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Abstract— Waterjet/abrasive waterjet cutting is a flexible technology that can be exploited for 

different operations on a wide range of materials. Due to challenging pressure conditions, cyclic pressure 

loadings and aggressiveness of abrasives, most of the components of the Ultra High Pressure (UHP) 

pump and the cutting head are subject to wear and faults that are difficult to predict. Therefore, the 

continuous monitoring of machine health conditions is of great industrial interest, as it allows 

implementing condition-based maintenance strategies, and providing an automatic reaction to critical 

faults, as far as unattended processes are concerned. 

Most of the literature in this frame is focused on indirect workpiece quality monitoring and on fault 

detection for critical cutting head components (e.g., orifices and mixing tubes). A very limited attention 

has been devoted to the condition monitoring of critical UHP pump components, including cylinders and 

valves. The paper investigates the suitability of the water pressure signal as a source of information to 

detect different kinds of fault that may affect both the cutting head and the UHP pump components. We 

propose a condition monitoring approach that couples Empirical Mode Decomposition (EMD) with 

Principal Component Analysis to detect any pattern deviation with respect to a reference model, based 

on training data. The EMD technique is used to separate high frequency transient patterns from low 

frequency pressure ripples, and the computation of Combined Mode Functions is applied to cope with 

the mode mixing effect. Real industrial data, acquired under normal working conditions and in presence 

of actual faults, are used to demonstrate the performances provided by the proposed approach.   

Index Terms — Waterjet Cutting, Condition Monitoring, Empirical Mode 

Decomposition, Principal Component Analysis 

 

1 INTRODUCTION 

Waterjet/abrasive waterjet (WJ/AWJ) machining is a flexible technology that is 

suitable for different kinds of processes, including cutting, turning, milling and 

surface treatments, on a wide range of materials [1]. Long duration part-programs 

are frequently performed in waterjet machining shop floors, leading to a large 

percentage of unattended processes. In addition, most of the components of the 

Ultra High Pressure (UHP) pump and the cutting head are subject to wear and faults 

that are difficult to predict and to avoid. These factors, together with safety 

requirements and the increasing demand for more effective and efficient 
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maintenance strategies, i.e. condition-based ones [2], lead to the need for a reliable 

on-line monitoring and diagnosis equipment.  

The need for process monitoring mainly involves the evaluation of the cutting 

process quality on the one hand, and the health monitoring of critical machine 

components on the other hand.  

Regarding the former issue, problems studied in the literature concern the on-line 

assessment of cutting stability [3] [4] and the detection of process malfunctions, 

including non-correct jet penetration [5] [6] and workpiece crack detection when 

machining brittle materials [7].  

With regard to the second stream of research, most of the efforts have been focused 

on monitoring the conditions of the cutting head components – orifice and mixing 

tube –, as their health state has a direct impact on the cutting performances (see 

references from [8] to [13]). 

Despite of the actual industrial interest, small attention has been devoted in 

WJ/AWJ literature to condition monitoring and diagnosis of critical UHP pump 

components, including cylinders, check valves, seals, etc. (see for example [14] and 

[15]).  

The present study investigates the feasibility of an innovative health monitoring 

approach based on the analysis of the water pressure signal, aimed at detecting both 

faults in upstream components (i.e. the UHP pump elements) and in downstream 

components (i.e. cutting head elements). The pressure signal has the advantage of 

being easy to acquire in any pump configuration, thanks to the availability of low 

cost and non-intrusive sensors. The study shows that the pressure signal is multi-

scale in nature, and a proper separation of features on different scales may actually 

improve the detection of critical faults. For such a task, we propose the use of the 

Empirical Mode Decomposition (EMD), which is a data-driven and adaptive tool 

that requires neither integral transforms nor basis function definition. The proposed 

method combines the EMD technique with the Principal Component Analysis 

(PCA) to summarize the multivariate content of the processed information. The 

resulting method is called EMD-PCA. The computation of Combined Mode 

Functions (CMFs) is proposed to cope with the possible mode mixing effect, and 

to capture the relevant information content of the signal by means of a limited 

number of modes. 
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Experimental results based on real industrial data are discussed to show the effects 

of different faults on the pressure signal pattern. Real data were acquired under 

normal working conditions and in presence of actual faulty components, and used 

to test the performances of the proposed approach.  

The experimental analysis here presented extends the results discussed by Annoni 

et al. in [11], [12] and [13], by taking into account a larger set of fault conditions 

and by investigating the multi-scale nature of the pressure signal. The paper also 

extends the previous work of Colosimo et al. [16] on PCA-based process 

monitoring, by proposing the EMD-PCA technique. The comparison with other 

PCA-based approaches, and with sample methods commonly used in commercial 

toolkits adopted in industry, demonstrates the benefits provided by coupling the 

EMD and the PCA techniques. 

To the best of authors’ knowledge, condition monitoring based on EMD and PCA, 

applied to pressure signal, has never been used for WJ/AWJ. 

Section 2 briefly introduces the nature of the water pressure signal in WJ/AWJ 

plants; Section 3 reviews the EMD procedure and the CMF approach; Section 4 

presents the proposed EMD-PCA approach; Section 5 describes the experimental 

setup for real data collection; Section 6 provides a discussion of achieved results; 

Section 7 eventually concludes the paper. 

 

2 THE PRESSURE SIGNAL IN UHP PUMPS 

The most traditional and widespread UHP pump design, involving a water and an 

oil circuit, is considered in the present study. A pump activated by an electrical 

motor is used to rise the oil pressure up to a nominal level; the pressurized oil is 

then sent to the UHP intensifier, which consists of a positive-displacement pump 

including one or more piston/cylinder groups. The UHP intensifier provides the 

required water compression to achieve the desired cutting conditions.  

Two configurations are mainly adopted for the UHP pump: one based on single-

acting plungers, with a single active stroke per cycle, and one based on double-

acting plungers, with two active strokes per cycle. The single-acting configuration 

is considered hereafter.  
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In case of N  parallel single-acting plungers, a complete pumping cycle is 

composed by N  active strokes, shifted in phase. The cycle of each plunger is 

composed by three distinct steps:  

1) the pre-compression step, during which the plunger moves forward, starting 

from the bottom dead center, and stops when the internal cylinder water 

pressure equals the water pressure in the discharge circuit;  

2) the compression step, which corresponds to the plunger active stroke that 

pressurizes the water flowing to the cutting head; this step ends at the top 

dead center;  

3) the suction step, during which the water is displaced from the low pressure 

circuit into the cylinder, until the plunger reaches the bottom dead center, 

where it is ready for the next cycle.  

The entire cycle is regulated by the high pressure (HP) discharge check valves, one 

for each plunger/cylinder. During the pre-compression step, the HP discharge check 

valve is closed and the plunger does not actively contributes to the jet; the valve 

opens only during the compression step, generating the water flow towards the 

cutting head. 

When the water reaches the cutting head and flows through the water orifice, the 

pressure energy changes into kinetic energy and the jet is formed. If the AWJ is 

considered, solid particles join the WJ into the mixing chamber, being entrained by 

the air flow generated by the jet itself. The kinetic energy of abrasive particles is 

dramatically increased thanks to the momentum exchange with the water inside the 

mixing chamber and the focusing nozzle. 

An example of the pattern of plunger displacement signals and the corresponding 

pressure signal acquired on the high pressure water line of a three-cylinders pump 

with single-acting plungers (the same used for the test described in Section 5) is 

shown in Fig. 1. 
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Fig. 1 – Water pressure signal (top) and plunger displacement signals (bottom) for two consecutive 

pumping cycles 

 

Fig. 1 shows two consecutive pumping cycles. Each cycle is the result of three 

active strokes shifted in phase. The plunger displacement starts at the bottom dead 

center (0 mm) and the active stroke ends at the top dead center (about 200 mm). 

The pressure ripples are due to the plunger kinematics, with major transients 

corresponding to transitions between the active stroke of a plunger and the active 

stroke of the next one. When a piston reaches the top dead center, a valve 

commutation occurs, with a consequent oil flow rate reduction in the next cylinder, 

resulting in a dynamic pressure discontinuity. 

Minor transients are present too, in correspondence of points in time where each 

plunger completes its suction step. They are caused by a flow rate modification 

when the piston reaches the bottom dead center.  

Both the low frequency and high frequency pressure patterns are difficult to model, 

since they may be influenced by an instable behavior of the discharge check valves, 

by water hammer effects in the circuit, etc. For details, see [11] and [15]. Moreover, 

the water compressibility effect strongly influences the nature of the pumping cycle. 
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Because of this, the water pressure signal analysis in WJ/AWJ applications is 

different from traditional fluid power system applications [17] [18] [19].  

 

3 Empirical Mode Decomposition 

Conventional methods used for condition monitoring of industrial systems include 

time-domain analysis of synthetic indexes, power spectrum analysis, cepstrum 

analysis, etc. One main limitation of those methods consists of the stationarity 

assumption of the process generating the signals. Time-frequency analysis allows 

capturing the time-frequency distribution properties of the signal, which often 

results in an improved extraction of fault features that are localized in time.  

Among time-frequency methods used in fault detection and classification 

applications [20] [21] [22] [23], the wavelet analysis is a very popular approach 

belonging to the category of linear time-frequency representation techniques. It 

requires the selection of a proper wavelet basis to match the signal structure, 

together with a proper choice of decomposition levels and thresholding settings for 

signal denoising. Ill-selected basis may yield poor results, and the time-frequency 

resolution may be limited with respect to other methods [24]. To overcome some 

limitations of the linear time-frequency representation, non-parametric and adaptive 

methods where proposed by different authors. In this frame, EMD is a powerful 

method proposed by Huang et al. [25], which allows decomposing any signal into 

a number of Intrinsic Mode Functions (IMFs). The IMFs represent the natural 

oscillatory modes embedded in the signal. EMD is completely data-driven and 

adaptive in nature: it requires neither any integral transform nor the definition of 

any basis function. IMFs are determined by the signal itself and they work as basis 

functions. This makes the EMD method a more flexible and efficient tool, which 

may yield a finer time-frequency resolution than the wavelet transform (for some 

comparative analysis see [24], [26] and [27]). 

Several applications of EMD have been proposed for condition monitoring of 

gearboxes [28], bearings [29], structural components [30], and also for bio-medical 

signal monitoring [31] and for power quality assessment [32].  

In the frame of fluid power system monitoring applications, EMD was used by 

Goharrizi et al. in [33] where EMD and Hilbert Spectrum are applied for leakage 

detection in valve-controlled hydraulic actuators.  
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3.1 The EMD algorithm 

The IMFs that capture simple oscillation modes involved in the signal are extracted 

by means of the “sifting” process, which consists of the following steps [25]: 

1) All the local minima and maxima of the signal  P,...,xx1x , where P  is the 

number of time window data points, are identified and they are interpolated 

respectively by an upper and a lower envelope expressed on a cubic spline basis; 

2) The mean of the two envelopes is computed and designated as 1m ; then the 

difference between the signal x  and 1m  is computed and designated as 1h : 

 11 mxh   (1) 

If 1h  is an IMF, i.e., if 1h  satisfies the following conditions: 

a) in the entire dataset, the number of extremes and the number of zero 

crossings must be either equal or different at most by one;  

b) at any point, the mean value of the envelope defined by the local maxima 

and the envelope defined by the local minima is zero; 

then, 1h is taken as the first IMF of the signal and designated as 1c . If 1h  is not 

an IMF, 1h  replaces the original signal and the above steps are repeated until 

an IMF is obtained. 

3) The first IMF 1c  is separated from the signal x  by: 

 11 cxr   (2) 

4) The residue 1r  is treated as the original signal and the above steps are repeated, 

leading to the extraction of following IMFs ncc ,...,1 , such that: 

 

nnn rcr

rcr





1

221

...  (3) 

At the end of the process, the signal is decomposed into n  intrinsic modes and a 

residue nr :  

 



n

i

ni

1

rcx  (4) 

The residue is a signal such that no further decomposition is possible. 
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Different stop criteria have been proposed (the interested reader may refer to [34]). 

In this study, the Amplitude Ratio criterion proposed by Rilling et al. [35] is used. 

3.2 The Combined Mode Function method 

A critical issue is represented by the possible occurrence of the “mode mixing” 

effect [36], when EMD is applied to noisy signals. An intrinsic mode may be split 

into two or more IMFs in practical applications, and the effect of noise may yield 

an over-decomposition of the signal, causing the so-called mode mixing. This 

problem actually limits the reliability of a monitoring scheme that involves the 

analysis of a single IMF in different time windows. Different approaches have been 

proposed to cope with such an issue. Huang and Wu [36] proposed a method called 

Ensemble EMD (EEMD), which consists of defining the true IMF components as 

the mean of an ensemble of trials, each consisting of the signal plus a white noise 

of finite amplitude. 

A multiscale condition monitoring approach based on EEMD is proposed in [37] 

and [38]. The main limitation of EEMD is the computational cost, as it requires the 

computation of a sufficient number of ensemble trials. A computationally efficient 

variant of EEMD was proposed in [39], but the computational cost is considerably 

higher than the basic EMD, and this makes EEMD-based monitoring methods 

poorly attractive as far as on-line applications are concerned. 

Intermittency test is another method proposed to face with mode mixing [36]. 

However, the a priori subjective nature of the criterion actually imposes some limits 

to its practical potential [36].  

A more interesting and effective approach for on-line implementation is based on 

Combined Mode Function (CMF) computation [40].  

The CMF approach consists of combining neighboring IMFs qiii  ccc ,...,, 1  to 

obtain CMFs as follows: 

 
qiiis 

 cccc ...
1

 (5) 

where qnk 1 , being n  the maximum number of IMFs. Such a combination 

of subsets of IMFs can be interpreted as a new adaptive filter bank, which is based 

on the intrinsic time scales of the signal, resulting in an accuracy increase of the 

EMD [40].  
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How to decide which IMFs should be combined together and how to identify 

subsets of relevant IMFs, actually depends on the specific application. In some 

applications the goal is to divide the IMFs into two subsets and then to retain just 

the combination of modes into one of them, either to de-noise or to de-trend the 

signal [41]. In most diagnostic applications, instead, the need to extract specific 

fault features focuses the analysis on a limited set of physically relevant IMFs [42] 

[43]. Thresholding methods based on IMFs’ average value [31], IMFs’ energy [41], 

IMFs’ correlation with respect to the original signal [44], IMFs’ peak frequency 

[45], and other indexes [28] have been proposed. However, the actual reliability of 

fully automated selection strategies is still quite doubtful, especially in presence of 

noisy signals, and context knowledge is often of fundamental importance [44]. The 

choice is left to the operator in many applications, based on his experience and on 

the visual analysis of the resulting signal decomposition, under natural process 

conditions. 

In the frame of pressure signal monitoring in WJ/AWJ cutting, modes related to 

transients should be combined together and separated from those related to low 

frequency ripples (combined into a different subset) to achieve the highest 

performances. 

 

4 The proposed approach 

The proposed condition monitoring approach combines the computation of CMFs 

based on EMD, and a PCA-based statistical monitoring approach. The resulting 

method is called EMD-PCA and it is schematized in Fig.2. 
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Fig. 2 – Scheme of the proposed condition monitoring approach 

 

The pressure signal is acquired during the cutting process and it is segmented on-

line by using the plunger top dead center triggers, normally used by the machine 

control system. Those triggers allow an automatic segmentation of the signal time 

series into consecutive time windows. Each window corresponds to a pumping 

cycle. Furthermore, the acquisition of the open/close jet trigger allows extracting 

only complete pumping cycles performed without jet interruption. A synchronous 

re-sampling procedure is then applied to each segment, in order to obtain time 

windows of constant length. The time reference is converted into a new reference 

expressed as the percentage of a complete pumping cycle. The new reference step 

is selected to obtain a window length equal to a power of 2. Then, a periodic cubic 
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spline interpolation is used to compute the pressure signal values in the new 

reference points. 

Once the synchronous re-sampling step is concluded, the resulting signal is a 

sequence of observation vectors T

,1 ,2 ,[ , ,..., ]j j j j Px x xx , where ,...2,1j  is the 

index of consecutive time windows, and 
qP 2 , q , is the fixed number of 

data points in each time window. 

Since the goal consists of analyzing the dynamic pressure fluctuations, the EMD is 

applied to signal segments 
jx  after subtracting the mean value to each segment. 

A static pressure monitoring system, i.e. an embedded algorithm devoted to in-

process monitoring of the mean pressure level, is already implemented in most 

WJ/AWJ machine tools. It is designed to terminate the process whenever an 

unnatural mean pressure drop is observed. However, it is suitable to detect only 

large leakages, whereas a dynamic pressure analysis method is expected to allow 

detecting small leakages and incipient faults, in addition to the capability of wear 

level assessment. 

Moreover, the subtraction of the mean pressure level improves the robustness of the 

monitoring tool, by removing possible misleading effects caused by small static 

pressure fluctuations associated to the natural variability of the process.  

The result is a collection of IMFs njjj, ,2,1 ,...,, ccc  and a residue signal nj,r  for each 

complete pumping cycle. Such a signal processing is applied to both the two distinct 

steps of the monitoring procedure, that are, respectively, the training step for 

reference model building (called step I) and the actual process monitoring step (step 

II). 

During step I, a dataset of signals acquired under normal working conditions 

(reference conditions) is collected. Such a dataset must be representative of the 

healthy state of the machine tool in the current operative mode, and it will be used 

as the reference for any following fault detection.  

The need for a dedicated training step characterizes any data-driven approach. The 

avoidance of a training step can be achieved only by using model-based methods, 

but the resulting benefit is counterbalanced by the challenging development of 

accurate models, and by the need for extended validation experiments. Different 

authors proposed statistical process monitoring techniques that allow reducing the 

dependence on large training datasets: they are called self-starting control charts 
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[46]. In principle, they could be coupled with the method here proposed, but the 

subject goes beyond the scope of the paper. 

The step I dataset may be represented in terms of a M P  matrix X , where M  is 

the number of complete cycles acquired in this step, and each row corresponds to a 

time window of the original signal: 

 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

...

...

... ... ... ...

...

P

P

M M M P

x x x

x x x

x x x

 
 
 
 
 
 

X  (6) 

The EMD is applied to each row of the matrix and IMFs are combined into a number 

K  of CMFs 
Kjsjsjs ,2,1,

,...,, ccc . 

Then, in order to evaluate the stability over time of the CMFs, a PCA-based 

monitoring scheme is applied [49]. 

The PCA is a statistical method to explain the variance-covariance structure of a 

multivariate dataset by means of a few linear combinations of the original variables 

[47]. Therefore, it is widely used in data analysis and dimensional reduction 

problems. In the frame of signal processing and process monitoring, the usage of 

PCA has been proposed and applied by several authors [48] [50] [15]. When the 

technique is applied to monitor repeating signal profiles over time, as in the present 

study, the reference procedure is that described by Colosimo et al. in [15].  

The combination of EMD and PCA has been proposed by some authors to improve 

signal processing performances of noisy signals with respect to the classical EMD 

approach [51] [52]. In the present study, the two techniques are combined to 

develop a multi-scale monitoring tool, where PCA is applied to the CMFs resulting 

from the EMD of the water pressure signal. 

The approach works as follows. Let 
T

,,,1,,
],...,[

kPjskjskjs ccc  be the 
thk  CMF in 

thj  time window, where 1, ,k K , and let 1: ,M kCS  be a M P  matrix including 

the 
thk  CMFs in M  pumping cycles collected under normal working conditions 

(step I): 
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1,1, 1,2, 1, ,

2,1, 2,2, 2, ,

1: ,

,1, ,2, , ,

...

...

... ... ... ...

...

s k s k s P k

s k s k s P k

M k

sM k sM k sM P k

c c c

c c c

c c c

 
 
 
 
 
 

CS  (7) 

The PCA-based monitoring approach then consists of performing a spectral 

decomposition of the sample correlation matrix 
1: ,M kR  of 1: ,M kCS , i.e., finding the 

matrices kL  and kU  which satisfy the relationship: 

 kkkMk LURU ,;1
T

 (8) 

where kL  is a diagonal matrix whose diagonal elements are the eigenvalues of 

1: ,M kR  ( kp, ; Pp ,...,1 ), while kU  is an orthonormal matrix whose thp  column 

pu  is the thp  eigenvector of .  

The vector of the thj  Principal Component (PC) computed on the K  CMFs is 

defined as follows: 

  T,,,1,,
T

, ,..., kPjkjksjkkj zz cUz  (9) 

Then, the process monitoring strategy based on PCA requires the computation of 

two statistics [15]: one is the Hotelling’s 
2T  statistics, used to detect possible 

deviations along the directions of the first km  PCs (the strategy to select the number 

km  is discussed below), for the  
thk  CMF (𝑘 = 1,… , 𝐾): 

 



km

l kl

klj

kkj

z
mT

1 ,

2
,,2

, )(


 (10) 

The second is the Q  statistics, used to detect possible deviations in directions 

orthogonal to the ones associated to the first km  PCs for the 
thk  CMF (𝑘 =

1, … , 𝐾), given by: 

    
kjskjskjskjskkj mQ

,,

T

,,,
ˆˆ)( cccc   (11) 

where 
kjs ,

ĉ   is the reconstruction of CMF 
kjs ,

c  after retaining the first km  PCs, 

computed as follows: 

1: ,M kR
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 



km

l

pkljkskjs z
1

,,,,
ˆ ucc  (12) 

where ks,c  is the mean 
thk  CMF among the M  observations collected in step I. 

Obviously, a critical issue is how to select the number km  of the most important 

PCs to be retained, for the 
thk  CMF.  For a comparative analysis of methods 

dedicated to such a task see e.g. [53]. Here the number km  is chosen by applying 

the Wold’s approach [54], which is based on a cross-validation algorithm. At each 

step of the procedure, one row is deleted from the matrix 
1: ,M kCS  and it is re-

estimated by performing the PCA of the remaining rows. The estimation is repeated 

for increasing values of km . For each possible choice of km , the Q  statistics is 

computed (eq. (11)). The procedure is repeated for all the rows of the matrix, and 

the PRESS (PRediction Error Sum of Squares) statistics is computed as the grand 

average of the Q  values divided by P : 

 )(
1

)(
1

, k

M

j

kjk mQ
MP

mPRESS 


  (13) 

Eventually the following ratio is computed: 

 

 
 




M

j

P

p
kpjskkpjs

k

cmc

mPRESS
R

1 1

2

,,,,
)1(ˆ

)(
 (14) 

The R  ratio compares the PRESS statistics, obtained by retaining km  PCs, with the 

sum of squared differences between CMF values 
kpjsc

,,
 and the CMF values 

kpjsc
,,

ˆ

, estimated by using all the M  rows, but retaining only 1km  PCs. Wold showed 

[54] that, if a ratio 1R  is got, a better prediction is obtained by using km  instead 

of 1km  PCs. Hence km  is selected as the highest value such that 𝑅 < 1. For each 

CMF computed in step II, the 
2T  and Q  statistics are estimated by using the 

reference PCA model that includes the matrices kL  and kU  and the value of km  

estimated on the step I dataset.  Then a control chart is applied to each statistics. 

The step II control limit used for 
2T  control chart is:  

 ),(
,2 kkkkT

mMmFaUCL    (15) 
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where   is the type I error, whereas ),( kk mMmF   is the (1 )%  percentile of 

the Fisher distribution with km  and kmM   degrees of freedom (dofs), 

respectively, and ka  is given by: 

 )(/)1)(1( kkk mMMMMma   (16) 

Regarding the Q  statistics, here the control limit formulation proposed by Nomikos 

and MacGregor [55] is applied: it is computed as follows: 

 )(2
, kkkQ hgUCL   (17) 

where )(2
kh  is the (1 )%  percentile of a 2  distribution with kh  dofs. The 

parameters kg  and kh  are estimated as 
k

kQ

k
Q

g
2

ˆ 2
  and 
















2

2

ˆ

2
int

kQ

k
k

Q
h


, where kQ  

and 
2ˆ

kQ  are respectively the sample mean and sample variance of Q  statistics for 

all the M  step I observations, for the 
thk  CMF. 

The two control charts refer to two disjoint sets of PCs. Thus, in order to guarantee 

a type I error (i.e. the expected false alarm rate) equal to the desired one, the Šidák 

correction for independent events [56] should be used. Given a desired type I error 

  , then: 

 1 1     (18) 

The same procedure is repeated for each CMF, i.e. for Kk ,...,1 , and eventually 

the Bonferroni’s method is adopted to guarantee an overall type I error equal to the 

selected one, i.e., for a given choice of type I error   , the value used in eq. (18) is 

K   .  

The proposed approach will signal an alarm when at least one control limit violation 

will be detected in one control chart applied to the CMFs 
Kjsjsj,s ,2,1

,...,, ccc , with 

a globally controlled false alarm rate equal to   .  
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5 EXPERIMENTAL SET-UP  

An experimental analysis was performed to collect real data both under the natural 

machine healthy conditions, i.e. the reference condition, and in presence of different 

types of fault. 

The tests were performed on a 45 kW pump with 𝑁 = 3 parallel single-acting 

plungers and a nominal working point characterized by a water pressure of 350 MPa 

and a water flow rate of 5 l/min, with a 0.25 mm orifice. 

The pressure transducer used in the study is a high pressure transducer suitable for 

water pressure (Gefran TPH sensor), with a measuring range of 0 to 500 MPa. The 

pressure transducer is mounted on the high pressure water discharge line as shown 

in Fig. 3. 

 

 

Fig. 3 - Installation of the pressure sensor on the high pressure water discharge line 

 

The faults in the most stressed and critical components have been taken into 

account. The fault scenarios here considered include:  

 a crack in cylinder internal surface - Fault A;  

 a crack in HP discharge check valve - Fault B; 

 a worn HP discharge check valve seat - Fault C;  

 a broken orifice - Fault D.  

 

Cylinders

High Pressure 

Transducer

HP Discharge 

Check Valves
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The former three faults involve critical components of the UHP pump, whereas the 

last one involves the most critical component of the cutting head, i.e. the orifice. 

The tests were performed by randomly replicating the execution of the same part-

program, consisting of cutting an aluminum laminate, both under normal working 

conditions and faulty conditions. For details about thetest campaign , see [15] and 

[57].  

Regarding the fault scenarios A, B and C, a different component coming from a real 

fault was used in each test run and installed into the UHP pump. Regarding Fault 

D, instead, the effects of a broken orifice were simulated by installing an orifice of 

the same type, but having a larger diameter (0.33 mm instead of 0.25 mm). An 

orifice breakage, in fact, usually results in an hole diameter increase, with a 

consequent pumping frequency increase. Three 0.33 mm orifices were used in fault 

scenario D. 

Faulty components in scenarios A, B and C were ranked in terms of crack severity 

or wear level. Cracked components were inspected by means of the dye penetrant 

technique, whereas the worn valve seats were inspected by using a 3D infinite focus 

microscope. See [15] for details about the nature of faults here considered. 

Fig. 4 shows the cracks on internal cylinder surface revealed by dye penetrant 

technique, and the surface wear of HP discharge check valve seats. 

 

Fig. 4 - Cracks on cylinders revealed by the dye penetrant analysis (top) and damaged surfaces of 

HP discharge check valve seats (bottom) 



18 

 

A further test run was performed to collect a long pressure signal time series under 

normal working conditions. In this case, no cut was performed and the signal was 

acquired with continuously open jet over a time period of about 3 hours. All the 

other operating conditions were the same discussed above. This additional data 

acquisition is used to evaluate the performances of the proposed approach in terms 

of false alarms.  

The pumping cycle period under normal working conditions, at the nominal 

working point of 350 MPa, is about 4.7 sT  . The pressure signals were acquired 

with a sampling frequency of 2 kHz. Such a sampling frequency turned out to be 

suitable to capture the high frequency transient patterns with sufficient resolution.  

 

6 ANALYSIS OF RESULTS 

An example of the decomposition of one complete cycle acquired under normal 

health conditions is shown in Fig. 5. Regarding the EMD implementation, the 

Matlab package developed by G. Rilling was used [35]. 

Fig. 5 shows that the transients between consecutive active strokes are clearly 

visible in IMF 2c , 3c , and 4c . IMF 1c  captures most of high frequency 

disturbances and noise, whose amplitude seems to be modulated by the plunger 

kinematics, with peak-to-peak amplitude increasing as the plunger moves towards 

the top dead center.  

IMF 7c , 8c , and 9c  capture the low frequency pressure ripples, with harmonic 

content mainly related to multiples of the fundamental frequency 1f T , up to the 

6X harmonic component.  

In order to evaluate the goodness of the decomposition, the Orthogonality Index 

(OI) [25] was computed as follows: 

  









 


















P

p

n

k

n

kq
q pj

pkjpkj

j
x

cc
OI

1

1

1

1

1
2
,

,,,,
 (19) 

As far as the step I dataset is concerned, the OI sample mean is 0.206 and its sample 

standard deviation is 0.118.  
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Fig. 5 – EMD of a complete cycle under normal working conditions 

 

The EMDs for each fault scenario are reported in Fig. 6. Fig.6 a) shows the EMD 

for the cylinder with a large crack in Fault A scenario. Fig. 6 b) shows the EMD for 

the HP discharge check valve with a medium size crack in Fault B scenario 

(remember that the run with a severe crack was not performed as the process was 

stopped by the controller for excessive leakage). Fig. 6 c) shows the EMD for the 

HP discharge check valve seat with a severe wear level in Fault C scenario. Fig. 6 

d) eventually shows the EMD for the broken orifice 1 in Fault D scenario. 

As far as Fault A, B and C are concerned, faulty components were installed into the 

plunger/cylinder group 1. 

It is possible to see the evident contraction of the active stroke of plunger 1 when a 

large crack on the cylinder is present. The effect of the fault affects both the pre-
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compression and the compression step of the plunger, with a reduction of the overall 

single-plunger period. This results in a strong displacement of the transient location, 

and in a modification of the harmonic content of the signal.  

A lower effect is visible in case of Faults B and C. A crack in the HP discharge 

check valve or a worn valve seat yield a leakage during the pre-compression step 

only, when the valve is closed. However, the energy of the transients seems to 

increase with respect to the reference condition, especially in presence of a worn 

seat. 

Fault D, eventually, is a downstream fault and hence it has the same effect on the 

active strokes of all the plungers. This results in no evident modification of the 

pumping cycle symmetry, but a slight displacement of transients a, b, and c seems 

to be presents, probably caused by a different duration of compression and suction 

steps. A reduction of the 6X harmonic component is a further effect of this fault. 

 

6.1 Selection of the Combined Mode Functions 

A critical issue is how to choose the number K  of CMFs, and how separate the 

IMFs into K  sub-groups. Since the goal is to separate the modes associated with 

transient patterns from those associated with low frequency ripples, two groups will 

be created. In addition, a third group is created by isolating the first IMF 1c , i.e. the 

one that basically consists of noise and random disturbances, from the remaining 

IMFs. This allows cleaning the transient modes from noise. The result is the 

computation of three CMFs, as follows: 

 11
cc s  (20) 
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where 
2sc  should represent the modes associated to transient patterns, and 3sc  

should represent the modes associated to low frequency ripples. 
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Fig. 6– a) EMD in presence of a severe crack in one cylinder (Fault A), and b) EMD in presence of a medium crack in the HP discharge check valve (Fault B)  
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Fig. 6 – c) EMD in presence of a severe wear level of the HP discharge check valve seat (Fault C), and d) EMD in presence of a broken orifice (Fault D)  
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The residue nr , which represents the trend term, is included into 3sc  since no 

information content should be lost. Concerning the choice of 1k , i.e. the index of 

the last IMF included into 
2sc , two commonly used features are computed: the 

energy ijE ,  associated to the thi  IMF and the Pearson’s correlation coefficient ij,  

between the thi  IMF and the original signal jx . They are computed respectively 

as follows: 
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Fig. 7 reports the mean values and the standard deviation of the two indexes defined 

in eq. (23) and eq. (24), i.e., IMF energy and Pearson’s correlation between each 

IMF and the original signal, for the signals acquired under normal working 

conditions.  

 

Fig. 7 – Mean value and standard deviation of energy (top) and Pearson’s correlation coefficient 

with respect to original signal (bottom) for each IMF under normal working conditions 
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Starting from the IMF 6c , there is an evident increase of the mean energy and the 

energy variability, which also corresponds to an increase of the correlation 

coefficient. 

The observation of Fig. 7 suggests that 61 k  (see eq. (21) and eq. (22)) is a bad 

choice to separate transient modes from low frequency ones. A better choice is 

represented by 51 k . However, by looking at the EMD in Fig. 5, it is evident that 

the modes that provide the clearest extraction of transient effects are 2c , 3c , and 

4c . Thus, a different and maybe more physically consistent choice is represented 

by 41 k .  

In order to evaluate the effect of the CMF computation on fault detection 

performances, three possible solutions are compared, based on the aforementioned 

choices for the parameter 1k . The resulting monitoring tools are called respectively 

EMD-PCA 1 ( 61 k ), EMD-PCA 2 ( 51 k ) and EMD-PCA 3 ( 41 k ). 

The pattern of 
1s

c , 
2sc  and 3sc  with 41 k  for the EMD shown in Fig. 5, is 

reported in Fig. 8, together with the indication of the different steps of the pumping 

cycle. 

The pattern of 
2sc in Fig. 8 clearly captures the transients corresponding to the 

transitions between different plunger steps. In particular, roman numbers I, II, and 

III are used to indicate the transients corresponding to the end of active strokes. 

Transient III is split at the beginning and at the end of the time window, due to the 

triggering method. Letters a, b, and c are used to indicate transients corresponding 

to the end of the suction steps. The pattern of 
2sc  provides a clear representation of 

the equal duration of the pumping steps of different plungers.  
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Fig. 8 – Pattern of 
1s

c , 
2sc and 

3sc  with 41 k  computed under normal working conditions 

(top) and indication of the corresponding displacements steps of phased plungers (bottom) 

 

Fig. 9 shows a waterfall plot of the CMF 
2sc  with 41 k  used in EMD-PCA 3, for 

both the reference and the faulty signals. In each plot, a set of 10 signals under 

normal working conditions is shown, followed by sets of the same number of 

signals acquired under different severity levels in each fault scenario. The waterfall 

plot clearly shows the modification of transients location caused by Fault A (at least 

when a large crack is present) and by Fault D (in this case the effect involves only 

the transients a, b, and c). A transient displacement is visible also in Fault C 

scenario, when a severely worn seat is installed. Thus, the EMD is expected to 

extract fault features that are normally hidden by the natural variability of the 

signals, without concentrating only on low frequency and high amplitude ripples. 
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Fig. 9 – Waterfall plot of the CMF 
2sc  with 41 k  in presence of a) Fault A, b) Fault B, c) Fault C, and d) Fault 

Legend: BLUE: reference condition; RED: small crack (Fault A and B), or low wear (Fault C), or broken orifice 1 (Fault D); GREEN: medium crack (Fault A 
and B), or medium wear (Fault C), or broken orifice 2 (Fault D); BLACK: severe crack (Fault A), or sever wear (Fault C), or broken orifice 3 (Fault D).
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6.2 Performance comparison 

The EMD-PCA approach was compared with different alternative methods. The 

goal is to evaluate the possible advantages of the proposed approach over 

conventional methods commonly used in industry, on the one hand, and with 

respect to PCA-based methods proposed in literature, on the other hand.  

In the frame of industrial approaches, an index-based approach and a Fourier-based 

approach were considered. The index-based approach consists of computing time-

domain synthetic indexes from the pressure signals. Here the following commonly 

used indexes are computed: signal standard deviation, skewness, kurtosis, peak-to-

peak amplitude and crest factor [17]. The multivariate index vector is monitored by 

means of a basic 2T  control chart [56]. The Fourier-based method consists of 

monitoring frequency-domain features: a Fourier-basis expansion is used to 

estimate the coefficients of relevant harmonics and those coefficients represent the 

multivariate vector of features to be monitored over time (e.g., see [15]). A basic 

2T  control chart is used to monitor the multivariate vector of Fourier coefficients, 

and a Q  control chart is used to monitor the Fourier model residuals. The choice of 

harmonic components to be included into the model is driven by the power 

spectrum analysis, possibly supported by goodness-of-fit criteria or other model 

selection criteria [57]. In this case, the first six harmonic components are included 

into the model (see Section 2). 

In the frame of PCA-based competitor approaches, two methods are considered: the 

basic PCA-based method proposed by Colosimo and Pacella [16], and a multi-scale 

PCA approach, which couples the wavelet analysis with the PCA. Different authors 

proposed different methods to couple the wavelet transform with the PCA (e.g., see 

[59] [60] [61]). In this study, we consider a common approach, analogous to the 

one described in [61], which consists of applying the PCA-based control charts to 

the vector of wavelet coefficients. The wavelet transform based on a 4th order 

Daubechies mother wavelet is applied to each pressure signal, with a number of 

decomposition levels selected by using the entropy criterion [62], and the basic 

PCA approach is applied to the wavelet coefficient vector. No preliminary 

coefficient selection via thresholding rules is applied. For all the PCA-based 

methods, the Wold’s techniques is used for PCs selection. 
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All the methods here considered are applied to the signal time windows resulting 

from the synchronous re-sampling procedure. 

The false positive rate performances of the EMD-PCA approach, compared with 

the Index-based method, the Fourier-based method, the basic PCA-based method 

and the Wavelet-PCA-based method (here denoted by WPCA), are reported in 

Table 1, when only signals under normal working condition are monitored.  

A type I error value 0027.0'  is used for all the methods and different sizes of 

step I dataset are evaluated. The rates reported in Table 1 are based on real data. 

They refer to the 3 hours-long uninterrupted acquisition, by using the first M  

pumping cycles as training set. 

 

Table 1 – False positive percentage for the proposed method (EMD-PCA) and the competitor ones 

Approach 
False positive % 

50M   100M   150M   
Index-based 1.58 2.10 2.44 

Fourier-based 1.49 0.71 0.59 
PCA 1.49 0.71 0.29 

WPCA 1.81 1.07 0.98 
EMD-PCA 1 3.77 3.33 3.32 
EMD-PCA 2 3.21 1.62 1.51 
EMD-PCA 3 0.88 0.81 0.78 

 

The false alarm rate seems to decrease when a larger number of pumping cycles is 

included into the training dataset, with the only exception of the Index-based 

approach. The approach that provides the largest percentage of false alarms is the 

EMD-PCA 1, i.e. the one based on a bad choice of CMF separation.  

Such a high percentage may be caused by the possible occurrence of mode mixing 

effect. A false alarm rate lower than 1% is provided by the Fourier-based, the PCA-

based, the WPCA-based and the EMD-PCA 3 approach, when 150M  is used. 

A rigorous comparison of actual fault detection performances should be carried out 

by setting the false alarm rate of all the methods to an equal level. This may be quite 

troublesome when dealing only with real data and hence such a correction is not 

applied in the present study. This is expected to introduce only a very limited 

distortion in the comparative analysis, since the false alarm rates are quite 

comparable. Furthermore, the methods with the highest false alarm rate, i.e. the 

Index-based one and the EMD-PCA 1, are also the ones with the lowest fault 

detection performances.  
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The results in terms of actual fault detection capability are reported in Table 2. Here 

the rates correspond to proper alarm signaled when the fault is present. In this case, 

the complete pumping cycles acquired during the 6 runs of the cutting process under 

normal working condition have been used ( 131M  ).  

 

Table 2 – Fault detection percentage for the proposed approach (EMD-PCA) and the competitor 

ones 

  Fault Detection % 

Fault  Fault severity 

Approach 

Index 
based 

Fourier
based 

PCA WPCA 
EMD-
PCA1 

EMD-
PCA2 

EMD-
PCA3 

A 

Severe crack 89.3 100 100 100 100 100 100 

Medium crack 67.9 100 100 100 100 100 100 

Small crack 20.0 100 100 96.0 100 100 100 

B 
Medium crack 25.9 85.2 100 100 88.9 100 100 

Small crack 4.2 95.8 91.7 100 79.3 95.8 96.3 

C 

Severe wear 8.3 100 100 100 91.7 100 100 

Medium wear 19.2 61.5 92.3 96.2 65.4 100 100 

Low wear 0.0 7.7 57.7 4.2 26.9 100 100 

D 

Broken 1 97.1 41.2 47.1 100 82.4 100 100 

Broken 2 5.7 97.1 97.1 100 85.7 100 100 

Broken 3 39.8 88.6 100 100 32.3 100 100 

Tot 39.8 81.3 91.6 91.7 77.3 99.2 99.7 

 

Table 2 shows that the approach based on time-domain synthetic indexes gives a 

very poor detection capability. The Fourier-based approach performs better and it 

allows detecting Fault A at 100% rate. However, the global detection rate is about 

81%. The basic PCA-based and the WPCA-based methods provide similar results, 

with a global detection rate of 91.6 - 91.7%. However, the PCA-based approach 

yields quite low detection percentages in case of a low wear level in Fault C 

scenario and for broken orifice 1, whereas the WPCA-based approach yields a very 

low detection rate for the low wear level in Fault C scenario. 

The highest performances are achieved with the EMD-PCA 2 and EMD-PCA 3 

approaches, i.e., when a proper choice of CMF separation is adopted. In particular, 

both the EMD-PCA approaches provide a 100% detection rate for Fault A, Fault C 

and Fault D, with a slightly missed detection percentage only for the small crack of 

the HP discharge check valve. However, remember that the EMD-PCA 2 also 

provides a slightly higher percentage of false alarms than the EMD-PCA 3 and the 

traditional PCA-based approach. 
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Table 3 – Fault detection performances for each CMF when the proposed approach (EMD-PCA) is 

applied, with a) 61 k ), b) 51 k , and c) 41 k  

 a) Fault Detection % with EMD-PCA 1 

Fault  Fault severity 
CMF 

1s
c  

2sc  
3sc  

A 

Severe crack 100 3.6 100 

Medium crack 14.3 0.0 100 

Small crack 4.0 0.0 100 

B 
Medium crack 0.0 25.0 81.5 

Small crack 37.5 11.1 50.0 

C 

Severe wear 0.0 0.0 91.7 

Medium wear 42.3 3.9 50.0 

Low wear 7.7 3.9 23.1 

D 

Broken 1 82,3 5.9 29.4 

Broken 2 82.9 0.0 77.1 

Broken 3 22.6 0.0 16.1 

 b) Fault Detection % with EMD-PCA 2 

Fault  Fault severity 
CMF 

1s
c  

2sc  
3sc  

A 

Severe crack 100 100 100 

Medium crack 14.3 42.9 100 

Small crack 4.0 16.0 100 

B 
Medium crack 0.0 22.2 100 

Small crack 37.5 16.7 95.6 

C 

Severe wear 0.0 8.3 100 

Medium wear 42.3 11.5 100 

Low wear 7.7 3.9 100 

D 

Broken 1 82,3 5.9 94.1 

Broken 2 82.9 42.9 100 

Broken 3 22.6 64.5 100 

 c) Fault Detection % with EMD-PCA 3 

Fault  Fault severity 
CMF 

1s
c  

2sc  
3sc  

A 

Severe crack 100 100 100 

Medium crack 14.3 100 100 

Small crack 4.0 52.0 100 

B 
Medium crack 0.0 81.5 100 

Small crack 37.5 66.7 96.3 

C 

Severe wear 0.0 88.5 100 

Medium wear 42.3 88.5 100 

Low wear 7.7 20.8 100 

D 

Broken 1 82,3 100 100 

Broken 2 82.9 100 100 

Broken 3 22.6 100 100 

 

 

The lower performances provided by the EMD-PCA 1 approach are due to the bad 

choice of the CFM separation: this demonstrates the importance of a reliable IMF 

separation criterion. 
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The detail of fault detection performances for each CMF can be evaluated by 

looking at Table 3. Table 3 a), b) and c) report, respectively, the fault detection 

percentages achieved with approaches EMD-PCA 1, EMD-PCA 2 and EMD-PCA 

3 for each computed CMF. When EMD-PCA 1 is applied, the fault detection 

capability of the CMF 
1s

c  is quite low, and also the fault detection capability of the 

CMF 
3s

c  is strongly reduced in case of Fault D. 

By using a better definition of CMFs, i.e. in case of EMD-PCA 2 and EMD-PCA 

3, the detection capability of both the CMF 
2sc  and the CMF 

3s
c  is considerably 

improved. In particular the highest contribution of the CMF 
2sc  is achieved when 

only the IMFs 2c , 3c , and 4c  are combined together (EMD-PCA 3). 

Table 3 shows that a large crack of the cylinder and a broken orifice have a quite 

evident effect also on the first IMF, i.e. the one which captures most of the signal 

noise.  

 

7 CONCLUSIONS 

The paper presents a novel approach for health condition monitoring of both the 

UHP pump and the cutting head components based on the water pressure signal.  

In WJ/AWJ applications, different types of fault have different effects on the water 

pressure signal pattern, as they involve the different steps of the pumping cycle. 

However, the natural variability of the pressure ripples under normal working 

conditions may reduce the capability of extracting the relevant fault features. The 

use of simple time-domain synthetic indices provide very poor fault detection 

performances. A monitoring approach based on the coefficients of the main 

harmonic components led to quite better results in the tests here reported, but it 

filters out intermittent transient patterns, reducing the amount of relevant 

information. 

In order to improve the fault detection performances, we propose the use of EMD 

as a non-parametric tool for multi-scale decomposition of the pressure signal. The 

goal consists of isolating the high frequency transient patterns, corresponding to 

sudden flow rate modifications caused by the displacement steps of phased 

plungers, from the low frequency pressure ripples. The EMD allows decomposing 
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the signal by means of a completely data-driven and adaptive algorithm, which 

requires neither any integral transform nor the definition of any basis function.  

The separation of low frequency ripples from intermittent patterns allows capturing 

pressure signal features at different scales, leading to a better characterization of the 

effects of different kinds of fault. By using the CMF method, it is possible to cope 

with the mode mixing effect that may occur during the sifting process, and, at the 

same time, to synthetize the relevant information content into a small number of 

modes. The proposed health condition monitoring approach involves a preliminary 

signal processing step based on the CMFs extraction, followed by the use of PCA-

based control charts. The resulting method is a multi-scale extension of previously 

proposed PCA-based control charts for cyclically repeating waveform signals. The 

non-parametric and adaptive nature of the EMD technique, together with its fine 

time-frequency resolution, gives interesting advantages over more commonly used 

multi-scale methods. The comparative study shows that the EMD-PCA approach 

may produce a fault detection improvement with respect to basic PCA-based and 

Wavelet-PCA based approaches. Nevertheless, an exhaustive comparative analysis 

including different implementations of time-frequency techniques requires further 

research efforts, possibly supported by extended Monte Carlo simulations. 

The main limitation of the EMD consists of the non-orthogonality of the empirical 

basis, which results in the possible occurrence of the mode mixing effect. The use 

of CMFs allows coping with such an effect, but the result actually depends on the 

adopted strategy to separate the IMFs into a reduced number of CMFs. The study 

highlights the importance of a reliable IMF separation criterion. Different indexes 

and empirical rules were proposed in literature for such a task, but a decision 

making process that involves the experience of the operator and the visual analysis 

of the signal decomposition is still expected to strongly improve the results. 

Further research streams may be aimed at developing and testing IMF selection 

and/or separation criteria to enhance the actual industrial implementability of EMD-

based health monitoring tools.  
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Nomenclature 

a   Parameter used in 2T
UCL  computation 

c   Intrinsic Mode Function (IMF) 

sc   Combined Mode Function (CMF) 

sĉ   CMF reconstruction based on reference PCA model  

CMF  Combined mode function 

M:1CS   Data matrix of CMFs computed from EMD applied on X  

EEMD  Ensemble EMD 

EMD  Empirical mode decomposition 

),( F  )%1(  percentile of the F  distribution 

hg,   Parameters used for QUCL  computation 

1h   Difference between signal and envelope mean at sifting step 1 

HP  High pressure 

IMF  Intrinsic mode function 

K   Number of CMFs 

L   Diagonal eigenvalue matrix 

M   Number of pumping cycles acquired in step I 

m   Number of retained PCs 

1m   Envelope mean computed at first sifting process step 1 

n   Maximum number of IMFs  

N   Number of phased plungers 

OI  Orthogonality index 

P   Number of data points within each pumping cycle time window 

PCA  Principal component analysis 

PRESS  Prediction Error Sum of Squares 

Q   Squared prediction error statistics 

R   Wold’s statistics for the selection of relevant PCs 

M:1R   Correlation matrix of M:1CS  

nr   EMD residual at the end of sifting process 

2T   Hotelling’s statistics 

U   Eigenvector matrix 
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2T
UCL   Control limit for the 

2T  control chart 

QUCL   Control limit for the Q  control chart 

UHP  Ultra high pressure 

x   Signal associated to each pumping cycle time window 

X   Data matrix used in reference model building step (step I) 

WJ/AWJ Waterjet/abrasive waterjet 

z   Principal Component (PC) 

',   Type I error 

   Eigenvalue 

)(2    )%1(  percentile of the 2  distribution 

Subscripts 

i   IMF index ( ni ,...,1 ) 

j   Pumping cycle index ( ,...,2,1j ) 

k   CMF index ( Kk ,...,1 ) 

l   Principal Component index ( kml ,...,1 ) 

p   Data point index ( Pp ,...,1 ) 
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