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We reanalyze previous experimental measurements of solid volume fraction, mean velocity, and velocity
fluctuations in collisional suspensions of plastic cylinders and water flowing over inclined, erodible beds.
We show that the particle pressure scales with the granular temperature, as predicted by kinetic theory of
granular gases. The assumption that the particle shear stress is also well predicted by kinetic theory permits
us to determine the fluid shear stress and the effective fluid viscosity from the experiments. The fluid
viscosity can be decomposed into turbulent and granularlike components: the turbulent viscosity can be
modeled using a mixing length, which is a decreasing function of the local volume fraction and does not
depend upon the distance from the bed; the granularlike viscosity, associated with the transfer of
momentum due to the conjugate motion of the fluid mass added to the particles, can be modeled by
replacing the particle density with the density of the added fluid mass in the viscosity of kinetic theory.
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Modeling the transport of many solid particles in a
turbulent shearing flow is crucial to a large number of civil
and industrial applications. Two-phase continuous math-
ematical models are feasible [1], but they require, among
other things, the determination of closures for both the
particle and the fluid stresses. In this Letter, we restrict our
analysis to collisional suspensions, in which the particle-
immersed weight is supported by collisions and the particle
inertia is dominant [2–4].
There is a general belief that the turbulence of the

interstitial fluid is suppressed, at least at large solid volume
fractions, when the particle inertia is important [4,5].
However, a quantification of this effect is still lacking
and turbulence models in suspensions largely rely on
expressions valid in absence of particles. For instance, in
mixing length approaches applied to mixtures flowing
over rigid or erodible beds, the origin of turbulence is
often taken to be near the bed itself—i.e., nonlocal
turbulence [2,6,7].
Kinetic theory of granular gases [8–10] provides con-

stitutive relations for the particle stresses, which have been
tested against discrete numerical simulations in the absence
of interstitial fluid up to large solid volume fractions, near
the jamming transition [11–13]. Tests of kinetic theory
against physical experiments, however, are scarce, and even
more so when the presence of the interstitial fluid cannot be
neglected. This has to do with the inherent difficulties in
obtaining reliable measurements of solid volume fraction
and velocity and distinguishing between the mean compo-
nent and fluctuations, with the latter playing a key role in
the expressions for the stresses of kinetic theory.
Recently, detailed experimental measurements of solid

volume fraction, particle mean velocity, and particle

velocity fluctuations have been performed [14] on steady,
fully developed, inclined, collisional flows of monosized
plastic cylinders (mass density ρp ¼ 1510 kg=m3, diameter
of the equivalent sphere d ¼ 3.35 mm, and height-
to-diameter ratio 0.8) and water (mass density ρf ¼
1000 kg=m3 and molecular viscosity ηf ¼ 10−3 Pa s) over
erodible beds at an angle ϕ with respect to the horizontal
[Fig. 1(a)]. Examples of the measured profiles along the
direction y perpendicular to the bed of solid volume
fraction ν, mean velocity u in the direction x parallel to
the bed, and square root of the granular temperature T—
one third of the mean square of the particle velocity
fluctuations—are reported in Fig. 1(b).
The particle momentum balance in the direction

perpendicular to the bed reads [2,4]

p0 ¼ −ðρp − ρfÞνg cosϕ; ð1Þ

where p is the particle pressure, g is the gravitation
acceleration, and the prime indicates a derivative with
respect to y. Here, we have assumed for simplicity that
the particle normal stresses are isotropic [15]. We can then
obtain the distribution of the particle pressure from a
numerical integration of the profile of solid volume fraction
[Fig. 1(c)]. With this and the measured profile of granular
temperature, we can test the equation of state of kinetic
theory [9],

p
ρpT

¼ 4ν2g0

�
1

4νg0
þ 1þ e

2

�
; ð2Þ

where g0 is the radial distribution function at contact and e
is the effective coefficient of restitution [16], which takes
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into account the role of friction in collisions. Here, for
simplicity, we employ the radial distribution function at
contact suggested by Torquato [17], which is singular at the
random close packing for spheres (ν ¼ 0.64). We take e to
be 0.6, as appropriate for plastic spheres having a normal
coefficient of restitution of about 0.9 and interparticle
friction of about 0.1 [18]. Using different singularities in
the radial distribution function at contact [12] or different
coefficients of restitution has very little effect on the
equation of state of Eq. (2), at least for ν less than 0.5.
Figure 2 shows the comparisons between the measured
equation of state and Eq. (2). Here, and in what follows, the
measurements have been obtained from 77 runs charac-
terized by different combinations of angles of inclination,
particle flow rates, and fluid flow rates, and with no
evidence of flow instabilities. The collapse of the data
suggests that the particle pressure scales with the granular
temperature, so kinetic theory provides the correct frame-
work to describe the particle stresses in the presence of an
interstitial fluid also. The agreement of Eq. (2) with the
measurements is good, considering that that expression is

in principle valid for spheres, not cylinders. Equation (2)
underpredicts the measurements at solid volume fractions
larger than 0.5, where, however, the measurements are
scarce and less reliable.
We can also obtain the distribution of the total shear

stress of the mixture [Fig. 1(c)], i.e., the sum of the particle
shear stress s and the liquid shear stress S, by numerically
integrating the mixture momentum balance in the flow
direction [2,4],

ðsþ SÞ0 ¼ −½ρpνþ ρfð1 − νÞ�g sinϕ: ð3Þ

Given that the equation of state of kinetic theory agrees
fairly well with themeasurements, we assume that the particle
shear stress can also be predicted by kinetic theory [9] as

s ¼ ρp
8Jν2g0
5π1=2

dT1=2u0; ð4Þ

whereJ is a known functionof the coefficient of restitutionand
the solid volume fraction [19].Theprefactor to the shear rateu0
in Eq. (4) is the granular viscosity, i.e., the transport coefficient
associated with the transfer of momentum due to the particle
velocity fluctuations. From the experimental measurements,
we can then evaluate the particle shear stress and subtract it
from the total shear stress of the mixture to obtain the fluid
shear stress S; with this, we evaluate the effective fluid
viscosity η ¼ S=u0, wherewe have assumed that the derivative
with respect to y of the mean x velocity of the fluid is equal
to that of the particles. Previous numerical solutions of
particle-liquid mixtures shows that this is a reasonable
assumption [2,7,20].
We now assume that the effective fluid viscosity is the sum

of two contributions [21]: (i) a turbulent hydrodynamic
contribution ηturb, which in unidirectional shear flows is
oftenmodeled using amixing length approach [2,7,23,24] as
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FIG. 2. Measured (circles) equation of state for the particles.
The solid line represents Eq. (2).
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FIG. 1. (a) Typical side view of the experiments with the frame of reference. (b) Profiles of solid volume fraction (circles), mean x
velocity (squares), and square root of the granular temperature (triangles) in one experiment. Because of poor statistics, the
measurements of solid volume fraction near the bed are not reliable. In the present Letter, the analysis is therefore limited to the region
between the free surface and the first location at which the measured solid volume fraction exceeds the value at random close packing for
spheres (y is approximately between 140 and 200 mm in this example). (c) Profiles of particle pressure (circles) and total shear stress of
the mixture (squares) numerically obtained by integrating the profiles of Fig. 1(b).
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ηturb ¼ ρfð1 − νÞl2mu0; ð5Þ

where lm is themixing length; (ii) a granularlike contribution
ηgran, which is due to the fact that, when particles fluctuate, a
certain mass of fluid is stuck with them and is subject to
conjugate motion—i.e., the added mass effect [25–27].
When particles collide, pressure impulses are generated in
the interstitial fluid, causing fluid accelerations; this process
very much resembles the exchange of particle momentum in
collisions. We therefore assume that this granularlike vis-
cosity has the same expression of the granular viscosity of
Eq. (4), with the particle mass density substituted by the
density of the added fluidmass associated with themotion of
the particles. For the latter, we adopt the analytical expression
obtained using the potential flow approximation [27,28],
so that

ηgran ¼ ρf
1þ 2ν

2ð1 − νÞ
8Jν2g0
5π1=2

dT1=2: ð6Þ

When scaled using the product of the fluid density, the
particle diameter, and the square root of the granular
temperature, the measured effective fluid viscosity agrees
with Eq. (6) for solid volume fractions greater than 0.3
(Fig. 3), where the granularlike viscosity dominates. The
deviation from Eq. (6) at solid volume fractions less than
0.3 indicates that there the turbulent viscosity cannot be
neglected.
An expression for the mixing length in the turbulent

contribution to the effective fluid viscosity can be obtained
from Eq. (5) using the measured solid volume fraction
and shear rate, with ηturb ¼ η − ηgran and the granularlike
viscosity evaluated from Eq. (6). The obtained mixing
length is always less than one particle diameter, and
decreases with the increasing solid volume fraction
(Fig. 4). Best fitting with the experimental points gives

lm
d
¼ 3ð0.64 − νÞ3: ð7Þ

This result is consistent with the idea that, in collisional
suspensions, turbulence originates locally near the surface
of the particles, and the presence of the particles provides
an upper limit to the size of the turbulent eddies of the order
of the mean interparticle distance. It is worth mentioning
that the mean interparticle distance is also 2 orders of
magnitude larger than the Kolmogorov scale. When the
strength of the shearing fluid increases, we expect a
transition to a turbulent suspension and also a correspond-
ing development of large-scale turbulence in presence of
the particles, as in the experiments of Revil-Baudard
et al. [24].
There are two limiting cases that apply to the steady and

fully developed flow considered here, if we neglect the
conduction of energy associated with the particle velocity
fluctuations, which is important only in regions a few
diameters thick that are close to rigid boundaries [29]. In
the granular limit, the production of fluctuation energy
associated with the work of the particle shear stress
balances exactly the energy dissipated in collisions due
to the particle inelasticity. With the constitutive relations of
kinetic theory [9], this implies a simple algebraic relation
between the granular temperature and the square of the
shear rate [30],

T
d2u02

¼ 2J
15ð1 − e2Þ : ð8Þ

In the turbulent limit, the energy production associated
with the influence of the turbulent eddies on the particle
fluctuations balances the energy dissipation associated with
the drag exerted on the particles by the fluid [20]. This
gives T ∝ S=½ρfð1 − νÞ� [31,32], where we have taken
S=½ρfð1 − νÞ� to be a measure of the intensity of the fluid
turbulent fluctuations. Introducing the fluid effective vis-
cosity, and taking η ≈ ηturb, gives, with Eq. (5),

T
d2u02

¼ 3.5

�
lm
d

�
2

; ð9Þ
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FIG. 3. Measured (circles) effective fluid viscosity scaled with
the square root of the granular temperature. The solid line is the
scaled granularlike viscosity of Eq. (6).
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FIG. 4. Dimensionless mixing length as obtained from the
experimental measurements (circles). The solid line corresponds
to Eq. (7).
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where the numerical factor 3.5 permits a good fitting with
the data. Equation (9), lumped in with Eq. (5), provides a
turbulent viscosity proportional to fluid density, the square
root of granular temperature, and particle diameter, con-
firming the analysis of Chen and Louge [33] for numerical
simulations [31]. The numerical value of the fluid turbulent
shear stress [31] would give a mixing length of about 0.1d
at ν ¼ 0.3, in excellent agreement with Fig. 4.
The experimental measurements agree with Eq. (8) at

solid volume fractions larger than 0.3 and with Eq. (9) at
solid volume fractions less than 0.2 (Fig. 5). In between, the
above-mentioned four mechanisms responsible for produc-
ing and dissipating the particle fluctuation energy are
equally important.
Expressing the effective fluid viscosity as the sum of

the turbulent and the granularlike contributions of Eqs. (5)
and (6) gives

η

ρfd2u0
¼ ð1 − νÞ

�
lm
d

�
2

þ 1þ 2ν

2ð1 − νÞ
8Jν2g0
5π1=2

�
T

d2u02

�
1=2

:

ð10Þ

Figure 6 shows the comparison between the data obtained
from the measurements and Eq. (10), when the scaled
granular temperature is given by either Eq. (8) or Eq. (9).
While the turbulent contribution to the effective fluid
viscosity decreases with the solid volume fraction,
the granularlike contribution increases: this results in a
minimum of the effective fluid viscosity at a solid
volume fraction of about 0.3. The presence of a minimum
in the effective viscosity was also observed in the case of
turbulent-collisional suspensions by Revil-Baudard
et al. [24].
In this Letter, we have suggested that the effective fluid

viscosity in collisional suspensions has two components:
one associated with the turbulence generated near the
surface of the particles and one associated with the transfer
of momentum of the fluid mass in conjugate motion with

the fluctuating particles. We have modeled the first con-
tribution using a mixing length approach, and shown that
the mixing length is local, as it does not scale with distances
from boundaries. The mixing length is less than one
diameter and decreases with increase in the solid volume
fraction. We have introduced a granularlike viscosity to
model the second contribution to the effective fluid
viscosity, by replacing the particle mass density with the
density of the added mass of the fluid in the expression of
the granular viscosity of the particles of kinetic theory.
Finally, we have shown how the granular temperature
scales in the turbulent and granular limits of the effective
fluid viscosity.
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