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Abstract 

We illustrate the way formal model identification criteria can be employed to rank and 

evaluate a set of alternative models in the context of the interpretation of laboratory scale 

experiments yielding two-phase relative permeability curves. We consider a set of empirical two-

phase relative permeability models (i.e., Corey, Chierici and LET) which are typically employed 
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in industrial applications requiring water/oil relative permeability quantifications. Model 

uncertainty is quantified through the use of a set of model weights which are rendered by model 

posterior probabilities conditional on observations. These weights are then employed to (a) rank 

the models according to their relative skill to interpret the observations and (b) obtain model 

averaged results which allow accommodating within a unified theoretical framework 

uncertainties arising from differences amongst model structures. As a test bed for our study, we 

employ high quality two-phase relative permeability estimates resulting from steady-state 

imbibition experiments on two diverse porous media, a quartz Sand-pack and a Berea sandstone 

core, together with additional published datasets. The parameters of each model are estimated 

within a Maximum Likelihood framework. Our results highlight that in most cases the 

complexity of the problem appears to justify favoring a model with a high number of uncertain 

parameters over a simpler model structure. Posterior probabilities reveal that in several cases, 

most notably for the assessment of oil relative permeabilities, the weights associated with the 

simplest models is not negligible. This suggests that in these cases uncertainty quantification 

might benefit from a multi-model analysis, including both low- and high-complexity models. In 

most of the cases analyzed we find that model averaging leads to interpretations of the available 

data which are characterized by a higher degree of fidelity than that provided by the most skillful 

model. 

 

Keywords: Model identification criteria. Uncertainty. Two-phase relative permeability 

curves. Posterior probabilities. 

 

1. Introduction 



Relative permeabilities are key rock-fluid properties required for continuum-scale 

modeling of multiphase flow dynamics in porous and fractured media. A reliable 

characterization of these quantities, including proper quantification of estimation uncertainty, 

enables us to assess reservoir performance, forecast ultimate oil recovery, and investigate the 

efficiency of enhanced oil recovery techniques. In this broad context, we focus here on 

laboratory-scale relative permeabilities associated with two-phase fluid flow. Acquisition of 

accurate relative permeability data is of critical importance and has always been of central 

interest in the oil industry (Silpngarmlers et al., 2002) where formulations based on analogies to 

Darcy's Law are routinely employed to model multiphase flow. Core flooding experiments 

represent the main approach to determine two-phase relative permeabilities. The latter are 

typically estimated upon relying on empirical correlations/models. Relative permeability curves, 

depicting the (typically nonlinear) dependence of relative permeability on fluid phase saturation, 

are then employed to simulate two-phase flow under desired field settings. Two-phase 

information of this kind are also employed to estimate three-phase relative permeabilities on the 

basis of a set of pseudo-empirical models (e.g., Ranaee et al., 2015 and references therein). 

A variety of experimental techniques are available for the assessment of two-phase 

relative permeability curves (Botermans et al., 2001; Feigl, 2011; Firoozabadi and Aziz, 1991; 

Liu et al., 2010; Toth et al., 2002). The two types of laboratory settings which are usually 

considered are associated with (i) steady-state (SS), or (ii) unsteady-state (US) conditions. 

Relative permeability estimates may also be obtained from field data upon relying on the 

production history of a reservoir, its geological makeup and its fluid properties. This approach is 

conducive to effective / equivalent macroscopic parameters. The way laboratory scale values can 

be transferred to field scale settings is still a challenging area of research.  



Laboratory characterization of two-phase relative permeability through either steady- or 

unsteady-state methods can be expensive and time consuming. Steady-state techniques consider 

simultaneous injection of the two phases in a rock core. A given total fluid flow rate is typically 

imposed and diverse fractional flow rates are considered for each phase. Measurements of total 

pressure drop, fluid flow rates and fluid flow saturations in the sample are then taken after 

steady-steady state conditions are attained. Experimental data are then interpreted through a 

selected model, leading to estimates of two-phase relative permeabilities within a relatively 

broad range of saturation values. A key drawback of the technique is associated with the 

typically long times associated with the attainment of steady-state (Cao et al., 2014; Honarpour 

et al., 1986; Kikuchi et al., 2005). 

Unsteady-state methods consider injection of only one of the phases in the core. The 

latter is saturated with the displaced phase, the displacing phase being at irreducible saturation. 

Phase recovery and pressure drop across the core are continuously recorded during the 

displacement process. The approach is efficient in terms of execution time but leads to estimates 

of two-phase relative permeabilities in a narrow saturation range, usually grouped towards the 

high end of wetting phase saturation values (Ebeltoft et al., 2014; Sylte et al., 2004).  

Measurements of relative permeabilities can be employed to test the reliability of a given 

conceptual structure and mathematical formulation of an interpretive model. The reliability of 

model predictions depends on the way the model structure is defined and on the degree of 

fidelity associated with model parametrization. Empirical models which are most frequently 

employed to interpret experimentally determined two-phase relative permeability curves through 

model parameter estimation include (a) the Corey formulation (Corey, 1954), (b) the models 

proposed by Sigmund & McCaffery (Sigmund and McCaffery, 1979) and Chierici (Chierici, 



1984), and (c) the recent LET model (Ebeltoft et al., 2014; Lomeland et al., 2005). Interpretation 

of laboratory measurements through these empirical models may provide relative permeabilities 

for a limited range of saturations. This is mainly due to hypotheses and heuristic concepts 

associated with most of the available empirical models, which might render them unsuitable to 

match laboratory data for the whole range of saturations. 

Notable weak points of available studies are that they (a) either rely on a single 

mathematical model depicting the two-phase flow processes, or (b) analyze alternative 

mathematical formulations through criteria such as least-square regression (e.g., Lomeland et al. 

2005, and Ebeltoft et al., 2014) which do not provide rigorous information about the way diverse 

models can be ranked and/or employed in a multi-model modeling framework. Yet, it is known 

that multi-phase flow processes and the porous media hosting them are remarkably complex. As 

a consequence, observations are amenable to be interpreted through various mathematical 

formulations, each requiring an appropriate parametrization. This aspect can be assessed through 

Model Quality criteria employed within a Maximum Likelihood theoretical approach. This 

allows considering the effects of conceptual model uncertainty on parameter estimation and 

provides theoretically robust guidance in the model selection process. In this context, a multi-

model analysis based on averaging the responses of diverse models can be a powerful tool to 

naturally accommodate existing differences amongst models within a unique theoretical 

framework (Lu, 2012). Benefits of the approach have been exposed in the context of diverse 

environmental systems, including groundwater flow settings (e.g., Carrera and Neuman, 1996; 

Ye et al., 2004; Ye et al., 2008; Riva et al., 2009; Riva et al., 2011 and references therein),  as 

well as in the interpretation of complex competitive sorption reactive processes in natural soils 

(Bianchi Janetti et al., 2012). 



To the best of our knowledge, analyses of applications of this methodology to the 

interpretation of multiphase flow process are still lacking. Here, we illustrate the way Maximum 

Likelihood parameter estimation and model identification criteria associated with a multi-model 

framework can be jointly employed on a set of laboratory scale experiments involving steady-

state two-phase flow of oil and water in two cores, a quartz Sand-pack and a Berea sandstone. 

We then apply the approach to reassess the interpretation of a series of published data-sets. We 

do so by (a) considering and comparing the performances of three commonly employed 

empirical models, i.e., the Corey (Corey, 1954), Chierici (Chierici, 1984), and LET (Ebeltoft et 

al., 2014; Lomeland et al., 2005) models, (b) quantifying the uncertainty associated with each of 

these models, and (c) illustrating the ability of a model averaging (MA) approach to interpret the 

available data when compared against the results provided by the model with the highest rank in 

the model set considered. 

2. MATERIALS AND METHODS 

2.1 Experimental Setup and Data Analyzed 

This section provides a brief description of our experimental setup and technical aspects 

of measurement procedures. Figure 1a depicts a sketch of the setup. The latter comprises (a) 

Hassler-type core holders (TEMCO FCH-1.5m) containing the tested rock samples, (b) an X-Ray 

saturation monitoring equipment (Core Lab Instruments - Reservoir Optimization), and (c) a 

close loop pumping system. The experiments are performed on two porous media, i.e., a column 

of quartz Sand-pack and a water-wet Berea sandstone core. Each of the samples is placed inside 

a rubber sleeve with inner diameter of 0.0381 m and length of 0.30 m. The fluids employed in 

the displacement experiments are distilled water and isoparaffinic mineral oil. Table 1 lists the 

characteristics of the core samples and of the fluids. The flowing water is tagged with X-ray 



absorbing chemicals (NaBr for the Sand-pack and KBr for the Berea core sample) to increase X-

ray attenuation coefficient and improve measurement accuracy. 

Two-phase relative permeabilities associated with continuum (Darcy) scale 

characterization of water and oil displacement in the samples have been estimated under steady-

state (SS) conditions. We performed SS imbibition experiments, each characterized by a given 

ratio between the flow rates of oil and water. The fluids are jointly injected in the system 

following the sequence depicted in Fig.1b. (Step A). 

Absolute permeability to water has been measured by a first set of experiments 

performed by applying a sequence of diverse flow rates and employing Darcy’s law. The 

imbibition experiments started after full saturation of the rock sample with water. The system has 

been sustained for 24 h under these fully saturated conditions to ensure equilibrium (Step A in 

Fig. 1b). X-ray saturation measurements are performed during this phase to achieve proper 

calibration against water content. An oil imbibition phase with water displacement is then 

started. Oil injection takes place until no more water is eluted from the system. Irreducible water 

saturation (Swi) is then measured (Step B in Fig. 1b) and oil absolute permeability at irreducible 

water saturation,
( )o SwiK , is assessed for these conditions. 

A collection of experiments consisting of joint injection of oil and water is then 

performed. We do so upon setting a total constant flow rate of 480 [ml/h] and 30 [ml/h], 

respectively for the Sand-pack and the Berea cores, and increasing water fractional flow while 

decreasing oil fractional flow (Steps C-E in Fig. 1b).  

X-ray scans provide longitudinal (depth-average) saturation profiles of oil and water 

along the core. For a given fractional flow, measurements of pressure drop across the core and 

depth-averaged saturation profiles are taken at steady-state, i.e., when no appreciable changes of 



pressure drop and saturation profiles are observed. Note that attaining equilibrium (i.e., steady-

state) for each of these steps requires (approximately) one day. Residual oil saturation (Sor) is 

established at the end of the sequence of imbibition processes, when no more oil is produced 

from the system (Step F in Fig. 1b). Three replicates of each experiment have been performed. 

After finishing each step and before starting a new test, the core sample was cleaned and washed. 

We then measured again absolute permeability and pore volume / porosity. For all our 

experiments, these quantities did not show detectable changes with respect to the values 

measured at the beginning of the test.  

Relative permeabilities are calculated starting from the application of the classical Darcy-

scale expressions 
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We also consider in our analysis two datasets presented by Lomeland et al. (2005) and 

related to steady-state experiments performed at reservoir conditions on core samples from the 

Norwegian Continental Shelf. These are the results of SS experiments performed on core 

samples with lengths of 0.31 m and 0.12 m, respectively. For ease of reference, these two 



datasets are hereinafter termed as "D1" and "D2". Table 2 lists core sample and fluid properties 

associated with these experiments. Lomeland et al. (2005) proposed a three-parameter model to 

interpret the inferred two-phase relative permeability curves (see Section 2.2.3 for a brief 

description of their model). 

2.2 Two-phase relative permeability models 

Several empirical formulations are available to characterize observed water-oil relative 

permeability curves (Al-Fattah, 2003; Chierici, 1984; Corey, 1954; Honarpour et al., 1982; 

Lomeland et al., 2005). The structure of these models is typically driven by experimental 

observations, theoretical arguments and / or heuristic concepts. Each model is associated with a 

set of parameters which are usually estimated through fits against experiments, i.e., against 

available relative permeability curves. We provide in the following a brief overview of the 

models we consider in this work. 

2.2.1 Corey Model 

The Corey model (Corey, 1954) is usually employed due to its simplicity, the limited 

amount of input data requirements, and the small number of parameters to be estimated. The 

mathematical structure of the model rests on capillary pressure concepts and is widely accepted 

to be fairly accurate for consolidated porous media (Honarpour et al., 1986). The model has also 

been proposed for unconsolidated sands through proper tuning of its parameters. Corey’s 

equations for wetting (water) and non-wetting (oil) relative permeability read 
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Here, Krw and Kro respectively are the water and oil phase relative permeabilities; *

wS  is 

normalized water saturation; 0

rwK  and 0

roK  respectively are the end-points of water and oil 

relative permeability curves; Nw and No are parameters to be estimated through model 

calibration. These parameters drive the curvature of the relative permeability curves. 

2.2.2 Chierici Model 

Chierici (Chierici, 1984) proposed the following exponential formulations for water-oil 

imbibition relative permeability curves 
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Typically, Swi, Sor, 
o

rwK and w

roK  are observed, while the model parameters B, M, A and L are 

estimated through model calibration (Chierici, 1984; Chierici, 1994; Sylte et al., 2004).  

These formulations provide a reasonably good match against experimental relative 

permeability curves. They are considered to provide improved approximations at and near the 

initial and end points of these curves when compared against the Corey model and other 

polynomial approximations (Feigl, 2011). The flexibility of the model is mainly due to the 

possibility of representing concave and/or convex relative permeability curves as a function of 

parameter values. 

2.2.3 LET Model 

LET was proposed as a new versatile model (Lomeland et al., 2005). It is expressed in 

the form  
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Here, model parameters are Li, E i, and T i (i = w, o). Values of Ti and Li respectively drive the 

shape of the lower and upper part of the relative permeability curve, while Ei describes the slope 

and the elevation of the central portion of the curve. As such, the model is designed to include 

diverse parts of the relative permeability curve to capture variable behavior across the entire 

saturation range (Ebeltoft, 2014; Lomeland et al., 2005; Sendra, 2013). The model has been 

shown to provide good interpretation of experimental data over a considerable range of oil 

saturations. 

2.3 Maximum Likelihood Parameter Estimation and Model Quality Criteria 

This section briefly outlines the approach and algorithms employed in the parameter 

estimation procedure and some implementation details. Parameter estimation is performed in the 

typical Maximum Likelihood (ML) framework. 

Let us denote with NK the number of available observation data (i.e., the number of two-

phase relative permeability data), the Np as the number of unknown model parameters and P as a 

vector of unknown model parameters
1 2, ,...,
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P . 
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predictions at the corresponding fluid saturations. ML estimates 
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P  for a given model can be estimated through minimization, with 



respect to P, of the negative log likelihood criterion (e.g., Carrera and Neuman, 1986; Bianchi 

Janetti et al., 2012 and references therein) 
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where * 2( )i i iJ K K


   and KB  is the covariance matrix of measurement errors, here considered to 

be diagonal with non-zero terms equal to the observation error variance 2

i  (Carrera and 

Neuman, 1986). Minimization of (10) is achieved through the iterative Levenberg-Marquardt 

algorithm as embedded in the public domain code PEST (Doherty, 2013). 

When NM multiple models are considered for the interpretation of the physical scenario of 

interest, one may minimize (10) for each model formulation. In this case, once the parameters 

associated with each model are estimated, the NM alternative formulations can be ranked by 

various criteria (e.g., Neuman, 2003; Ye et al., 2004, 2008; Neuman et al., 2011; Bianchi Janetti 

et al., 2012 and references therein), including 
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Here, the Akaike information criterion, AIC, is due to Akaike (Akaike, 1974), AICc to Hurvich 

and Tsai (Hurvich and Tsai, 1989), BIC to Schwartz (Schwarz, 1978) and KIC to Kashyap 

(Kashyap, 1982). In (14), Q is the Cramer-Rao lower-bound approximation for the covariance 

matrix of parameter estimates (see Ye et al., 2008 for details). Models associated with smaller 

values of a given criterion are ranked higher than those associated with larger values. As shown 



by, e.g., Hernandez et al. (2006), Ye et al. (2008), and Riva et al. (2011), it can be noted that KIC 

tends to favor models with relatively small expected information content per observation, when 

one considers models associated with the same number of parameters, equal minima of NLL, and 

the same prior probability linked to parameter values linked to NLL minimum. 

The values of a given discrimination criterion associated with model MK can be translated 

into a posterior model weight, *( | )KP M K , which can be employed to quantify uncertainty. This 

posterior probability can be computed according to (Ye et al., 2008) 
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Here, minK KIC IC IC   , ICK being any of the model discrimination criteria (11)-(14), 

and ICmin is the minimum value of ICK over these models; P(Mk) is the prior probability of model 

Mk. We consider P(Mk) = 1 / NM if no prior information is available, assigning equal prior 

probability to each model. In the following we employ the above introduced model identification 

criteria and posterior model probabilities to rank the tested two-phase permeability (water-oil) 

models. 

Model average (MA) can then be calculated by weighting each model through its 

posterior probability (Ye et al., 2010). The skill of each model and of MA results to interpret the 

observed data is compared through the following two metrics, i.e., the Normalized Mahalanobis 

Distance, NMD (Winter 2010 and references therein), and the traditional Mean Square Error, 

MSE. The NMD is a generalized distance which was first introduced to assess the degree of 

similarity between two different populations and is defined as 

* * 1 *ˆ ˆ ˆ( , ) ( ) ( ) logTNMD    K K K K S K K S  (16) 



S being the (NP  NP) covariance matrix corresponding to the data points and S  its determinant. 

The first term appearing on the right hand side of (16) is the square of the Mahalanobis Distance 

(Mahalanobis 1936), the second term acting as a regularization quantity. As noted by Winter 

(2010), the NMD has the same structure of (10) up to a constant which does not influence on 

model comparison. The use of MSE is based on the observation that it is arguably the simplest 

and most common criterion employed to evaluate the performance of an estimator and its use in 

comparisons of the relative performance and accuracy of each model and the resulting MA 

results is well documented, e.g., in the context of regional climate model data (Winter and 

Nychka, 2010). 

 

3. Results and discussion 

Here we illustrate our experimental results detailing the relative permeability curves 

obtained through SS imbibition experiments on Sand-pack and Berea sandstone cores. We then 

present our ML model calibration results based on our data and datasets D1 and D2 illustrated in 

Section 2.1. 

 

3.1 Experimental results 

Figure 2 depicts the dependence of the relative permeability imbibition versus core 

saturation obtained from X-ray in-situ measurements for the tested core samples. Three 

replicates have been conducted for each experiment, as detailed in Appendix A, and each point 

in Figure 2 represents the average of the three experiments performed (see also Figures A1 and 

A2 for the depiction of the complete dataset). Table A1 lists average values of relative 



permeabilities and water saturation together with the associated estimate of standard deviation, 

as calculated on the basis of the experimental replicates depicted in Figures A1 and A2. 

Figure 2 shows that the crossover between water and oil relative permeability takes place 

at 77% and 60% water saturation for the Sand-pack and Berea core sample, respectively. The 

location of these crossing points in the water saturation space (Sw ≥ 50%) is consistent with an 

interpretation of the estimated relative permeabilities as being associated with water-wet rock 

conditions (Craig, 1993). It is also observed that the Sand-pack is characterized by the lowest 

irreducible water saturation and largest water relative permeability due to the higher connectivity 

of its pore space when compared to that of the sandstone core. The higher irreducible water 

saturation and lower water relative permeability observed for the Berea core sample are 

consistent with the likelihood of occurrence of significant capillarity effects and trapping of the 

non-wetting phase (oil) during two-phase flow conditions. 

 

3.2 Parameter Estimation and Model Identification Criteria 

Table A2 and A3 in Appendix A list the results of the calibration of the tested relative 

permeability models against our experimental data in terms of the estimated value of each 

parameter, denoted as C, the upper (U) and lower (L) limits identifying the 95% uncertainty 

bounds around the estimate, and the ratio   = (U – L) / C. Results associated with experiments 

D1 and D2 of (Lomeland et al., 2005) are also listed. Figures 3-5 illustrate graphical depictions 

of the estimated model parameter values for Krw and Kro associated with the four considered 

datasets and the three model analyzed. Intervals associated with U and L are also depicted. We 

can observe that parameter estimates linked to the Corey model are generally characterized by 

the smallest values of  , indicating that relatively robust estimates have been obtained. 



Otherwise, the quality of the estimates of most of the LET model parameters appears to be 

relatively poor when analyzed in terms of this metric.  

Our results show that all estimates of model parameters depend on the particular dataset 

employed for model calibration, the ratio between the lowest and highest estimated value of a 

given parameter ranging between approximately 2 and 6. Notable exception is given by Eo 

associated with the LET model (9) whose estimates are relatively stable across datasets (with a 

variability of about 35%). The values of   tend to be generally low (less than 0.5), even as 

markedly varying across datasets, suggesting that in general reliable parameter estimates can be 

obtained for the models, albeit with some exception as noted above. Some of the LET model 

parameters (most notably Ei (i = w, o)) are linked to the largest values of  . This indicates that 

in some cases the complexity of the model structure might render parameter estimates associated 

with increased uncertainty. It has also to be noted that values of   > 1 are in some cases 

associated with low sensitivity of a model to a given parameter (details not shown). 

Figures 6-9 provide graphical depictions of relative permeabilities Krw and Kro versus 

water saturation for the four considered datasets together with the results of all calibrated 

models. These results are complemented by those associated with MA analyses, performed 

according to the approach outlined in Section 2.3. Uncertainty bounds associated with model 

estimates and corresponding to Gaussian 95% confidence intervals (computed numerically by 

Monte Carlo sampling relying on the estimation covariance matrix of the parameters) are also 

depicted. It can be noted that, even as estimated Krw curves rendered by the three models are 

virtually coinciding, the LET model allows capturing all key details embedded in the S-shape 

behavior of Kro, including the range of values associated with low saturations (Kjosavik et al., 

2002; Lake, 1986; Lomeland et al., 2005; Mian, 1992; Slider, 1983). Model identification criteria 



(11)–(14) and posterior probabilities are then employed to rank each model for the datasets 

analyzed. Table 3 lists the results of model identification criteria associated with Krw for each 

two-phase model and calibration set (the smallest values for each dataset are highlighted in 

bold). Model posterior probabilities are also included for completeness. Table 4 lists the 

corresponding results associated with oil relative permeability. As an example, Figures A3 and 

A4 in Appendix A depict model posterior probabilities calculated on the basis of KIC. 

The adoption of model identification criteria and posterior model probabilities allows 

ranking of the candidate models tested on the basis of their associated posterior probabilities. 

Note that, as indicated in Section 2.3, the smallest value of a given model identification criterion 

indicates the most favored model (according to the considered criterion) at the expenses of the 

remaining models. A preliminary evaluation based on the identification of the smallest value of a 

given model identification criterion reveals that KIC consistently indicates the LET as the best 

model for all datasets. Otherwise, the other criteria considered may lead to different conclusions 

depending on the dataset considered. 

The posterior model weights not always indicate that one model has a considerably high 

degree of likelihood at the expense of the remaining two, depending on the set of observations 

considered. For the sake of our discussion, and considering that KIC has been shown to be more 

accurate than other criteria to calculate (15) (Lu et al., 2011), we focus here on posterior weights 

based on KIC in our interpretation. Results for Krw based on KIC indicate that the Chierici model 

is associated with a non-negligible weight for all datasets, the weights of the Corey model being 

virtually negligible. The LET model is generally linked with the highest weights. A similar 

pattern emerges from the analysis of Kro curves, where the LET model is clearly indicated by 

KIC as the preferred model for datasets D1 and D2 and our experiments related to the Sand-pack 



core, while the interpretation of the Berea dataset suggests that the Corey and Chierici models 

can also have a significant weight. 

All these observations support the interpretation included in Figures 6-9 based on model 

averaging (MA) and obtained as a weighted average (through (15)) of the results associated with 

each individual model. A quantitative comparison of the interpretative skill of the average of the 

model collection to the skills of the individual members is performed through the use of the 

NMD (16) and SME, as illustrated in Section 2.3. Table 5 lists the average Mahalanobis distance, 

NMDm, associated with Krw data for each model of the population considered and its MA based 

counterpart together with the standard deviation of NMD, SDNMD, the resulting coefficient of 

variation, CV = SDNMD / NMDm, and the Mean Square Error, MSE. The corresponding results 

obtained for Kro are listed in Table 6. From Figures 6-9 and Tables 5 and 6 one can also observe 

that model averaged results lead to high fidelity representations of the experimental observations. 

MA results appear to be of higher quality than those obtained with the most skillful model (i.e., 

LET) in most cases, with particular reference to Kro. These results are consistent with the 

observation that the model average can be more skillful than the model ranked as highest in cases 

where the individual models in the collection lead to data interpretations of diverse qualities. 

Our results generally support the findings of Kerig and Watson (1986) and Lomeland et 

al. (2005) who indicated that the Corey and Chierici models are not flexible enough to reconcile 

the entire set of experimental observations. However, they also suggest that in some cases, most 

notably for the interpretation of Krw data, the higher complexity of the LET model does not 

justify selecting it at the expenses of other, simpler models. In such scenarios, a multi-model 

analysis of the kind we present can be more appropriate. 

 



 

 

4. Conclusions 

We produce high quality two-phase relative permeability datasets resulting from Steady-

State imbibition experiments on two diverse porous media, a quartz Sand-pack and a Berea 

sandstone core. The ability of three commonly employed empirical two-phase models (i.e., 

Corey, Chierici and LET) to capture the observed behavior has been analyzed on the basis of 

rigorous model identification criteria. The latter have been applied to rank the selected 

alternative models through (a) the identification of the smallest value of a given criterion and (b) 

the evaluation of weights given by posterior model probabilities, conditional on a given dataset. 

We estimate the parameters of each model within a Maximum Likelihood framework for our 

experiments as well as additional published datasets (Lomeland et al. 2005). 

Our results show that the LET model, which relies on the largest number (three) of 

uncertain parameters, appears to exhibit sufficient flexibility to satisfactorily capture the entire 

set of experimental data, thus suggesting that capturing continuum scale manifestations of these 

complex phenomena might require considering flexible functional forms at the expenses of a 

high number of parameters. Model discrimination based on the smallest value of a given model 

identification criterion reveals that KIC indicates the LET as the best model for all datasets, 

while other criteria lead to contrasting results as a function of the dataset considered. A detailed 

analysis of the alternative models based on posterior (conditional) probabilities reveals that in 

several cases, most notably for assessment of Krw curves, the weights associated with the simple 

Chierici and Corey models cannot be considered as negligible. In these cases, a single 

interpretive model such as the LET which is associated with the highest number of parameters, 



might not succeed in providing a complete uncertainty quantification and a multi-model analysis, 

including also low-complexity models in a model averaged (MA) analysis, should be favored. 

In this context, we compare the interpretative skill of the average of the model collection 

to the skills of the individual members on the basis of the Normalized Mahalanobis Distance and 

mean square error. Our study suggests that model averaged results tend to produce high fidelity 

representations of the experimental observations, MA results being of higher quality than those 

obtained with the most skillful model (i.e., LET) in most cases, with particular reference to Kro. 
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TABLE CAPTIONS  

Table 1. Physical properties of core sample and fluids. 

Table 2. Physical properties of Norwegian Continental Shelf core samples and fluids for 

experiments D1 and D2 (Lomeland et al. 2005). 

Table 3. Model Calibration and Identification Criteria and Corresponding Posterior Probability 

(in parenthesis) associated with Krw (the smallest values for each dataset are highlighted in bold). 

Table 4. Model Calibration and Identification Criteria and Corresponding Posterior Probability 

(in parenthesis) associated with Kro (the smallest values for each dataset are highlighted in bold). 

Table 5. Average Mahalanobis distance (NMDm), standard deviation of NMD (SDNMD), the 

resulting coefficient of variation (CV = SDNMD / NMDm) and Mean Square Error (MSE) for 

each model of the population considered and its MA-based counterpart for Krw. 



Table 6. Average Mahalanobis distance (NMDm), standard deviation of NMD (SDNMD), the 

resulting coefficient of variation (CV = SDNMD / NMDm) and Mean Square Error (MSE) for 

each model of the population considered and its MA-based counterpart for Kro. 

FIGURE CAPTIONS 

Fig. 1. (a) Sketch of experimental set-up; (b) Steady State (SS) imbibition process.  

Fig. 2. Steady-State Imbibition relative permeabilities versus average water saturation. 

Fig. 3. Estimated Corey model parameter values for (a) Krw and (b) Kro associated with the four 

considered datasets. Intervals associated with the upper (U) and lower (L) limits identifying the 

95% uncertainty bounds around the estimate are also depicted. 

Fig. 4. Estimated Chierici model parameter values for (a) Krw and (b) Kro associated with the four 

considered datasets. Intervals associated with the upper (U) and lower (L) limits identifying the 

95% uncertainty bounds around the estimate are also depicted. 

Fig. 5. Estimated LET model parameter values for (a) Krw and (b) Kro associated with the four 

considered datasets. Intervals associated with the upper (U) and lower (L) limits identifying the 

95% uncertainty bounds around the estimate are also depicted. 

Fig. 6. Graphical depictions of (a) Krw, (b) Kro versus water saturation for the Sand-pack 

experiments together with the results of all calibrated models, uncertainty bounds corresponding 

to Gaussian 95% confidence intervals and model average (MA). 

Fig. 7. Graphical depictions of (a) Krw, (b) Kro versus water saturation for the Berea sandstone 

experiments together with the results of all calibrated models, uncertainty bounds corresponding 

to Gaussian 95% confidence intervals and model average (MA). 



Fig. 8. Graphical depictions of (a) Krw, (b) Kro versus water saturation for dataset D1 together 

with the results of all calibrated models, uncertainty bounds corresponding to Gaussian 95% 

confidence intervals and model average (MA).
 

Fig. 9. Graphical depictions of (a) Krw, (b) Kro versus water saturation for dataset D2 together 

with the results of all calibrated models and uncertainty bounds corresponding to Gaussian 95% 

confidence intervals and model average (MA). 
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Table A1. Steady-State Imbibition Relative Permeabilities (Krw: oil relative permeability; 

Kro: water relative permeability) and water saturation, Sw, for the sand-pack and the Berea 



sandstone samples. Average values together with the estimated standard deviation of data are 

listed, as calculated on the basis of the m = 3 experimental replicates depicted in Figures A1 and 

A2. 

 

 

 

Sand-pack Berea Sandstone 
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0.4
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0.4
7±0.011 

0.008
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0.5
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0.015
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0.23±
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0.5
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0.42±
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0.8
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0.0 
0.6
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Table A2. Estimates of Model Parameter values (C), corresponding lower (L) and upper 

(U) limits identifying 95% confidence limits (in parenthesis) and value of   = (U – L) / C 

associated with water relative permeability (Krw). 
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Table A3. Estimates of Model Parameter values (C), corresponding lower (L) and upper 

(U) limits identifying 95% confidence limits (in parenthesis) and value of   = (U – L) / C 

associated with oil relative permeability (Kro). 
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Fig. A1. Steady-State imbibition relative permeabilities (a) Krw and (b) Kro versus water 

saturation for the Sand-pack experiments. 

0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

Water Saturation

K
rw

(a)

Water Saturation

K
ro

(b)

Average of data

Experimental data

Average of data

Experimental data



 

Fig. A2. Steady-State imbibition relative permeabilities (a) Krw and (b) Kro versus water 

saturation for the Berea sandstone experiments. 
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Fig. A3. Posterior probabilities associated with the models tested based on KIC and on 

Krw data interpretation. 
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Fig. A4. Posterior probabilities associated with the models tested based on KIC and on 

Kro data interpretation. 
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Fig. 1. (a) Sketch of experimental set-up; (b) Steady State (SS) imbibition process.  
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Fig. 2. Steady-State Imbibition relative permeabilities versus average water saturation. 
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Fig. 3. Estimated Corey model parameter values for (a) Krw and (b) Kro associated with 

the four considered datasets. Intervals associated with the upper (U) and lower (L) limits 

identifying the 95% uncertainty bounds around the estimate are also depicted. 
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Fig. 4. Estimated Chierici model parameter values for (a) Krw and (b) Kro associated with 

the four considered datasets. Intervals associated with the upper (U) and lower (L) limits 

identifying the 95% uncertainty bounds around the estimate are also depicted. 
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Fig. 5. Estimated LET model parameter values for (a) Krw and (b) Kro associated with the 

four considered datasets. Intervals associated with the upper (U) and lower (L) limits identifying 

the 95% uncertainty bounds around the estimate are also depicted. 
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Fig. 6. Graphical depictions of (a) Krw, (b) Kro versus water saturation for the Sand-pack 

experiments together with the results of all calibrated models, uncertainty bounds corresponding 

to Gaussian 95% confidence intervals and model average (MA). 
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Fig. 7. Graphical depictions of (a) Krw, (b) Kro versus water saturation for the Berea 

sandstone experiments together with the results of all calibrated models, uncertainty bounds 

corresponding to Gaussian 95% confidence intervals and model average (MA). 
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Fig. 8. Graphical depictions of (a) Krw, (b) Kro versus water saturation for dataset D1 

together with the results of all calibrated models, uncertainty bounds corresponding to Gaussian 

95% confidence intervals and model average (MA).  
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Fig. 9. Graphical depictions of (a) Krw, (b) Kro versus water saturation for dataset D2 

together with the results of all calibrated models and uncertainty bounds corresponding to 

Gaussian 95% confidence intervals and model average (MA). 
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Highlights: 

 We perform high quality steady-state two-phase relative permeability 

measurements.  

 We illustrate the formal model identification criteria to rank and evaluate a set of 

alternative models. 

 We compare the performance of a model averaging approach with skill of each 

individual model.  

 Comparison have been carried out on the basis of the Normalized Mahalanobis 

Distance and mean square error. 

 The results show that model averaged tend to produce high fidelity 

representations of the observations. 

 

Table 1. Physical properties of the tested core samples and fluids. 

 

Sand

-pack 

Bere

a  

Oil viscosity [cP]  1.74 1.74 

Water viscosity [cP] 0.97 1.03 

Temperature during test [

C] 25 25 

Porosity [%] 37 17 

Water absolute permeability [mD] 

Permeability of oil at Swi [mD] 
 

2900 

2500 

30 

25 



 

 

Table 2. Physical properties of Norwegian Continental Shelf core samples and fluids for 

experiments D1 and D2 (Lomeland et al. 2005)). 

 

 D1 D2 

Oil viscosity [cP]  2.41 0.67 

Water viscosity [cP] 

0.39

5 

0.30

6 

Temperature for test [

C] 84 95 

Porosity [%] 29 27 

Swi [-] 

Permeability of oil at Swi [mD] 
 

0.19

6 

2396 

0.07

9 

1042 

 

  



 

Table 3. Model Calibration and Identification Criteria and Corresponding Posterior 

Probability (in parenthesis) associated with Krw (the smallest values for each dataset are 

highlighted in bold). 

 

Su

bsets 

AIC AICc BIC KIC 

C

orey 

Sa

nd-pack 

 

-59(0.02) 

 

-56.24(0.04) 

 

-

59.39(0.02) 

 

-

62.99(0.05) 

Be

rea 

-67(0.017) -62.83(0.14) 

-

67.24(0.02) 

-

67.96(0.025) 

D

1 

-96(0.014) -94.23(0.027) 

-

95.34(0.015) 

-

98.23(0.024) 

D

2 

-64(0.37) -61.37(0.83) 

-

64.48(0.39) 

-

60.9(0.30) 

C

hierici 

Sa

nd-pack 

 

-79(0.54) 

 

-71.60(0.84) 

 

-

79.76(0.55) 

 

-

73.76(0.31) 

Be

rea 

-75(0.06) -67.01(0.29) 

-

75.17(0.06) 

-

81.04(0.58) 



 

  

D

1 

-117(0.49) -113.12(0.64) 
-

116.2(0.50) 

-

113.98(0.33) 

D

2 

-57(0.012) -49.02(0.11) 

-

57.18(0.12) 

-

56.69(0.15) 

L

ET 

Sa

nd-pack 

 

-78(0.44) 

 

-58.49 (0.09) 

 

-

78.74(0.47) 

 

-

76.18(0.64) 

Be

rea 

-91(0.92) -71.04(0.56) 
-

91.25(0.92) 

-

89.48(0.92) 

D

1 

-117.3(0.5) -109.3(0.33) 

-

116.06(0.49) 

-

118.02(0.65) 

D

2 

-66(0.51) -45.67(0.061) 
-

65.9(0.49) 

-

64.31(0.54) 



 

Table 4. Model Calibration and Identification Criteria and Corresponding Posterior 

Probability (in parenthesis) associated with Kro (the smallest values for each dataset are 

highlighted in bold) 

 

Subsets AIC AICc BIC KIC 

                

Corey 

                

Sand-pack 

 

-63.2 (0.12) 

 

-

60.22(0.65) 

 

-

63.33(0.11) 

 

-

58.87(0.032) 

                

Berea 

-46.81(0.08) 

-

43.81(0.30) 

-

46.91(0.083) 

-

48.71(0.07) 

                

D1 

-52(0.0002) 

-

50(0.0005) 

-

51(0.0002) 

-

54.42(0.001) 

                

D2 

-76.6(0.017) 

-

73.58(0.19) 

-

76.68(0.016) 

-

71.23(0.085)  

                

Chierici 

                

Sand-pack 

 

-54.4(0.03) 

 

-

46.38(0.06) 

 

-

54.54(0.02) 

 

-

49.22(0.05) 

                

Berea 

-55.78(0.37) 
-

47.8(0.58) 

-

55.95(0.37) 

-

55.38(0.36) 

                -84.7(0.042) - - -



 

 

 

 

 

 

 

 

Table 5. Average Mahalanobis distance (NMDm), standard deviation of NMD (SDNMD), 

the resulting coefficient of variation (CV = SDNMD / NMDm) and Mean Square Error (MSE) for 

each model of the population considered and its MA based counterpart for Krw. 

D1 80(0.0789) 83.78(0.043) 80.82(0.08) 

                

D2 

-79(0.025) -

71.6(0.14) 

-

79.8(0.03) 

-

71.85(0.10) 

               

LET 

               

Sand-pack 

 

-75.1(0.85) 

 

-

55.08(0.28) 

 

-

75.29(0.85) 

 

-

66.67(0.92) 

               

Berea 

-57.97(0.54) -

37.97(0.11) 

-

58.18(0.54) 

-

58.72(0.57) 

               D1 -103.5(0.96) 
-

95.53(0.92) 

-

102.32(0.96) 

-

98.74(0.92) 

               D2 -101(0.96) 
-

81.03(0.68) 

-

101.25(0.96) 

-

84.57(0.82) 



 

 

Sand-pack Berea D1 D2 

  

S

DNMD

m 

N

MDm 

C

V 

M

SE 

S

DNMD

m 

N

MDm 

C

V 

M

SE 

S

DNMD

m 

N

MDm 

C

V 

M

SE 

S

DNMD

m 

N

MDm 

C

V 

M

SE 

C

orey  

1

.42 

2

.79 

0

.51 

8

.35E-

04 

1

.27 

8

.9 

0

.16 

6

.40E-

06 

0

.97 

4

.57 

0

.21 

4

.45E-

05 

0

.55 

2

.1 

0

.26 

7

.90E-

05 

C

hierici 

1

.44 

2

.85 

0

.51 

3

.40E-

05 

1

.17 

7

.82 

0

.15 

2

.14E-

05 

0

.99 

4

.45 

0

.22 

4

.47E-

06 

0

.61 

2

.1 

0

.29 

1

.72E-

04 

  

LET 

1

.44 

2

.84 

0

.51 

3

.00E-

05 

1

.21 

7

.92 

0

.15 

8

.30E-

08 

1

.01 

4

.46 

0

.23 

3

.06E-

06 

0

.56 

2

.1 

0

.27 

3

.07E-

05 

M

A 

1

.44 

2

.84 

0

.51 

3

.36E-

05 

1

.21 

7

.93 

0

.15 

2

.07E-

07 

1 
4

.46 

0

.22 

3

.06E-

06 

0

.56 

2

.1 

0

.27 

5

.06E-

05 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Average Mahalanobis distance (NMDm), standard deviation of NMD (SDNMD), 

the resulting coefficient of variation (CV = SDNMD / NMDm) and Mean Square Error (MSE) for 

each model of the population considered and its MA based counterpart for Kro. 

 

 



 
Sand-pack Berea D1 D2 

 

S

DNMD

m 

N

MDm 

C

V 

M

SE 

S

DNMD

m 

N

MDm 

C

V 

M

SE 

S

DNMD

m 

N

MDm 

C

V 

M

SE 

S

DNMD

m 

N

MDm 

C

V 

M

SE 

C

orey 

1

.04 

1

.84 

0

.56 

4

.80E-

04 

1

.74 

1

.71 

1

.01 

7

.04E-

04 

1

.65 

1

.42 

1

.11 

3

.60E-

03 

0

.99 

0

.88 

1

.13 

9

.00E-

06 

C

hierici 

1

.04 

1

.86 

0

.56 

0

.0013 

1

.72 

1

.66 

1

.03 

1

.14E-

04 

1

.59 

1

.32 

1

.21 

1

.15E-

04 

0

.99 

0

.87 

1

.14 

4

.90E-

06 

L

ET 

1

.03 
2 

0

.51 

4

.90E-

05 

1

.71 

1

.65 

1

.02 

8

.10E-

05 

1

.58 

1

.31 

1

.21 

2

.32E-

05 

0

.99 

0

.87 

1

.14 

1

.72E-

07 

M

A 

1

.03 
2 

0

.51 

6

.80E-

05 

1

.72 

1

.67 

1

.02 

9

.37E-

05 

1

.59 

1

.32 

1

.21 

2

.04E-

05 

0

.99 

0

.87 

1

.14 

1

.06E-

08 

 

 

 

 

 

 

 




