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Abstract

The numerical solution of a one dimensional, three-phases Stefan problem

with a low Stefan number is presented. Joule heating and thermal radia-

tion are demonstrated to be negligible compared to the high power input.

The Front Tracking Method is used along with a 2nd order Lagrangian inter-

polation of the temperature profile near the moving surface defined by the

location of the phase change. Results are compared with analytical, numer-

ical and experimental solutions available in literature.
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Introduction

Being vacuum the best dielectric it is obvious its application in techno-

logical situations involving high current levels to be shut off safely and as

instantaneously as possible. Vacuum switches apply this principle and for

this reason they have a key role in many high power electrical systems. One of

the problems affecting such devices is the appearance of electric arcs between

the electrodes due to the sometimes extremely high current level involved.

Arcs happen because absolute vacuum is not achievable and few electric car-

riers are always present. The intense heat fluxes of arcs can damage switches

by melting the electrodes locally. In fact these phenomena happen in small

zones that appear like small spots after the arc. These spots, with different

shapes and dimensions, can be found on either electrodes causing erosion.

Because spots appear to be a key element in understanding arc formation

and extinction, a Stefan multiphase thermal model of the spot formation is

here presented. Historically, for this kind of problem very few analytical solu-

tions have been found and only for the simplest cases with no more than two

phases [1][2], applied for infinite or semi-infinite regions. The same solution

can instead be easily obtained numerically [3] with the possibility of solving

more difficult problems [4]. Three phase problems have been already solved

numerically in the past [5] but using complex and rigid finite-element meth-

ods, unsuitable to be inserted into larger codes for the simulation of complex

physical problems involving not exclusively thermal phenomena. Hence the

purpose of this paper is to describe the application of a common finite dif-
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ference technique coupled with the front tracking method to this complex

multiphase problem. We will show the flexibility of the formulation as well

as that the results obtained are in good agreement with the literature. Due

to its simplicity and low computation time, the presented approach can be

used to preliminary evaluate damages occurring on electrodes surface dur-

ing initial sizing and design of vacuum switches. In addition the presented

method can be applied to every application which involves concentrated high

power deposition on surfaces, i.e. electric thrusters for in-space propulsion

or even laser ablation. More complex and multidimensional methods can be

successively applied to increase the detail of the solution [6][7][8].
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Physical description of the thermal model

Spots are small craters formed by an electric arc onto the electrode surface

and they are usually round with a melted internal surface. The image in

Figure 1 shows some spots cratered by an arc with a current density on the

order of 109 A/m2 on an Aluminum anode.

[Figure 1 about here.]

Single spots from high-current electric arcs usually are much smaller than

the electrode where they form [9, 10, 11, 12]. In addition, the depth of the

spot is much smaller, at least three times, than its diameter [9, 12]. From

an analytical point of view, Lehr et al. [13] show that if the diffusion length

(αstd)
1/2 is four times smaller than the electrode thickness by the incident

heat flux direction, the electrode itself can be considered infinite in extent

(td is a phenomenon characteristic time like the total discharge time, e.g.

near 1 ms). For copper this leads to a diffusion length of 0.35 mm, much

smaller than the thickness of a typical electrode. Therefore, the problem can

be considered as one-dimensional. A schematic representation of the model

is sketched in Figure 2.

The model can be described as a semi-infinite solid (approximate as a slab of

length a ≫ (αstd)
1/2) in the region X > 0, where X is the spatial coordinate

perpendicular to the surface, where the heat flux F (t) is applied at X = 0.

Additional terms for radiation as well as for Joule heating are else consid-

ered. The F (t) flux first raises the solid temperature to the melting value Tm
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(Stage 1). At this time t1 a new phase appears with a new domain for the

liquid phase. Hence, the original slab is split into two different time-varying

domains. While the surface S1 moving following Eq. (3), the temperature

in the liquid phase starts rising until the vaporization temperature Tv is at-

tained at t = t2 (Stage 2). At this time, the surface S2 appears and starts

moving following a relation similar to those for S1(Stage 3).

We assume all thermal properties of the electrode are constant. Although

in the vapor phase a temperature profile does not exist because vapor is

assumed to be removed as soon as it forms, in the solid and liquid phases

the temperature dynamic is ruled by the heat diffusion equations. At each

moving surface, the Stefan Equation (described by Eq. 3,4) is introduced, to

take into account the energy balance between the heat flux coming from the

two phases and the change in internal energy due to the melting or vapor-

ization. For the numerical solution, obviously, it is not possible to consider

a semi-infinite domain, so we consider the solid as a slab in the domain

0 < X < a with a ≫ rd. Because of this hypothesis, we assume that at

X = a temperature should always remain equal to the initial temperature

Ti , and temperature gradient is null. The verification of these conditions

means that the region remains unchanged, nevertheless only one of the two

conditions (Dirichlet or Neumann - null temperature gradient) can be im-

posed: fixing one of these two boundary conditions at X = a in the finite

differences code is only a matter of choice as both should be verified after the

simulation, to check whether a has been taken sufficiently large. We decided
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to impose the Dirichlet condition, except in comparing to other codes, where

the test case condition were used. Summarizing, the mathematical model

can be described as follows.

[Figure 2 about here.]

Heat Diffusion Equations

ks
∂2Ts

∂X2
+ ηsj

2 = ρcs
∂Ts

∂t
for S1 < X < a (1)

kl
∂2Tl

∂X2
+ ηlj

2 = ρcl
∂Tl

∂t
for S2 < X < S1 (2)

Stefan Equations on moving surfaces

ks
∂Ts

∂X
− kl

∂Tl

∂X
= ρCm

dS1

dt
for X = S1, t > t1 (3)

kl
∂Tl

∂X
+ F (t) = ρCv

dS2

dt
for X = S2, t > t2 (4)
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Boundary conditions

Ts = Ti for X = a (5)

−ks
∂Ts

∂X
= F (t) for X = 0, t < t1 (6)

−kl
∂Tl

∂X
= F (t) for X = 0, t1 < t < t2 (7)

Ts = Tl = Tm for X = S1, t > t1 (8)

Tl = Tv for X = S2, t > t2 (9)

Initial conditions

Ts = Ti for t = 0 (10)

S1 = 0 for t < t1 (11)

S2 = 0 for t < t2 (12)

Liquid and solid are considered to have the same density ρ to allow a

simpler manipulation of the Stefan equations and to avoid thermal expansion.

The error is no larger than around 10% for both copper and aluminum.

Finite Differences discretization and Front Tracking Method

The most difficult issue in using a finite difference method for this kind

of problem is the time-dependance of the domains. We cannot assume the

moving boundaries always lie on a node of the mesh, and therefore we do

not have a unique domain. Considering two separate domains with different
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discretizations is also difficult, because at the beginning of the simulation one

of them will be very small or null. To bypass these problems is it possible to

use the Front Tracking method [2]. The positions S1 and S2 of the moving

boundaries are obtained from the integration of the Stefan equations (3) and

(4), and therefore are not required to be a multiple of the mesh size. Let us

say that at any time kδt the phase-change boundary is located between two

consecutive grid points, for example iδX and (i+1)δX. To be able to define

the finite difference form of the heat transfer equations (1) and (2) for these

two points, we need to use a second order Lagrangian interpolation to allow

unequal spatial intervals. We will see that the appearance of the solid-liquid

boundary requires us to lower the order of the interpolation to one for the

initial step because the domain is restricted to only one node.

As previously mentioned, this model considers heat generation and ther-

mal radiation. The former is the term ηj2 in Eqs. (1) and (2) due to the

current that flows into the spot and resistively heats the material. The ther-

mal radiation can be considered in a very simple way by dividing F (t) into

two parts:

F (t) = F̃ (t)− qr(t) where qr(t) = σε
(

T 4
surf − T 4

i

)

where qr(t) is the heat flux that leaves the external surface (solid or liquid,

depending on the phase status). F̃ (t) can be considered the external heat

8



flux that flows into the anode, depending on the physics of the problem.

Non-dimensionalization

The first operation is the non-dimensionalization of the equations. The

advantages to this operation are a simplification in writing the finite-difference

form and the ability to obtain the Stephan number, a dimensionless value

that gives information about the problem dynamics. Some characteristic

parameters are chosen for this operation.

x =
X

r
xs,l =

Xs,l

r
s1,2 =

S1,2

r

τ =
kst

csρr2

us =
Ts

Tm

ul =
Tl

Tm

uv =
Tv

Tm

(13)

All the symbols are explained R2 in the Nomenclature section.

Substituting these dimensionless variables into Eqs. (1) and (2) we have:

∂2us

∂x2
+ gs =

∂us

∂τ
for s1 < x <

a

r
(14)

∂2ul

∂x2
+ gl = k̃

∂ul

∂τ
for s2 < x < s1 (15)

where

k̃ =
ks
kl

cl
cs

gs =
ηsj

2r2

ksTm

gl =
ηlj

2r2

klTm
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Eq. (3) and (4) can be manipulated in the same way:

γs
∂us

∂x
− γl

∂ul

∂x
=

ds1
dτ

for x = s1, τ > τ1 (16)

γlv
∂ul

∂x
+ f (τ) =

ds2
dτ

for x = s2, τ > τ2 (17)

where

γs = Ste γl =
klSte

ks
Ste =

csTm

Cm

γlv =
klλv

ks
f(τ) =

F (t)rλv

ksTm

λv =
csTm

Cv

The Stefan number Ste expresses the importance of sensible heat relative

to latent heat. For metals like aluminum, copper, tin, etc. the Stefan number

is small, in the order of the unity. This means that the heat released or

absorbed by the interface during phase change is mostly unaffected by the

variation of internal thermal energy of the material [14]. The boundary and

initial conditions can be transformed as follows:
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us = ui for x =
a

r
(18)

∂us

∂x
= −fs (τ) for x = 0, τ < τ1 (19)

∂ul

∂x
= −fl (τ) for x = 0, τ1 < τ < τ2 (20)

us = ul = uB = 1 for x = s1 (21)

ul = uv for x = s2 (22)

us = ui for τ = 0 (23)

s1 = 0 for τ < τ1 (24)

s2 = 0 for τ < τ2 (25)

where

fs (τ) =
F (t)r

ksTm

fl (τ) =
F (t)r

klTm

Lagrangian type interpolation

The Lagrangian type interpolation method used by Crank [2] allows a

modification of the finite difference formulae incorporating unequal spatial

intervals near the moving boundary. Using a 2nd order scheme based on three

points, a generic function u(x) can be represented as
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u(x) =
2

∑

j=0

lj(x)u(aj) (26)

lj(x) =
p2(x)

(x− aj)
dp2(x)
dx

∣

∣

∣

x=aj

p2(x) = (x− a0)(x− a1)(x− a2) (27)

Where u(a0), u(a1), u(a2) are three known values of u(x) at the points

x = a0, a1, a2. From u(x), is it possible to obtain the 1st and 2nd derivatives

expressed in terms of aj.

[Figure 3 about here.]

Referring to Fig. 3, where the moving boundary between liquid and solid

is shown to be at a fractional distance pdx from the considered node i, it

is possible to specialize the above formulae to obtain the derivative in these

two spatial intervals. Substituting values for aj and u(aj), pertaining to the

solid phase

aj u(aj)

a0 = (i+ 1− (1− p)) dx = (i+ p)dx uB

a1 = (i+ 1)dx ui+1
s = u1

s

a2 = (i+ 2)dx ui+2
s = u2

s

we write the derivatives

∂2us

∂x2
=

1

dx2

(

uB

(1− p) (2− p)
−

u1
s

1− p
+

u2
s

2− p

)

(28)
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for x = (i+ 1)dx, the first node of the solid domain, and

∂us

∂x
=

1

dx

(

2− 3p

(1− p) (2− p)
uB +

2− p

1− p
u1
s −

1− p

2− p
u2
s

)

(29)

for x = s1(t) the interpolated point. The last derivative will be used for

the Stefan equation. Analogously for the derivative of the liquid temperature

profile we can substitute

aj u(aj)

a0 = (i− 1)dx ui−1
l = unl−1

l

a1 = idx ui
l = unl

l

a2 = (i+ p)dx uB

obtaining

∂2ul

∂x2
=

2

dx2

(

unl−1
l

p+ 1
−

unl

l

p
+

uB

p (p+ 1)

)

(30)

for x = idx, the last node of the liquid domain, and

∂ul

∂x
=

1

dx

(

p

p+ 1
unl−1
l −

(p+ 1)

p
unl

l +
2p+ 1

p (p+ 1)
uB

)

(31)

for x = (i + p)dx, the interpolated point. Eq. (28) should be used for

the first node of the mesh, and (30) for the last node of the mesh. Eq.

(29) and (31) are to be used in Eq. (16). These substitutions produce the

finite difference equations that are calculated at every step s1(kdτ). Writing

s1(kdτ) = (i+ pk)dx and using the first-order Euler approximation of ds/dt

we can obtain
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pk+1 = pk +
dτ

dx2

(

γs
∂us

∂x
− γl

∂ul

∂x

)

(32)

This equation is valid for the solid-liquid moving boundary in Stages 2

and 3. For the liquid-vapor moving boundary the same Eq. (29), with ul in

place of us , can be used with Eq. (17) to obtain the final form

vk+1 = vk +
dτ

dx

(

γl
∂ul

∂x
+ f(τ)

)

(33)

where v is the parameter used to track the movement of the boundary

s2(t) = (i+ v)dx.

To manage the movement of the boundaries we update at every time

step the fractional parameters p and v. Their values lie between 0 and 1,

meaning the relative boundary lies between two nodes, except when p > 1,

which means that the moving boundary passed a node. To simulate this we

remove the node from the solid domain and add a node to the liquid one.

Calculating pk+1 = pk − 1 we obtain the starting p for the spatial interval

dx. For the liquid-vapor boundary we simply remove one node from the

liquid domain without any additional operation, following the assumption

that the vapor is continuously removed from the surface. This operation

requires the determination of a temperature for the new node added in the

liquid domain. Lacking physical principles to address this problem, (the

conservation of energy has been already used for the Stefan equation and
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does not provide any further information) we can again use the Lagrangian

interpolation of Eq. (26). Before adding the new node, with p > 1, we can

obtain the temperature in the position x = (i + 1)dx using the information

at nodes (i − 1)dx (where u = unl−1
l ), idx (where u = unl

l ) and (i + p)dx

(where u = uB by definition of s1 ) obtaining:

ui+1,k
l =

1− p

1 + p
ui−1,k
l +

2 (p− 1)

p
ui,k
l +

2

p (p+ 1)
uB (34)

This is not a strict condition. The space and time steps are usually small,

so it happens that ui+1
l is very close to uB. We verified that imposing the

condition ui+1
l = uB does not change the result of the simulation if the total

simulation time is not close to τ1.

Thermal model validation

To validate the code we used both an analytical solution and a test case

found in the literature. Analytical solutions are very difficult to find and

are only available for simple problems. For this reason we tested a simpler

version of the code with only solid and liquid phases.

Analytical solution: the Neumann solution

The similarity solution originally obtained by Frank Neumann in 1860 for

the solidification of a liquid phase can also be used for the inverse process.

It is based on a particular solution of the heat equation that can be written

in terms of error functions.
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The problem considered is the two phases one described by Eqs. (1), (2), (3)

without taking into account the heat generation terms and with boundary

and initial conditions

Tl = T0 for X = 0, t > 0 (35)

Ts = Ti for X = ∞, t > 0 (36)

Tl = Ts = Tm for X = S1(t), t > 0 (37)

Following the known resolution described by Crank [2] with some varia-

tions, verified by comparison with Gupta [15] work, we can give the solution

of (1) and (2) as

Tl = T0 + A erf

(

Xl

2
√
αlt

)

(38)

Ts = Ti +B erfc

(

Xs

2
√
αst

)

(39)

Let S1(t) be given by

S1 (t) = 2λ
√
αlt

where λ is an unknown constant. For X = S1(t) Eqs. (38) and (39) are

equal to Tm for the boundary condition. Hence, with the previous definition
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of S1(t)

A =
Tm − T0

erf (λ)

B =
Tm − Ti

erfc
(

λ
√

αl

αs

)

Now, taking the derivatives of (38) and (39) and inserting into Eq. (3)

with the obtained values of A and B we finally obtain

exp (−λ2)

erf (λ)
+

ks
kl

(Tm − Ti)

(Tm − T0)

√

αl

αs

exp
(

−λ2 αl

αs

)

erfc
(

λ
√

αl

αs

) = −
Cmλ

√
π

cl (Tm − T0)
(40)

Calculating λ from Eq. (40) with a numerical or graphical method we

obtain the final time-dependent temperature profile and the movement of the

boundary.

[Figure 4 about here.]

Fig. 4 shows the convergence of the numerical solution to the analytical

one. Except at the very beginning of the simulation where it is not possible

to start from zero for initialization issues, the difference between the two

solutions quickly drops to less than 1% even with the biggest mesh size.

This means that the accuracy of the calculation always grows in time, and

the solution does not diverge.
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Comparison with previous numerical solution

Bonnerot et al. [5] proposed a solution for a two-phase Stefan problem

using finite element method; they also modeled the appearance and disap-

pearance of new phases. Our code has been modified to enforce an adiabatic

condition at the end of the slab, as in the considered paper. The physical

values used are:

Tm = 1454 K Tv = 3000 K

T0(X) = T0 = 27 K F (t) = F = 2500 W/m2

cl = cs = 1.7848 J/(kgK) ρ = 2.77 kg/m3

a = 1 m ks = 0.259 W/(mK)

kl = 0.259 W/(mK) Cm = 779.8 J/kg

Cv = 13430 J/kg

The results obtained for the boundary movement S1(t) and S2(t) are

shown in Figures 5 and 6. The comparison with the code of Bonnerot et

al. is shown in Figures 7 and 8 where the ratio between the values of the

two solutions is plotted versus the time t. It is easy to observe that the two

methods produced the same results, i.e., ratio close to 1, with a difference

smaller than 3%, except where one of the two values is close to zero because

of the numerical imposition of the boundary conditions ( slab thickness and

axis origin). This pushes the ratio towards higher yet non physical values.

[Figure 5 about here.]

[Figure 6 about here.]
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[Figure 7 about here.]

[Figure 8 about here.]

Comparison with previous numerical solution

Another comparison with previous literature was carried out with the work

of Belkin [16]. His experimental data can be normalized in order to obtain

a self-similar curve of a dimensionless ejected mass independent of the heat

flux incoming on the surface, while eliminating the dependence on the total

time of the arc discharge. This allows us also to validate our model from

the point of view of the vaporization process.

M∗

l =
Ml

Qb

csTm

M∗

v =
Mv

Qb

clTm

[

qb
√
td
]

∗

=
qb
√
td

Tm

√
clρkl

whereM∗

l andM∗

v are the liquid and vapor nondimensional ejected mass, and

td is the total discharge time during which the flux qb is assumed constant.

[Figure 9 about here.]

Figures 9 shows the nondimensional mass flow rates for liquid and vapor

phase, evaluated by our code, plotted versus a nondimensional parameter
[

qb
√
td
]

∗

that is a function of the heat flux and the discharge time. The
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results are quite similar to those that can be found in [16]. Belkin identifies

the onset of fusion as:

[

qb
√
td
]

∗

=
√

π/4 = 0.885

According to him, at low fluxes the metal is heated to fusion conditions

at shallow depths and heat is transported deeper into the metal by ther-

mal diffusivity. For high heat flux, i.e., large
[

qb
√
td
]

∗

, there is an intense

vaporization of the surface and only a fraction of the energy is carried by

conduction. Almost all the input energy is consumed by the vaporization of

nearly all of the fused metal, leading to a small difference between M∗

l and

M∗

v . In our result,
[

qb
√
td
]

∗

is about 0.7, which is close to the Belkin’s value.

It is interesting to note that the maximum of the M∗

l curve, and so the

onset of vaporization, can vary strongly with the imposed vapor temperature

Tv. This means such a sort of self-similarity is not maintained if pressure

varies during the experiment, because of the boiling point variation. Belkin

developed an approximate expression for M∗

l valid within the range 55 ·109−

5 · 1011 W/m2

M∗

l approx =
1.3

[qb
√
τd]∗

[

1−
0.885

[qb
√
τd]∗

]

that, is only valid for one pressure. Nevertheless, some authors [13, 17] refer

to this expression when calculating electrode evaporation without concern

for this limitation.
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Conclusions

The numerical solution of a one dimensional, three-phases Stefan problem

with a low Stefan number has been presented. The fundamental equations

governing the phenomenon and the numerical approach used to solve the

problem have been described. The results are in agreement with a previous

solution obtained with a different numerical method and with experimental

data found in literature.
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Nomenclature

a Length of the slab (m)

cs Specific heat of solid (J/kgK)

cl Specific heat of liquid (J/kgK)

Cm Latent heat of melting (J/kg)

Cv Latent heat of vaporization (J/kg)

F (t) Inbound heat flux (W/m2)

j Current density (A/m2)

ks Thermal conductivity of solid (W/mK)

kl Thermal conductivity of liquid (W/mK)

ṁ Mass flow rate (kg/s)

Ml Melted mass (kg)

Mv Vaporized mass (kg)

p Fractional parameter for the s1 tracking

qr Radiative heat flux (W/m2)

rd Diffusion length (m)

S1 Dimensional position of the solid-liquid interface (m)

S2 Dimensional position of the liquid-vapor interface (m)

s1 Dimensionless position of the solid-liquid interface

s2 Dimensionless position of the liquid-vapor interface

Ste Stefan number

t Time (s)

td Characteristic time of the phenomenon, i.e. discharge time (s)

Ti Initial system temperature (anode and environment) (K)

Ts Solid temperature (K)

Tl Liquid temperature (K)

Tm Melting temperature (K)

Tv Vaporization temperature (K)
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us Dimensionless solid temperature

ul Dimensionless liquid temperature

um Dimensionless melting temperature

uv Dimensionless vapor temperature

v Fractional parameter for the s2 tracking

X Dimensional spatial coordinate (m)

x Dimensionless spatial coordinate

Xs Dimensional spatial coordinate for the solid domain (m)

xs Dimensionless spatial coordinate for the solid domain

Xl Dimensional spatial coordinate for the liquid domain (m)

xl Dimensionless spatial coordinate for the liquid domain

αs Diffusivity of the solid (m2/s))

αl Diffusivity of the liquid (m2/s))

ηs Resistivity of solid (Ωm)

ηl Resistivity of liquid (Ωm)

ǫ Emissivity

ρ Density (kg/m3)

τ Dimensionless time
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Figure 1: Spots on aluminum anode
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Figure 2: Stages of the model
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Figure 3: Lagrangian type interpolation for solid-liquid boundary
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Figure 4: Percentual error of our calculated S1(t) with respect to Neumann’s analytical
solution. Error is provided for different mesh sizes: the legend shows the mesh size with
respect to the total length of the slab.
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Figure 5: Our code simulation of Bonnerot’s numerical problem: showing appearance,
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Figure 7: Comparison between our code and Bonnerot’s code. Ratios of the boundary
positions S1 (continuous line) and S2 (dashed line) with respect to time calculated with
our code and Bonnerot’s code.
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Figure 8: Comparison between our code and Bonnerot’s code. Ratios of the velocities of
the free boundaries dS1/dt (continuous line) and dS2/dt (dashed line) with respect to
time calculated with our code and Bonnerot’s code.
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Figure 9: Results of our code. Normalization of copper simulation results according to
Belkin method for evaluating experimental data.
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