We call fracture, or fault, a region of the porous medium

with data that differ of several order of magnitude from

the neighbouring medium. While the thickness of these

regions is very small the extension is comparable with

the domain size. In the following analyses, we consider

only the case of two intersecting fractures with only one

intersection region. Nevertheless, the results presented

can be extended, rather easily and under the forthcoming

hypotheses, to the case of several fractures with several

intersections. Examples can be found in Section 3.

1.1 Physical Equations

Let us consider a domain D � R2, crossed by two inter-

secting fractures called X1;X2 � D. Here and in the

sequel, we indicate with the lower case subscript i the
restriction of data and unknowns to Xi. We assume that

the intersection region, called I :¼ X1 \ X2, forms a con-

nected subset of each Xi, i.e. we allow only one intersec-

tion between the fractures. For simplicity, we assume

that I can be approximated by a quadrilateral with par-

allel sides. Given I , each fracture Xi can be written as the

union of disjoint sets Xi ¼ Xi1 [ I [ Xi2, the two non-

empty branches Xij of the fracture and the intersecting

region. We indicate with the lower case subscript ij and
the subscripts I the restriction of data and unknowns

to Xij and to I , respectively. Finally, thanks to the

previous splitting ofD, we define the surrounding porous
medium to the fractures as X :¼ Dn X1 [ X2ð Þ. Figure 1

shows an example of the domain subdivision.

We divide the boundary of each fracture Xi into three

disjoint pieces ci;1, ci;2 and a part common with oD, as
Figure 1 shows. More precisely, we indicate as ci;2 the

boundary of Xi contained in X in the direction of ni, ni
being the inward, with respect to Xi, unit normal to

ci;1, vice versa for ci;1.
Following [2, 9], we introduce the thickness di of Xi,

which is a regular function of the center line ci of Xi.

We can write each fracture Xi as:

Xi ¼ x 2 R2 : x ¼ sþ rni; s 2 ci; r 2 � di sð Þ
2

;
di sð Þ
2

� �� �

We are interested in computing the steady pressure

field p and the velocity field u in the whole domain D,
which are governed by the Darcy problem formulated

in X, X1, X2 and I as:

K�1uþrp ¼ 0

r � u ¼ f

(
inX

K�1
j uj þrpj ¼ 0

r � uj ¼ fj

(
inXj

ð1aÞ

for j= I , 1, 2. Here, K and Kj denote the symmetric and

positive definite permeability tensors and f and fj the

source terms. To couple all the problems in (1a), we

use the classical interface conditions:

pi ¼ p

ui � ni ¼ u � ni

(
on @ci;j

pi ¼ pI

ui � nI ¼ uI � nI

(
on @I

ð1bÞ

Ω 1

Ω

Ω

d1 (s 3)
d 1 (s1)

γ 1
1 (s)

n1 (s) d 1 (s2)γ 1,2

γ 1,1

Ω

Ω

n1

d2

n2

Ω 2,1

γ 2,2

I

γ 1,2

Ω1,1

γ 2,1

γ 1,1

γ 2

γ 1

d1

Ω 2,2 Ω 1,2

Ω Ω

a) b)

τ

Figure 1

a) Example of a single fracture; we have sk 2 c1;b) example of the set subdivision for a given problem.
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for i,j = 1,2. In (1b), we have indicated with nI the out-

ward unit normal to I . Finally we impose, for the sake of

simplicity, homogeneous boundary condition on the

pressure:

p ¼ 0

pi ¼ 0

(
on oD \ oX

on oD \ oXi
ð1cÞ

Following [13], it can be proven that problem (1) is

well posed.

1.2 Reduced Model

In [2], a reduced model is derived for a single fracture

coupled with the porous media, while in [9] a similar

model is derived for networks of fractures uncoupled

with the surrounding porous medium. We present a

reduced model, based on the aforementioned works,

which describes the coupling between a network of frac-

tures and the porous medium obtaining a complete

model for a single phase flow in fractured porous media.

We recall, for readers convenience, the main idea for

both models. We start by collapsing each Xi with its cen-

tre line ci, with normal ni, and consider the following

domain X
S

i ci for the problem. Given a regular fun-

ction a : X ! Rm, with m ¼ 1 or 2, defined on both side

of the generic fracture c, let us define:

ai xð Þ :¼ lim
e!0þ

a xþ ð�1Þie n xð Þ� �
for i ¼ 1; 2 ð2Þ

with x 2 c and n xð Þ the normal of c at x. Given (2), the

jump and mean operators across c are satc :¼ a1 � a2
and fagc :¼ a1 þ a2ð Þ=2, respectively. We define the

intersection point between the two fractures c1 and c2
as ip :¼ c1 \ c2. Given a function b : ci ! Rm, with

m ¼ 1 or 2, defined on both sides of the generic intersec-

tion point ip, let us define:

aij :¼ lim
e!0þ

ai ip þ ð�1Þje si;ip
� �

for j ¼ 1; 2 ð3Þ

where si; ip denotes the tangential unit vector si at the

intersection point ip, see [9]. As we done previously,

given (3), we introduce the jump and mean operators

across the intersection point ip, for i ¼ 1; 2, as

satip :¼ ai1 � ai2 and {aigip :¼ ai1 þ ai2ð Þ=2. We define

the projection matrix on the normal space as

N i :¼ ni � ni and on the tangential space as

T i :¼ I � N i. Given a regular function a : Xi ! R the

tangential operators are rsi a :¼ T ira and

rsi � a :¼ T i : ra. Following [2, 9], we suppose that

K i ¼ K i;nN i þ Ki;sT i in XinI with Ki;� positive, while KI

is constant in I . We will indicate with �̂ the reduced vari-

ables defined in each ci.We introduce, for each fracture ci,
the reduced velocity ûi as:

ûi sið Þ :¼
Z di

2

�di
2

T iui si þ rnið Þdr

and pressure p̂i as:

p̂i sið Þ :¼ 1

di

Z di
2

�di
2

pi si þ rnið Þdr;

with si 2 ci. Moreover, the reduced source term f̂ i and
the inverse of the scaled permeabilities gci and ĝi are
defined as:

f̂ i sið Þ :¼
Z di

2

�di
2

fi si þ rnið Þdr

gci :¼
di
Ki;n

and ĝi :¼ 1

diKi;s

We define d�i :¼ di= sin h, with h the angle between the

two fractures at ip. The reduction process approximates

the pressure in the intersection region I to a scalar value

p̂I in ip:

p̂I :¼ 1

Ij j
Z
I

pI xð Þdx

The reduced source term fI is defined as:

f̂ I :¼
Z
I

fI xð Þdx

Moreover we indicate the inverse of the reduced per-

meability, along the directions si;ip and sj;ip , in the inter-

section as gIij :¼ sTi;ip � K�1
I sj;ip .

The complete reduced model that describes the evolu-

tion of u, p, ûi, p̂i and p̂I consists of the following system

of partial differential equations, for i ¼ 1; 2:

K�1uþrp ¼ 0

r � u ¼ f

p ¼ 0

8>><>>: in X

on oD \ oX

ĝiûi þrsi p̂i ¼ 0

rsi � ûi ¼ f̂ i þ su � nitci
p̂i ¼ 0

8>>><>>>: in cinip
on oci

ð4aÞ
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coupled with the interface conditions for the matrix-

fracture system for j = 1, 2:

n0igcisu � nitci ¼ pf gci � p̂i

gci u � nif gci ¼ sptci

8<: on ci ð4bÞ

with n0j 2[0,0.25] a first model closure parameter, see [2,

3] for its meaning. Moreover, the coupling conditions for

the fracture-fracture system for i 6¼ j = 1, 2 are:

X2
k¼1

sûk � sktip ¼ f̂ I

Ij j
di

X2
k¼1

gIik
d�k

ûk � skf gip ¼ sp̂itip in ip

n̂0
dj
di
gIiisûk � sitip ¼ p̂if gip � p̂I

8>>>>>>>>>><>>>>>>>>>>:
ð4cÞ

Bounds for the value of the second closure parameter

n̂0 are discussed in [9].

2 NUMERICAL DISCRETIZATION

The discretization of (4) is based on the XFEM method

[7] for both the porous medium and the intersecting frac-

tures. In fact, we allow non-matching grids between the

fractures and the porous media and in the intersection

point of the intersecting fractures. To this purpose, we

introduce suitable enriched finite element spaces based

on the standard Raviart-Thomas finite element RT0,

for vector fields, and piecewise constant finite element

P0, for scalar fields.

We consider a family of regular tessellations T h,

h :¼ maxK2T hdiam Kð Þ, with oT h :¼ e 2 oK; K 2 T hf g.
For each fracture i; we introduce a family of regular tes-

sellations cĥ;i with ĥ :¼ maxl2cĥ;i
lj j. We suppose that if a

fracture intersects a triangle then it intersects exactly

two edges, [10]. Moreover, for the sake of simplicity,

we suppose that at most two fractures cross a triangle

and, if an intersection occurs, it happens inside a trian-

gle. There last two assumptions could be removed with

a generalization of the FEM space and the implementa-

tion. We introduce the following subsets of T h, for i 6¼ j
and for i; j ¼ 1; 2:

Ih :¼ K 2 T h : ci \ cj 6¼ ;� � 2 K
� 	

Mh :¼ K 2 T h : K \ ci 6¼ ; ^ K \ cj 6¼ ;� 	n Ih

Gh;i :¼ K 2 T h : K \ ci 6¼ ; ^ K \ cj ¼ ;� 	
CRh :¼ Mh [ I h [ Gh;1 [ Gh;2 and

N h :¼ T hnCRh

As shown in Figure 2, Ih denotes the element that

contains the intersection between the fractures,Mh con-

tains the elements that are crossed by both fractures but

do not contain the intersection point, while Gh;i contains

the elements crossed only by the i-th fracture. The last

two subsets are the cut region and the collection of ele-

ments in T h not crossed by any fracture, respectively.

We split also the mesh of the fractures into intersected

elements and non intersected elements, in particular,

we define for i ¼ 1; 2:

Cĥ;i :¼ l 2 cĥ;i : l \ ip 6¼ ;
n o

and Bĥ;i :¼ cĥ;inCĥ;i

Figure 2 for an example. With this subdivision, we

define the following enriched finite elements spaces for

the medium:

gRT0 T hð Þ :¼ RT0 N hð Þ �
[2
k;j¼1

RT0 Gh;k

� �
�

[3
m¼1

RT0 Mhð Þ �
[4
l¼1

RT0 Ihð Þ

γ 1

Ω

γ 2

h

h

h

h,1

h,2 ip

γ

ĥ,1

ĥ,2

ĥ,1

ĥ,2
ĥ,2

γ
ĥ,1a) b)

Figure 2

a) Example of the subdivision of T h into uncut elements, elements crossed by one fracture and elements crossed by two fractures with

and without an intersection; b) subdivision of cĥ;i.
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furthermore, we have:

eP0 T hð Þ :¼ P0 N hð Þ �
[2
k;j¼1

P0 Gh;k

� �
�

[3
m¼1

P0 Mhð Þ �
[4
l¼1

P0 I hð Þ

With these definitions, we can represent, for both p
and u, four discontinuities in the elements in I h, two in

Mh and one in Gh;k . An example is reported in Figure 3.

Moreover for each fracture i ¼ 1; 2, the enriched finite

elements spaces are:

gRT0 cĥ;i


 �
:¼ RT0 Bĥ;i


 �
� S2

k¼1
RT0 Cĥ;i


 �
eP0 cĥ;i


 �
:¼ P0 Bĥ;i


 �
� S2

k¼1
P0 Cĥ;i


 �
Using a standard procedure, we can write problem (4)

in its discrete counterpart, see [6, 9] for more details.

Hence the global algebraic system is a symmetric

block-saddle problem Gx ¼ b, with:

G ¼

A B 0 E1 0 E2 0

BT 0 0 0 0 0 0

0 0 Â1 B̂1 0 0 Ê1

ET
1 0 B̂T

1 0 0 0 0

0 0 0 0 Â2 B̂2 Ê2

ET
2 0 0 0 B̂T

2 0 0

0 0 ÊT
2 0 ÊT

2 0 0

2666666666664

3777777777775
x ¼ u; p; û1; p̂1; û2; p̂2; p̂I½ �Tand
b ¼ 0;Fq; 0; F̂1; 0; F̂2; F̂I

� T

The matrices Ei and Êi account for the coupling

between the matrix and the fractures and between the

fractures at the intersection.

3 APPLICATIVE EXAMPLES

We present some examples and test cases to asses the

reduced model presented in Section 1.2. Example 3.1

highlights the model error introduced using the reduced

model instead of the physical equations, while Example

3.2 shows a synthetic test case.

3.1 Model Error

The model error is the error we commit if we use the

reducedmodel (4) instead of solving the real equations (1).

We define the error errðKÞ, for each cell of the mesh,

as the difference between a reference solution, obtained

using the original equations solved on a fine grid, and

the reduced solution. Moreover, we introduce the rela-

tive error normalized with the norm of the reference

solution. The finer grid is a hierarchical refinement of

the mesh T h. Both errors are:

errðKÞ :¼ jjp� pref jjL2ðKÞ
errrelðKÞ :¼ errðKÞ

jjpref jjL2ðKÞ
8K 2 T h ð5Þ

In the definition of the errors, we do not take into

account the fractures but only their effect on the sur-

rounding domain.

We consider a two-dimensional problem in a square

domain D ¼ ð0; 1Þ2 cut by two intersecting fractures

characterized by different properties:

c1 ¼ fðx; yÞ 2 X : y ¼ 0:387g and

c2 ¼ fðx; yÞ 2 X : y ¼ �2xþ 1:4g

a) b)

Figure 3

Examples of some base functions for cut elements. a) Example of P0 I hð Þ; b) example of RT0 Ghð Þ.
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On the boundaries of the domain oX and of each frac-

ture oci, for i ¼ 1; 2, we prescribe homogeneous natural

boundary conditions. The bulk flow and the flow in

the intersecting fractures are described by (4) with source

terms f ¼ 10 and f̂ i ¼ 10d with d the thickness of the

fracture for both fractures, and K ¼ I . Fracture c1 is

characterized by the same tangential and normal perme-

ability as the porous medium in X thus ĝ1 ¼ d�1 and

gc1 ¼ d. Fracture c2 is instead characterized by the same

tangential permeability as the porous medium in X, i.e.
ĝ2 ¼ d�1, and a low normal permeability such that

gc2 ¼ 50d. We set n̂0 ¼ 0. The computational domain is

sketched in Figure 4.

Figure 5 shows the pressure field in the domain X and

in the fractures c1 and c2, obtained with and without the

reduced model. Due to the small normal permeability of

c2, there is a jump in the pressure across this fracture,

while the effect of fracture c1 is null since it has the same

permeability tensor as the porous matrix.

The global relative error (5) is reported in Table 1.

We notice that decreasing the thickness d of the frac-

ture the model error decreases, while changing the shape

parameter n0 the model error does not change signifi-

cantly. Figure 6 shows the model error (5) considering

the global domain and the domain without the first frac-

ture. We take as a reference the solution of the real prob-

lem with a fine grid composed by 114 115 triangles. Due

to the model reduction the major errors are localized

near the fractures, in particular when a pressure jump

occurs across a fracture.

In Figure 4, we present a zoom of the error near the

intersection point ip, we can notice that the error there

is comparable with the neighbouring regions.

3.2 A synthetic Test Case

Let us consider a synthetic test case that aims at repro-

ducing the quarter of five spots problem in the presence

of fractures. The computational domain is the unit

square and no flux boundary conditions are imposed

on the edges. The presence of the injector well at the left

bottom corner and the extracting well at the top right

corner is mimicked with two source terms of equal inten-

sity and opposite sign, i.e.:

f ¼
1

�1

0

8><>:
if x2 þ y2 < 0:08

if ð1� xÞ2 þ ð1� yÞ2 < 0:08

otherwise

The geometry of the fracture replicates one of the test

cases proposed in [12] and there solved with the finite

volume method on a grid conforming to the fractures.

In particular, we have three fractures:

c1 ¼ x; yð Þ 2 X : y ¼ 0:2 and 0 	 x 	 0:6f g
c2 ¼ x; yð Þ 2 X : x ¼ 0:3 and 0 	 y 	 0:4f g
c3 ¼ x; yð Þ 2 X : x ¼ 0:7 and 0:3 	 x 	 0:7f g

Error
0.17

0.2

0.1

0.08

0.04

3e-5
Ω

p = 0

p = 0

p 
=

 0

p =
 0

γi p

y

1

γ
2

a) b)

Figure 4

a) The computational domain and the zoom, coloured in green, of the domain X while b) the model error in the zoom for thickness

d ¼ 0:02, with shape parameter n0 ¼ 0:25.
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Error
0.38

0.3

0.2

0.1

0

Error
0.28

0.2

0.1

0

a) b)

Figure 6

a) The model error (5) for thickness d ¼ 0:05while b) the model error (5) for thickness d ¼ 0:02. In both simulation the shape parameter

is n0 ¼ 0:25. In both figures the maximum error, 0.38 and 0.28 respectively, is obtained near the fracture in some very small elements.

x
Y
Z

Pressure
0.20

0.00055

0.40 0.60

0.78

a) b)

Figure 5

a) The solution with the reducedmodel, with n0 ¼ 0:25 and d ¼ 0:02, using 4 418 triangles for the medium, 101 segments for first fracture

and 102 segments for the second fractures, b) the reference solution with 114 115 triangles.

TABLE 1

Global relative error errrel for different values of thickness d and shape parameter n0

n0 = 0 n0 = 0.25 n0 = 0.5

d ¼ 0:05 0:072244 0:0726848 0:0724751

d ¼ 0:02 0:0437599 0:0440597 0:0456497
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of the same width d ¼ 0:01 and permeability

Ki;n ¼ Ki;s ¼ 100 for i ¼ 1; 2; 3, while the permeability

of the porous matrix is set to 1. The solution is reported

in Figure 7, where the pressure distribution is obviously

influenced by the presence of the fractures.

The zoom of the intersection region close to the injec-

tor shows that the fractures can cut the triangles of the

mesh and, moreover, the grids of the fracture are inde-

pendent on each other and also on the two-dimensional

mesh. Figure 8 compares the isolines of pressure in the

non fractured and fractured case, highlighting the effect

of the higher conductivity due to the fractures.

CONCLUSIONS

In this paper, we have proposed a numerical method for

the approximation of Darcy problems in fractured por-

ous media. The main original aspect of this work, on

the side of the mathematical modeling of subsurface

flows, is to couple the reduced model for the flow in

the fracture [6] with the flow across an intersection point

[9]. Another important point is the increasing of the

applicability of the proposed method, since we consider

an approximation with the XFEM on two levels: in the

matrix-fracture and in the fracture-fracture coupling.

Pressure
0.038714

0.02
0
-0.02
-0.04

-0.05545

Pressure
0.02

0.018

0.016

0.015a) b)

Figure 7

a) Pressure distribution for a “quarter of five spots” configuration in the presence of three intersecting and highly permeable fratures.

b) Zoom of the intersection showing the non conformity of the 2D and 1D grids.

Pressure
0.055828

0.04
0.02
0
-0.02
-0.04

-0.05595

Pressure
0.038714

0.02

-0.02

-0.04

-0.055455

0

a) b)

Figure 8

Plot of the pressure isolines in a) the absence and in b) the presence of three intersecting and highly permeable fractures.
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We obtain a very flexible tool to solve these type of prob-

lems. In this work, we have assessed the validity of this

approach comparing its results with those computed

with the standard mixed finite element on a grid fine

enough to resolve the fracture thickness. The solutions

were in good agreement, except for the error introduced

by the use of the reduced one-dimensional model for the

fractures, that vanishes if the fracture aperture tends to

zero. Moreover, the choice of the new coupling condi-

tions, introduced in [9], for intersecting fractures allowed

us to represent more general configurations such as the

simultaneous presence of blocking and conductive frac-

tures. Even if the method has been, so far, implemented

only in the two-dimensional case where the fractures are

represented as lines, it can already have an applicative

interest, for instance, for the simulation of fractured res-

ervoirs with numerical upscaling techniques. The devel-

opment of the corresponding three dimensional

method is the subject of ongoing and future works.
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8th conference on Numerical Analysis and Optimization,
Dec.

9 Formaggia L., Fumagalli A., Scotti A., Ruffo P. (2013) A
reduced model for Darcy’s problem in networks of frac-
tures, ESAIM: Mathematical Modelling and Numerical
Analysis, in printing. DOI: 10.1051/m2an/2013132..

10 Hansbo A., Hansbo P. (2002) An unfitted finite element
method, based on Nitsche’s method, for elliptic interface
problems, Comput. Methods Appl. Mech. Engrg. 191, 47-
48, 5537-5552, ISSN 0045-7825, doi: 10.1016/S0045-7825
(02)00524-8.

11 Hoteit H., Firoozabadi A. (2008) An efficient numerical
model for incompressible two-phase flow in fractured
media, Advances in Water Resources 31, 6, 891-905, ISSN
0309-1708.

12 Karimi-Fard M., Durlofsky L.J., Aziz K. (2004) An
Efficient Discrete-Fracture Model Applicable for General-
Purpose Reservoir Simulators, SPE Journal 9, 2, 227-236.

13 Brezzi F., Fortin M. (1991) Mixed and Hybrid Finite Ele-
ment Methods, Computational Mathematics 15, Springer
Verlag, Berlin.

Manuscript accepted in September 2013

Published online in April 2014

Copyright � 2014 IFP Energies nouvelles

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than IFP Energies nouvelles must be honored. Abstracting with credit is permitted. To copy otherwise,
to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee: request permission from Information
Mission, IFP Energies nouvelles, revueogst@ifpen.fr.

564 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 69 (2014), No. 4


	ogst130007.pdf
	Introduction
	Mathematical model
	Physical Equations
	Reduced Model

	Numerical discretization
	Applicative examples
	Model Error
	A synthetic Test Case

	Conclusions
	References


