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We also show that the resulting scheme provides a uniform preconditioner with respect
to the number of degrees of freedom. Numerical results that validate the theory are also
presented.
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1. Introduction

Thanks to its great flexibility in dealing with very general meshes and its capability of preserving the fundamental
properties of the underlying physical model, the mimetic finite difference (MFD) method has been successfully employed,
in approximately the last ten years, to solve a wide range of problems. Mimetic methods for the discretization of diffusion
problems in mixed form are presented in [1–6]. The primal form of the MFD method is introduced and analyzed in [7,8].
Convection–diffusion problems are considered in [9,10], while the problem of modeling flows in porous media is addressed
in [11]. Mimetic discretizations of linear elasticity and the Stokes equations are presented in [12–15], respectively. MFD
methods have been used in the solution of Reissner–Mindlin plate equations [16], and electromagnetic equations [17,18].
Numerical techniques to improve further the capabilities of MFD discretizations such that a posteriori error estimators
[19–21] and post-processing techniques [22] have been also developed. The application of the MFD method to nonlinear
problems (variational inequalities and quasilinear elliptic equations) and constrained control problems governed by linear
elliptic PDEs is even more recent, see [23] for a review. More precisely, in [24,25] a MFD approximation of the obstacle
problem, a paradigmatic example of variational inequality, is considered. The question whether the MFD method is well
suited for the approximation of optimal control problems governed by linear elliptic equations and quasilinear elliptic
equations is addressed in [26,27], respectively. For a comprehensive review of MFD see, e.g. [28,29]. Recently, in [30], the
mimetic approach has been recast as the virtual element method (VEM), cf. also [31,32]. Nevertheless, the issue of developing
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efficient solution techniques for the (linear) systems of equations arising from MFD discretizations has not been addressed
right now. The main difficulty in the development of optimal multilevel solution methods relies on the construction of
consistent coarsening procedures which are non-trivial on grids formed by general polyhedra. We refer to [33–35] for
recentworks on constructing coarse spaceswith approximation properties in the framework of the agglomerationmultigrid
method. Very recently, using the techniques of [36,37], a multigrid algorithm for Discontinuous Galerkin methods on
polygonal and polyhedral meshes has been analyzed in [38].

The aim of this paper is to develop an efficient two-level method for the solution of the linear systems of equations aris-
ing from MFD discretizations of a second order elliptic boundary value problem. We prove that the two-level algorithm
that relies on the construction of suitable prolongation operators between a hierarchy of meshes is uniformly convergent
with respect to the characteristic size of the underlying partition. We also show that the resulting scheme provides a uni-
form preconditioner, i.e., the number of Preconditioned Conjugate Gradient (PCG) iterations needed to achieve convergence
up to a (user-defined) tolerance is uniformly bounded independently of the number of degrees of freedom. An important
observation is that for unstructured grids a two-level (and multilevel) method is optimal if the number of nonzeros in the
coarse grid matrices is under control. This is important for practical applications and one of the main features of the method
proposed here is that we modify the coarse grid operator so that the number of nonzeros in the corresponding coarse grid
matrix is under control. This in turn complicates the analysis of the preconditioner, since we need to account for the fact
that the bilinear form on the coarse grid is no longer a restriction of the fine grid bilinear form.

The layout of the paper is as follows. In Section 2 we introduce the model problem and its mimetic finite difference
discretization. The solvability of the discrete problem is discussed also in this section and further, spectral bounds of the
stiffness matrix arising form MFD discretization are provided in Section 2.3. Our two-level preconditioners are described
and analyzed in Section 3. Finally, in Section 4 we present numerical results to validate the theoretical estimates of the
previous sections and to test the practical performance of our algorithms.

2. Model problem and its mimetic discretization

LetΩ be an open, bounded Lipschitz polygon in R2. Using the standard notation for the Sobolev spaces, we consider the
following variational problem: Find u ∈ H1

0 (Ω) such that
Ω

κ(x)∇u · ∇v dx =

Ω

f v dx, for all v ∈ H1
0 (Ω). (1)

Here, f ∈ L2(Ω) and we assume that the function κ(x) is a piecewise constant function, bounded and strictly positive,
namely, there exist κ⋆, κ⋆ > 0 such that κ⋆ ≤ κ(x) ≤ κ⋆.

We now briefly review the mimetic discretization method for problem (1) presented in [7] and extended to arbitrary
polynomial order in [8]. In the following, to avoid the proliferation of constants, by . we denote an upper bound that holds
up to an unspecified positive constant.Moreover, (·, ·)will denote the Euclidean scalar product in ℓ2(Rn), and ∥·∥ its induced
norm. Finally, (·, ·)X and ∥·∥X , will denote the inner product and the normgenerated by a symmetric, positive definitematrix
X , respectively.

2.1. Domain partitioning

We partitionΩ as union of connected, convex polygonal subdomains with non-empty interior. We denote this partition
with ΩH , and assume it is conforming, i.e., the intersection of the closure of two different elements is either empty or is a
union of vertexes or edges. Notice that assuming that ΩH is made of convex elements is not restrictive and an algorithm
for such decomposition into a small (close to minimum) number of convex polygons is presented in [39]. For each polygon
E ∈ ΩH , |E| denotes its area, HE denotes its diameter and H = maxE∈ΩH HE is the characteristic size of the partition Ωh.
The set of vertexes and edges of the partition is denoted by NH and EH , respectively. The vertexes and edges of a particular
element E are denoted by N E

H and EE
H , respectively. A generic vertex will be denoted by v and a generic edge by e. We also

assume thatΩH satisfies the following assumptions, cf. [7].

Assumption 2.1. There exists an integer number Ns, independent of H , such that any polygon E ∈ ΩH admits a decompo-
sition into at most Ns shape-regular triangles.

Assumption 2.1 implies the following properties which we use later, cf. [7] for more details.

(M1) The number of vertexes and edges of every polygon E ofΩH is uniformly bounded.
(M2) For every E ∈ ΩH and for every edge e of E, it holds HE . |e| and H2

E . |E|.
(M3) The following trace inequality holds

∥ψ∥2L2(e) . H−1E ∥ψ∥
2
L2(E) + HE |ψ |

2
H1(E) ∀ ψ ∈ H1(E).
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Fig. 1. Refinement strategy: a coarse element E ∈ ΩH is subdivided into sub-elements. Circles denote the coarse vertexes in NH , while squares refer to
additional vertexes in Nh .

(M4) For every E and for every functionψ ∈ Hm(E),m ∈ N, there exists a polynomialψk of degree at most k on E such that

|ψ − ψk|H l(E) . Hm−l
E |ψ |Hm(E)

for all integers 0 ≤ l ≤ m ≤ k+ 1.

We then consider a fine partition Ωh obtained after a uniform refinement of ΩH , according to the procedure described
in Algorithm 1 (see also Fig. 1). Notice that, by construction, the grid Ωh automatically satisfies properties (M1)–(M4). As
before, the diameter of an element E ∈ Ωh will be denoted by hE , and we set h = maxE∈Ωh hE . Accordingly, Nh and Eh will
denote the sets of vertexes and edges ofΩh, respectively.We also observe that, according to Algorithm1, the edgemidpoints
vm(e) and the points xE become additional vertexes in the new meshΩh, i.e.,

Nh = NH ∪ {vm(e)}e∈EH ∪ {xE}E∈ΩH . (2)
Finally, we assume that the jumps in κ(x) are aligned with the finest grid and we denote by κE the coefficient value in the
polygon E ∈ Ωh.

Algorithm 1 Refinement algorithm, see Fig. 1.
1: for all polygons E ∈ ΩH do
2: Introduce the point xE ∈ E defined as

xE =
1
nE


v∈N E

H

x(v),

where nE is the number of vertexes v of E, and x(v) is the position vector of the vertex v.
3: Subdivide E ofΩH by connecting each midpoint vm = vm(e) of each edge e ∈ EE

H with the point xE , see Fig. 1.
4: end for

2.2. Mimetic finite difference discretization

In this section we describe the MFD approximation to problem (1) on the finest grid Ωh. We begin by introducing the
discrete approximation space Vh: any vector vh ∈ Vh is given by vh = {vh(v)}v∈Nh , where vh(v) is a real number associated
to the vertex v ∈ Nh. To enforce boundary conditions, for all nodes of themeshwhich lay on the boundary we set vh(v) = 0.
Denoting by Nh the cardinality of Nh, we have that Vh ≡ RNh .

The mimetic discretization of problem (1) reads: Find uh ∈ Vh such that
ah(uh, vh) = (fh, vh) ∀vh ∈ Vh (3)

where
(fh, vh) =


E∈Ωh

f̄ |E

vi∈N

E
h

vh(vi) ω
i
E,

with f̄ |E is the average of f over E andωi
E are positiveweights such that


i ω

i
E = |E|. The bilinear form ah(·, ·) : Vh×Vh → R

is defined as follows:
ah(vh, wh) =


E∈Ωh

aEh(vh, wh) ∀vh, wh ∈ Vh,
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where, for each E ∈ Ωh, aEh(·, ·) is a symmetric bilinear form that can be constructed in a simple algebraic way, as shown
in [7,24]. We next recall this algebraic expression and use it to show that (3) is well posed. We remark that the following
construction applies to a generic polygon, even though it is here used for a quadrilateral. For any E ∈ Ωh let nE be the number
of its vertexes and let AE

h ∈ RnE×nE be the symmetric matrix representing the local bilinear form aEh(·, ·), i.e.,

(AE
hvh, wh) = aEh(vh, wh) ∀vh, wh ∈ Vh.

We define

AE
h =

1
κE |E|

RRT
+ s P, (4)

with s = trace( 1
κE |E|

RRT ) > 0 a scaling factor. The matrix P is defined as P = I− N(NTN)−1NT , where

N =


1 x1 − x̄E y1 − ȳE
1 x2 − x̄E y2 − ȳE
1 x3 − x̄E y3 − ȳE
...

...
1 xnE − x̄E ynE − ȳE

 , (5)

being v1 = (x1, y1), . . . , vnE = (xnE , ynE ) and (x̄E, ȳE) the vertexes and the center of mass of E, respectively. The matrix R
has the following form

R =
κE

2


0 y2 − ynE xnE − x2
0 y3 − y1 x1 − x3
0 y4 − y2 x2 − x4
...

...
...

0 y1 − ynE−1 xnE−1 − x1

 .
Note that, by construction, it holds AE

hN = R.
We now prove a result which is basic in showing solvability of the discrete problem.

Lemma 2.2. The matrix AE
h is positive semidefinite. Moreover, AE

hz = 0 if and only if z = (α, . . . , α)T for some α ∈ R.

Proof. For any z ∈ RnE , using that P2
= P and PT

= P, we have

(AE
hz, z) =

1
κE |E|

(RRT z, z)+ s(Pz, z) =
1

κE |E|
∥RT z∥2 + s∥Pz∥2 ≥ 0. (6)

We next show that AE
hz = 0 if and only if z = (α, . . . , α)T for some α ∈ R. One direction of the proof is easy. Indeed, taking

z = (α, . . . , α)T for α ∈ R, then

z = N


α
0
0


,

and hence

AE
hz = AE

hN


α
0
0


= R


α
0
0


= 0.

To prove the other direction, let us assume that AE
hz = 0. Eq. (6) clearly implies that RT z = 0 and Pz = 0. From Pz = 0, we

conclude that z ∈ Range(N), and, hence, z = Nz for somez = (z1,z2,z3)T ∈ R3. This yields

Rz = AE
hNz = AE

hz = 0.

We now want to show that (z1,z2,z3)T = (α, 0, 0)T for some α ∈ R. Indeed, denoting by νe
E the unit normal vector to the

edge e pointing outside of E, the identity Rz = 0, shows that (z2,z3)T · νei
E = 0 for i = 1, . . . , nE . As at least two of the

normal vectors {νei
E }

nE
i=1 are linearly independent, this implies thatz2 = z3 = 0. Finally, the proof is concluded by settingz1 = α, z2 =z3 = 0, and computing Nz which yields z = Nz = (α, . . . , α)T . To show that AE

h is positive definite on the
orthogonal complement of the constant vectors, we have to show that

(AE
hz, z) > 0,
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for any z = (u1, u2, u3)
T such that u1 + u2 + u3 = 0. For such z we have ∥RT z∥ ≠ 0 and ∥Pz∥ ≠ 0, and, hence, (6) gives

(AE
hz, z) =

1
κE |E|

∥RT z∥2 + s∥Pz∥2 > 0,

and the proof is complete. �

As a consequence of the second part of Lemma 2.2, setting aEij = (A
E
h)ij, we immediately get

aEii = −
nE
j=1
j≠i

aEij.

Denoting uh,i = uh(vi), vh,i = vh(vi) for vi ∈ N E
h , from this identity we have

aEh(uh, vh) =
1
2

nE
i,j=1

(−aEij)(uh,i − uh,j)(vh,i − vh,j). (7)

We now introduce (on E) a different bilinear form which is spectrally equivalent to aEh(·, ·) but the summation is over
fewer edges. We will denote this new bilinear form with aE(·, ·) and define it as

aE(uh, vh) =

E∈Ωh

kE

e∈EE

h

|E|
h2
e
δe(uh)δe(vh), (8)

where, for every e ∈ Eh, we set δe(vh) = vh(v)− vh(v′) being v and v′ the two vertexes of the edge e. Based on (8), we define

a(uh, vh) =

E∈Ωh

aE(uh, vh). (9)

We have the following result.

Lemma 2.3. The bilinear forms a(·, ·) and ah(·, ·) are spectrally equivalent with constant depending only on the mesh geometry.

Proof. The spectral equivalence is shown first locally on every E. By Lemma 2.2 we have that AE
h is symmetric positive

semidefinite with one dimensional kernel and therefore, aEh(·, ·) is a norm on RnE/R. Same holds for aE(·, ·), namely, it also
induces a norm on RnE/R (as long as the set of edges in E forms a connected graph). It is easily checked that the entries
(aEij)

nE
i,j=1 and the edge weight in (8) are the same order with respect to he and |E|. Finally, summing up over all elements E

concludes the proof. Clearly, the constants of equivalence depend on the number of edges of the polygons, which is assumed
to be uniformly bounded (see Assumption 2.1). �

Lemma 2.3 implies that we can introduce energy norm on Vh via a(·, ·)

∥vh∥
2
a =


E∈Ωh

kE |E|

e∈EE

h

|δe(vh)|
2

h2
e

. (10)

Thanks to the Dirichlet boundary conditions, the quantity ∥ · ∥a is a norm on Vh. For Neumann problem, this will be only a
seminorm.We remark that ∥·∥a resembles a discreteH1(Ω) norm; indeed, the quantity h−1h δe(vh) represents the tangential
component of the gradient on edges and the scalingswith respect to |E| and he give an inner product equivalent to theH1(Ω)
on standard conforming finite element spaces.

2.3. Condition number estimates

In this section we provide spectral bounds for the symmetric and positive definite operator Ah : Vh −→ Vh

(Ahuh, vh) = ah(uh, vh) ∀ uh, vh ∈ Vh (11)

associated to the MFD bilinear form ah(·, ·). Instead of working directly with Ah, it will be easier to work with the operator

(ALuh, vh) = aL(uh, vh) ∀uh, vh ∈ Vh, (12)

where the graph-Laplacian bilinear form is defined as

aL(uh, vh) =

E∈Ωh


e∈EE

h

δe(uh)δe(vh).

Defining

∥vh∥
2
aL = aL(vh, vh) ∀vh ∈ Vh,

the following norm equivalence holds.
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Lemma 2.4. For any vh ∈ Vh it holds

∥vh∥aL . ∥vh∥a . ∥vh∥aL ,

where the hidden constants depend on κ⋆ and κ⋆.

Thanks to Lemmas 2.3 and 2.4, AL and Ah are spectrally equivalent, and therefore any spectral bound for the operator AL
also provides a spectral bound for Ah.

Before stating themain result of this section, we introduce the definition of Cheeger’s constant associated to the partition
Ωh (see [40] and [41,42]). Let S be a subset of Nh and let S̄ = Nh \S. Denoting by E(S, S̄) the set of edges with one endpoint
in S and the other in S̄, Cheeger’s constant Cc forΩh is defined as follows:

Cc =
1

2
√
md

min
S⊂Nh

Cc(S),

Cc(S) =
|E(S, S̄)|

min(|S|, |S̄|)
,

md = max
v∈Nh
|{e ∈ Eh | e ⊃ v}|

(13)

where |S| and |E(S, S̄)|denote the cardinality ofS andE(S, S̄), respectively, andmd ismaximumnumber of edges connected
to a vertex in the graph (the maximum vertex degree in the graph given byΩh). The following result provides an estimate
of the extremal eigenvalues of the operator AL and is a straightforward application of the results for general graphs given
in [42, Theorem 2.3] and [41, Lemma 3.3].

Theorem 2.5. Let Cc be Cheeger’s constant associated with the partitionΩh defined as in (13). Then, it holds

C2
c ≤

(ALvh, vh)

(vh, vh)
≤ md ∀vh ∈ Vh. (14)

Remark 2.6. For (mimetic) finite difference or finite element methods we can obtain a quantitative estimate of Cc . Indeed,
for a sufficiently regular convex domain in d-spatial dimensions we expect:

Cc =
1

2
√
md

min
S⊂Nh

|E(S, S̄)|

min(|S|, |S̄|)
&

h1−d

h−d
& h,

and

(ALvh, vh)ℓ2 ≈ h2−d
|vh|H1(Ω),

where, by a slight abuse of notation, we denote by vh the vector and the associated function (whose pointwise evaluations at
the vertexes equal the components of the vector). Although these inequalitiesmight be difficult to prove, they are reasonable
assumptions about a finite element, or (mimetic) finite difference meshes. Evidently, the graph corresponding to a uniform
mesh on the square/cube satisfies these inequalities. It is then straightforward to see that in such case, the lower bound is
provided by the usual Poincaré inequality for H1

0 functions. Indeed, rescaling (vh, vh)ℓ2 ≈ h−d∥vh∥2L2(Ω) leads to

∥vh∥
2
L2(Ω) . hd(vh, vh)ℓ2 . hdC−2c (ALvh, vh)ℓ2 . hd−2h2−d

|vh|
2
H1(Ω)

= |vh|
2
H1(Ω)

as expected.

3. Two-level preconditioners

In this section we provide the construction of uniform two-level preconditioners for a(·, ·) and prove uniform bound
on the condition number of the preconditioned matrix. Thanks to Lemma 2.3 a uniform preconditioner for a(·, ·) will also
provide a uniform preconditioner for ah(·, ·) (and vice versa). We observe that the bilinear form a(·, ·) can be written in
more compact form,

a(uh, vh) =

e∈Eh

aeδe(uh)δe(vh) ∀ uh, vh ∈ Vh, (15)

with ae = kE |E|/h2
e > 0 for any e ∈ Eh, cf. (8).

LetΩH be the coarse partition that generated the fine grid through the refinement procedure described inAlgorithm1and
let VH be the coarse MFD space. We introduce the natural inclusion operator IhH : VH → Vh, also known as the prolongation
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operator, which characterizes the elements from VH as elements in Vh. Its action corresponds to an extension of the coarse
grid values to the fine grid vertexes by averaging. Its definition is the following

IhHvH

(v) = vH(v) for all v ∈ NH ,

IhHvH

(vm(e)) =

1
2


vH(v)+ vH(v

′)


for all vm(e), e ∈ EH
IhHvH


(xE) =

1
NE


v∈N E

H

vH(v) for all E ∈ ΩH

where xE is defined as in Algorithm1 (see also Fig. 2), and vm(e) is themidpoint of the edge e ∈ EH .With an abuse of notation,
we still denote by VH the embedded coarse space obtained from the application of the prolongation operator IhH . With this
notation, we have VH ⊂ Vh, where each element vH ∈ VH is a vector of RNh that is uniquely identified once we fix the values
vH(v) for all v ∈ NH (the other values result from the action of IhH ). For future use, we introduce the following two operators
that will be useful in the sequel. First, we denote by ΠH : Vh → VH the standard interpolation operator, namely, for all
vh ∈ Vh, the actionΠHvh is the element of the coarse space VH which has the same value as vh at the coarse grid vertexes,
namely,

ΠHvh ∈ VH , and

ΠHvh


(v) = vh(v) for all v ∈ NH . (16)

Finally, we introduce the ℓ2 orthogonal projection QH onto the space VH , i.e.,

(QHvh, vH) = (vh, vH) ∀vH ∈ VH .

There are several different norms on Vh that we need to use in the analysis. One is the energy norm ∥ ·∥a that was already
introduced in (10). Further, if D denotes the diagonal of A, then we introduce the D-norm ∥v∥2D = (Dvh, vh) for all vh ∈ Vh.
This norm is clearly an analogue of a scaled L2-norm in finite element analysis. A direct computation shows that

(Duh, vh) =

v∈Nh

 
e∈Eh:e⊃v

ae


uh(v)vh(v). (17)

By Schwarz inequality we easily get the bound

∥vh∥a ≤ cD∥vh∥D for all vh ∈ Vh, (18)

and the constant cD, by the Gershgorin theorem, can be taken to equal the maximum number of nonzeros per row in A. On
the coarse grid we introduce two types of bilinear forms:

(i) a restriction of the original form a(·, ·) on VH , denoted by aH(·, ·) : VH × VH → R;
(ii) a sparser approximation to aH(·, ·), which we denote by bH(·, ·) : VH × VH → R.

The latter bilinear form is build in the same way (8) was built from (7). The formal definitions are as follows:

(AHuH , vH) = a(uH , vH),

(BHuH , vH) = bH(uH , vH) =

e∈EH

ae,Hδe(uH)δe(vH) (19)

where ae,H is defined later on. The main reason to introduce the approximate bilinear form bH(·, ·) defined in (19) is that
this form is much more suitable for computations because the number of nonzeros in the matrix representing BH has less
nonzeros than in the matrix representing AH . To see this, and also to show the spectral equivalence between AH and BH , we
write the restriction of the operator A on the coarser space in a way that is more suitable for our analysis. First, we split the
space of edges Eh in subsets of edges on coarse element boundaries and edges interior to the coarse elements,

Eh = Em ∪

∪E∈ΩH E0,E


.

Here, e ∈ Em is a subset of eH ∈ EH , connecting the midpoint of a coarse edge eH to the vertexes of eH . Thus, every eH ∈ EH
gives two edges in Em or we have

Em = ∪eH∈EH [eH,1 ∪ eH,2], where eH,1, eH,2 ∈ Eh.

Further, for every E ∈ ΩH , E0,E is the set of edges connecting the mass center of E with the midpoints of its boundary edges
(see Fig. 2). With this notation in hand, and noticing δeH,1(uH) = uH(v1) −

1
2 (uH(v1) + uH(v2)) =

1
2 (uH(v1) − uH(v2))

(analogously for δeH,2 ) we write the restriction of a(·, ·) on VH as follows:

aH(uH , vH) =


eH∈EH

aeH,1δeH,1(uH)δeH,1(vH)+ aeH,2δeH,2(uH)δeH,2(vH)+

E∈ΩH


e∈E0,E

aeδe(uH)δe(vH)

=
1
2


e∈EH

ae,Hδe(uH)δe(vH)+

E∈ΩH


e∈E0,E

aeδe(uH)δe(vH), (20)
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Fig. 2. A coarse element; boundary and internal edges.

where ae,H = (aeH,1 + aeH,2)/2. In addition, for any fixed element E ∈ ΩH , we obtain
e∈E0,E

aeδe(uH)δe(vH) =

e∈E0,E

1
n2
E


e′∈E0,E

ae(uH(vm)− uH(v
′

m))(vH(vm)− vH(v
′

m)) (21)

where we denote by v′m the midpoint that coincides with one of the endpoint of e′ ∈ E0,E . This identity follows from the fact
that each of uH(xE) is an average of vertex values which is actually equal to the average of midpoint values for uH ∈ VH and
vH ∈ VH . The (symmetrized) two-grid iteration method computes for any given initial iterate u0 a two-grid iterate uTG as
described in Algorithm 2 where R denotes a suitable smoothing operator. The error propagation operator E associated with
this algorithm satisfies the relation

E = (I − RTA)(I − B−1H QHA)(I − RA).

A usual situation is when E is a uniform contraction in ∥ · ∥a-norm. This is definitely the case when BH = AH . A proof of this
fact follows the same lines as the proof for the case BH ≠ AH which we present below. In the case BH = AH the operator
E is a contraction because (I − A−1H QHA) is an A-orthogonal projection and therefore non-expansive in ∥ · ∥A-norm and,
in addition, (I − RA) is a contraction in ∥ · ∥A norm. Note that RTA is the adjoint of RA in (·, ·)A inner product and hence
∥I − RA∥A = ∥I − RTA∥A. Therefore, (I − RA) is a contraction in ∥ · ∥A norm if and only if (I − RTA) is a contraction in ∥ · ∥A
norm and all estimates in this section hold if we replace Rwith RT and vice-versa.

Algorithm 2 Two-level algorithm: uTG
← u0

1: Pre-smoothing: v = u0
+ R(f − Au0);

2: Coarse-grid correction: eH = B−1H QH(f − Av), w = v + eH ;
3: Post-smoothing: uTG

= w + RT (f − Aw).

However, when the coarse grid matrix is approximated, i.e. we have BH ≠ AH , then the error propagation operator does
not have to be a contraction and we aim to bound the condition number of the preconditioned system. In order to do this,
we consider the explicit form of the two-level MFD preconditioner given by B−1 = (I − E)A−1, namely,

B−1 = R+ RT
− RTAR  R

+(I − ART )B−1H QH(I − RA). (22)

The operatorR = R+ RT
− RTAR is often referred to as the symmetrization of R.

As is well known (see [43, pp. 67–68] and [44]), if ∥I − RA∥A < 1 thenR is symmetric positive definite, and, hence
the preconditioner B is symmetric and positive definite. Such statement also follows from the canonical form of the
multiplicative preconditioner as given in [43, Theorem 3.15, pp. 68–69] and [45].

Theorem 3.1 (Theorem 3.15 in [43]). The following identity holds for the two level preconditioner B, given by (22)

(Bv, v) = min
vH∈VH


∥vH∥

2
BH + ∥v − (I − RTA)vH∥2R−1 . (23)

What we will do next is to use this theorem and derive spectral equivalence results for B and A.
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3.1. Spectral equivalence results

In this section we prove that the preconditioner given by the multiplicative two-level MFD algorithm is spectrally
equivalent to the operator A.

For the smoother Rwe assume that it is nonsingular operator and convergent in ∥ · ∥a-norm, that is,
∥I − RA∥2a ≤ 1− δR < 1.

This implies that the operatorDR = (R−1+R−T−A) is symmetric and positive definite and also the so called symmetrizations
of R, namelyR = RTDRR andR = RDRRT are also symmetric and positive definite. Denoting with D the diagonal of A, we
make the following assumptions:

Assumption 3.2. We assume that in the case of nonsymmetric smoother, R ≠ RT , the following inequality holds with
DR = (R−1 + R−T − A) and D, the diagonal of A:

(DRv, v) . (Dv, v).

Assumption 3.3. LetR be the symmetrization of R and D let be the diagonal of A. We assume that

(Dv, v) h (R−1v, v)
Assumption 3.2 obviously holds for a (damped) Jacobi smoother and is easily verified for Gauss–Seidel or SOR smoother.

For example, in the case of Gauss–Seidel smoother we have DR = D and for SOR method with relaxation parameter
ω ∈ (0, 2) we have DR =

2−ω
ω

D. Assumption 3.3 is also a typical assumption in the multigrid methods (see [46,47]) and is
easily verified for Gauss–Seidel method, SOR or Schwarz smoothers (see [48,43]), and also for polynomial smoothers as well
(see [49]).

To study the spectral equivalence between the preconditioner defined by the two level method and A we need some
auxiliary results which are the subject of the next two lemmas.

Lemma 3.4. For every vh ∈ Vh we have

∥vh −ΠHvh∥
2
D . ∥vh∥

2
a. (24)

Proof. For vh ∈ Vh we have that
vh −ΠHvh


(vm) = vh(vm)−

1
2


vh(v)+ vh(v

′)


=
1
2


vh(vm)− vh(v))+

1
2
(vh(vm)− vh(v

′)

. (25)

Analogously, we obtain
vh −ΠHvh


(xE) = vh(xE)−

1
nE


v∈N E

H

ΠHvh(v)

=


v∈N E

H

1
nE
(vh(xE)− vh(v))

=


e∈E0,E

1
nE
δe(vh). (26)

Next, we use (25)–(26) and the definition of ∥ · ∥D given in (17). Splitting the sum over v ∈ Nh in accordance with (2)
into: (1) a sum over the midpoints of coarse edges; and (2) sum over mass centers of coarse elements; and recalling that
vh −ΠHvh


(v) = 0 for v ∈ NH then gives

∥vh −ΠHvh∥
2
D =


v∈Nh

 
e∈Eh;v∈e

ae


[(v −ΠHvh)(v)]

2

=
1
2


eH∈EH

(aeH,1 + aeH,1)(δeH,1(vh)+ δeH,2(vh))
2
+


E∈ΩH

1
nE

 
e′∈E0,E

ae′

 
e∈E0,E

[δe(vh)]
2

. ∥vh∥
2
a. (27)

The proof is complete. �
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Lemma 3.5. The following inequalities hold

(i) ∥ΠHvh∥a . ∥vh∥a;
(ii) (Avh, vh) ≤ (R−1vh, vh);
(iii) (RR−1RTAvh, Avh) . ∥vh∥a;
(iv) (BHvH , vH) . (AHvH , vH) . (BHvH , vH).

Proof. We prove (i) by using the inequality (18) and the approximation property proved in Lemma 3.4

∥ΠHvh∥a ≤ ∥vh −ΠHvh∥a + ∥vh∥a

. ∥vh −ΠHvh∥D + ∥vh∥a . ∥vh∥a.

The proof of (ii) follows from the following implications

0 ≤ ∥(I − RA)vh∥2A H⇒ 0 ≤ ((I −RA)vh, vh)A
H⇒ (RAvh, Avh) ≤ (Avh, vh) H⇒ (A1/2RA1/2vh, vh) ≤ (vh, vh)

H⇒ (vh, vh) ≤ (A−1/2R−1A−1/2vh, vh) H⇒ (Avh, vh) ≤ (R−1vh, vh).
Item (iii) follows from Assumption 3.2 and its proof is as follows:

(RR−1RTAvh, vh)A = (D−1R Avh, Avh) ≤ (A1/2D−1A1/2wh, wh)

≤ ρ(A1/2D−1A1/2)(wh, wh)

= ρ(D−1/2AD−1/2)∥vh∥2A . ∥vh∥
2
A.

Finally, (iv) follows by using the formulae given in (21) and (20) and proceeding as in the proof or Lemma 2.3. Note that to
prove the spectral equivalence we need to only estimate the second term on the right side of (20) (or equivalently the term
on the right side of (21)). This is straightforward using the fact that all norms in a finite dimensional space are equivalent. �

In the proof we used (21) and (20) to show that aH(·, ·) and bH(·, ·) are equivalent. We remark that to achieve that,
the coefficients ae,H of the coarse grid bilinear form bH(·, ·) in (19) can be all set to one. Then the equivalence constants in
Lemma 3.5 will depend on the variations in the coefficient k(x). However, other choices are also possible. One such choice
is minimizing the Frobenius norm of the difference of the local matrices for bH(·, ·) and aH(·, ·). For more details on such
approximations that use the so called edge matrices we refer to [50].

Remark 3.6. In special cases, the proof of Lemma 3.5(iii) can be done without using Assumption 3.2. This is in case the
smoother is symmetric i.e., R = RT andρ(RA) < 1. Such R could be a symmetrization of aA-norm convergent non-symmetric
smoother or just can be a properly scaled symmetric smoother. Examples, satisfying these assumptions, are the symmetric
Gauss–Seidel method and the damped Jacobi method with sufficiently large damping factor (e.g. R = 1

∥D−1A∥
ℓ1
D−1). In such

cases, we have with X = A1/2RA1/2 andwh = A1/2vh:

(RR−1RTAvh, vh)A = ((2I − X)−1Xwh, wh) ≤ (wh, wh) = ∥vh∥
2
A.

We used above that ∥X∥ = ρ(A1/2RA1/2) = ρ(RA) < 1, or equivalently that ρ(RA) < 1 and that t
2−t ∈ [0, 1] for t ∈ [0, 1].

This proves Lemma 3.5(iii) in such special cases.

We are now ready to prove the following uniform preconditioning result that is obtained using the canonical
representation for B given in (23).

Theorem 3.7. The condition number of BA, κ(BA), satisfies

κ(BA) . 1.

Proof. In this proof, we use Assumptions 3.2–3.3 and Lemmas 3.4 and 3.5. We first show the lower bound. For any vh ∈ Vh
and vH ∈ VH we have

∥vh∥
2
A ≤ 2∥vh − (I − RTA)vH∥2A + 2∥(I − RTA)vH∥2A
≤ 2∥vh − (I − RTA)vH∥2R−1 + 2∥vH∥2A [Lemma 3.5(ii)]

. [∥vh − (I − RTA)vH∥2R−1 + ∥vH∥2BH ]. [Lemma 3.5(iv)]

Taking the minimum over all vH ∈ VH and using (23) then shows that

(Avh, vh) . (Bvh, vh).
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(a) Initial level L = 1, fine level ℓ = 0. (b) Initial level L = 2, fine level ℓ = 0.

(c) Initial level L = 1, fine level ℓ = 1. (d) Initial level L = 2, fine level ℓ = 1.

Fig. 3. Top: Tria, Quad and Hex meshes with initial levels L = 1 (left) and L = 2 (right) and fine level ℓ = 0. Bottom: corresponding grids obtained after
a uniform refinement (ℓ = 1) employing the refinement strategy of Section 3.

For the upper bound, we choose in (23) vH = IhHvh. We have

(Bvh, vh) = min
vH∈VH


∥vH∥

2
BH + ∥vh − (I − RTA)vH∥2R−1

≤ ∥IhHvh∥
2
BH + ∥vh − IhHvh + RTAIhHvh∥

2R−1
. ∥IhHvh∥

2
A + ∥vh − IhHvh∥

2R−1 + ∥RTAIhHvh∥
2R−1 [Lemma 3.5(iv)]

. ∥IhHvh∥
2
A + ∥vh − IhHvh∥

2
D + ∥I

h
Hvh∥

2
A [ Assumption 3.3, Lemma 3.5(iii)]

. ∥vh∥
2
A + ∥vh∥

2
A + ∥vh∥

2
A [Lemma 3.4, Lemma 3.5(i)]

. ∥vh∥
2
A.

This shows the desired estimate and the proof is complete. �

Remark 3.8. We remark, that a multilevel extension of the results presented here is possible via the auxiliary (fictitious)
space framework (since the bilinear forms are modified). We refer to [51,52] and [53, Section 2] for the relevant techniques
that allow the extension of the results presented here to the multilevel case.

4. Numerical results

We are interested in approximating the solution of the elliptic problem (1) on the unit square, where the right hand side
is chosen so that the analytical solution is given by

u(x1, x2) = x1(x2 − x22) exp(x2) cos
πx1

2


.

We start from the initial grids of levels L = 1, 2 shown in Fig. 3 (top), that we denote by Tria, Quad and Hex meshes,
respectively. Starting from these initial grids, we test our two-level solver on a sequence of finer grids constructed by
employing the refinement strategy described in Section 3. More precisely, at each further step of refinement ℓ = 1, 2, . . .
we consider a uniform refinement of the grid at the previous level obtained employing the refinement strategy described in
Section 3, cf. Fig. 3 (bottom) for ℓ = 1, i.e., the meshes obtained after one level of refinement. As pre-smoother we employ ν
steps of the Gauss–Seidel iterative algorithm, while a direct solver is employed to solve the coarse problem. All simulations
are performed by using the null vector as initial guess, and we use as stopping criterion ∥r(k)∥ ≤ 10−9∥b∥, being r(k) the
residual at the kth iteration, b the right-hand side of the linear system, and ∥ · ∥ the Euclidean norm.

In Table 1 we report, starting from the initial grids shown in Fig. 3 with ℓ = 0, and L = 1, the iteration counts of our
two-level algorithm when varying the fine refinement level ℓ. This set of experiments has been obtained with ν = 2 pre-
smoothing steps. We clearly observe that our solver seems to be robust as the mesh size goes to zero: indeed the iteration
counts are almost independent of the size of the problem. In Table 1 we also show the computed convergence factor

ρ = exp

1
n
log
∥r(n)∥
∥r(0)∥


, (28)

where n is the number of iterations needed to achieve convergence. Finally, for completeness, we have also computed the
condition number of the stiffness matrix κ(A) as well as its growth rate (cf. Table 1). As expected, we can clearly observe
that the condition number increases quadratically as the mesh is refined.

We have repeated the same set of experiments starting from the initial grids depicted in Fig. 3 with L = 2 and ℓ = 0.
The computed results are reported in Table 2. Notice that, in this case, on Hex-type grids the condition number seems to
grows slightly faster than expected.
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Table 1
Iteration counts of the two-level algorithm and computed convergence factor ρ for different fine refinement level ℓ
starting from the initial grids of in Fig. 3 with L = 1. For completeness, the condition number of the stiffness matrix
K(A) and its growth rate are also reported. Number of pre-smoothing steps ν = 2.

It. ρ K(A) Rate It. ρ K(A) Rate It. ρ K(A) Rate

ℓ = 1 18 0.3 1.1e+1 – 9 0.1 5.9e+0 – 7 0.1 6.9e+0 –
ℓ = 2 13 0.2 4.9e+1 2.2 8 0.1 2.6e+1 2.1 8 0.1 3.2e+1 2.2
ℓ = 3 18 0.1 2.2e+2 2.1 8 0.1 1.1e+2 2.0 10 0.1 1.4e+2 2.1
ℓ = 4 22 0.4 9.2e+2 2.1 9 0.1 4.2e+2 2.0 11 0.1 6.2e+2 2.1
ℓ = 5 23 0.4 3.9e+3 2.0 9 0.1 1.7e+3 2.0 12 0.2 1.1e+4 2.1

Tria grids Quad grids Hexgrids

Table 2
Iteration counts of the two-level algorithm and computed convergence factor ρ for different fine refinement levels
ℓ starting from the coarse grids in Fig. 3 with L = 2. For completeness, the condition number of the stiffness matrix
K(A) and its growth rate are also reported. Number of pre-smoothing steps ν = 2.

It. ρ K(A) Rate It. ρ K(A) Rate It. ρ K(A) Rate

ℓ = 1 16 0.3 4.3e+1 – 8 0.1 2.7e+1 – 7 0.1 1.3e+1 –
ℓ = 2 14 0.2 2.0e+1 2.2 9 0.1 1.1e+2 2.1 14 0.2 6.5e+1 2.4
ℓ = 3 17 0.2 8.6e+2 2.1 10 0.1 4.6e+2 2.0 18 0.3 3.3e+2 2.4
ℓ = 4 21 0.4 3.7e+3 2.1 10 0.1 1.9e+3 2.0 22 0.4 2.1e+3 2.6

Tria grids Quad grids Hexgrids

Table 3
Iteration counts as a function of the number of pre-smoothing steps ν = 3, 4, 5 and for different fine refinement
levels ℓ starting from the initial grids of Fig. 3, L = 1.

ν = 3 ν = 4 ν = 5 ν = 3 ν = 4 ν = 5 ν = 3 ν = 4 ν = 5

ℓ = 1 11 9 8 7 6 5 6 6 5
ℓ = 2 10 9 8 7 6 6 7 6 6
ℓ = 3 11 11 9 7 6 6 8 7 7
ℓ = 4 15 12 10 7 6 6 8 8 7
ℓ = 5 16 13 11 7 6 6 9 8 7

Tria grids Quad grids Hexgrids

Next, we address the influence of the number of smoothing steps of the performance of our two-level solver. In Table 3 we
report the iteration counts when increasing the number of pre-smoothing steps ν = 3, 4, 5. The results shown in Table 3
have been obtained starting from the initial grids of Fig. 3 with L = 1 and ℓ = 0; the corresponding ones obtained with
the initial grids of Fig. 3, L = 2 and ℓ = 0 are completely analogous and are not reported here, for the sake of brevity. From
the iteration counts reported in Table 3 we can conclude that (i) in all the cases considered, our two-level method is robust
as the mesh size is refined; (ii) as expected, the performance of the algorithm improves as the number of smoothing steps
increases.

Next, we demonstrate numerically that our scheme also provides a uniform preconditioner that can be used to accelerate
the CG iterative solver, that is the number of PCG iterations needed to achieve convergence up to a (user-defined) tolerance
is uniformly bounded independently of the number of degrees of freedomwhenever CG is accelerated by the preconditioner
described in Section 3. In Table 4 we report the PCG iteration counts as well as the condition number estimate of the
preconditioned system as a function of the number of the fine level ℓ = 1, 2, 3, 4, 5 starting from the initial grids shown in
Fig. 3 (L = 1, 2) forHex-type grids. For completeness, we also report the computed convergence factor ρ (third column), the
corresponding CG iteration counts needed to solve the unpreconditioned system (fourth column), and the condition number
estimate of the unpreconditionedmatrix (last column). It is clear that employing our preconditioner leads to preconditioned
matrix whose condition number is uniformly bounded and, as a consequence, the number of iterations needed to solve
the preconditioned system of equation is independent of the characteristic size of the underlying partition. On the other
hand, the iteration counts needed to solve the unpreconditioned systems grows slightly more than linearly as the mesh
size goes to zero. Finally, we investigate whether our preconditioner is robust with respect to severe elements deformation.
To this aim we consider a sequence of grids with increasing distorted elements, cf. Fig. 4. For this sequence of grids we
compare the condition number estimate of the preconditioned and unpreconditionedmatrices as well as the corresponding
iteration counts. The computed results are reported in Table 5. From the results reported in Table 5, we can infer that severe
mesh deformationmildly affects the conditioning of both the unpreconditioned and the preconditionedmatrices. A thought
theoretical study of such a dependence is currently under investigation and will be the subject of future research.
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Table 4
PCG iteration counts, condition number estimate of the preconditioned
matrix K(P−1A), and computed convergence factor ρ as a function of the
number of level ℓ starting from the initial grids of Fig. 3, L = 1 (top) and
L = 2 (bottom), Hex grids. For comparison, the CG iteration counts needed
to solve the unpreconditioned systems as well as an estimate of the condition
number of the unpreconditioned matrix are also reported.

PCG it. K(P−1A) ρ CG it. K(A)

L = 1

ℓ = 1 12 3.89e+0 0.30 18 1.28e+1
ℓ = 2 12 3.74e+0 0.30 42 6.50e+1
ℓ = 3 10 2.25e+0 0.22 92 3.32e+2
ℓ = 4 10 2.34e+0 0.23 211 2.14e+3
ℓ = 5 10 2.72e+0 0.25 534 1.67e+4

L = 2

ℓ = 1 12 4.27e+0 0.30 34 5.64e+1
ℓ = 2 11 2.87e+0 0.27 76 3.05e+2
ℓ = 3 11 2.75e+0 0.27 173 1.55e+3
ℓ = 4 12 3.33e+0 0.30 399 8.33e+3

Table 5
PCG iteration counts, condition number estimate of the preconditioned
system K(P−1A), and computed convergence factor ρ as a function of the
distortion factor d = 0, 1, 2, 3, cf. Fig. 4, L = 3. For comparison, the CG
iteration counts needed to solve the unpreconditioned systems as well as an
estimate of the condition number of the unpreconditioned system are also
reported.

PCG it. K(P−1A) CG it. K(A)

G1 8 1.96e+0 47 1.07e+2
G2 10 3.06e+0 53 1.27e+2
G3 13 4.30e+0 58 1.59e+2
G4 21 1.81e+1 67 2.25e+2

Fig. 4. Sequence of grids with increasing distorted elements (from left to right: G1,G2,G3,G4).

5. Conclusions

We have proposed and analyzed a two-level preconditioner for mimetic finite difference discretizations of elliptic
equations. Our preconditioner use inexact coarse grid solver (non-inherited coarse grid bilinear form) and results in an
optimal method with sparser coarse grid operators. We proved that the condition number of the preconditioned system is
uniformly bounded. We also implemented the preconditioner and verified numerically the theoretical results.
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