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Text S1. Characterization of the bead pack and the sandstone sample and image 
segmentation 

 

The bead pack image is based on existing data for the coordinates of the centers of 

equally-sized spherical grains in a random close packing, as originally measured by 

Finney [1970]. The segmentation into the pore and solid voxels has been performed by 

Prodanović and Bryant [2006]. The dry-scan image of Bentheimer sandstone was 

acquired by an Xradia Versa micro-CT scanner (provided by iRock Technologies) on a 

cylindrical core of 5 mm diameter and 25 mm length. The image was segmented into 

pore and solid voxels using a seeded watershed algorithm based on the three-dimensional 

gradient magnitude and grey-scale value of each voxel. All image processing was 

performed using the Avizo Fire 7.0 program (VSG; www.vsg3d.com). 

Characteristic attributes of the imaged geometry of the two samples are listed in Table 

S1. The bead pack image size is 300 × 300 × 300 voxels, voxel size ∆̂  being equal to 2 

µm yielding a total size of 0.6 mm × 0.6 mm × 0.6 mm. The Bentheimer image size is 

300 × 300 × 300 voxels; here, ∆̂ = 3µm, resulting in a total size of 0.9 mm × 0.9 mm × 

0.9 mm. Note that both images are characterized by a value of ,
ˆ

im iL  which is constant 

along each direction i = x, y, and z. Porosity φ is equal to 35.9% and 21.5%, respectively 

for the bead pack and the Bentheimer sandstone image.  

The quantity ˆ
Gλ  represents the range of the variogram of the indicator function ( )G x  (

( ) 0G =x , 1 respectively for x belonging to the solid grains and fluid phase) estimated 

from pore-scale imaging. Values of ˆ
Gλ  listed in Table S1 are estimated by considering an 

exponential model to interpret the variogram of ( )G x  reported by Bijeljic et al. [2013a]. 

We estimate ˆ
Gλ  = 48 µm for the bead pack sample. This value is close to the average 

pore size ( ˆˆ / (1 ) 56L dφ φ= − =  µm) which can be derived analytically and which we 

employ to characterize the length scale in the bead pack sample (see Section 2.2). We 

find ˆ
Gλ  = 121 µm for the sandstone sample. In the absence of analytical formulations of 

the kind associated with the bead pack to determine the characteristic pore size in a 

consolidated rock, we assume ˆˆ
GL λ=  for our analysis. Note that our estimates ˆ

Gλ  are 

significantly smaller than the total image size ˆ
imL  for both considered porous media. This 

result suggests that the sample size is appropriate to represent geostatistically the 

geometrical attributes of the two media. 

Text S2. Pore-scale flow simulation 

To compute flow field on the bead pack and sandstone image voxels we solve the mass 

conservation and Navier-Stokes equations for incompressible flow using a standard 

finite-volume method for discretization that is implemented in OpenFoam 

ˆ 0
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∇ ⋅ =u  (S1) 
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where ˆ
PS

u  is the velocity vector, µ̂  is the viscosity of water (0.001 Pa s), ρ̂  is density of 

water (1000 kg/m
3
) and p is pressure. Pressure and velocity are solved iteratively based 

on the pressure implicit with splitting of operators (PISO) algorithm of Issa [1986]. No 

slip condition is imposed on solid boundaries. This method has been previously used in 

pore-scale simulation of flow, transport and reaction on voxelized images [Raeini et al.; 

2012; Bijeljic et al., 2013a,b; Siena et al., 2014; Muljadi et al., 2015; Pereira-Nunes et 

al., 2015; Alhashmi et al., 2015]. 

Meshing is performed in Cartesian coordinates where each pore voxel represents a grid 

block. The mesh resolution coincides with the voxel size. The convergence criterion was 

defined to be fulfilled when the maximum change (per iteration) in velocities at the voxel 

centers was less than 10
-6

 of the average velocity of all image voxels [Muljadi et al., 

2015]. 

The code has been tested for grid convergence [Muljadi et al., 2015] for a bead pack and 

a carbonate image (Estaillades limestone). For the bead pack image used in this work 

(300 × 300 × 300 image with 2µm voxel size) we checked grid independence of the 

results by subdividing each voxel into eight smaller voxels to obtain the new image 

consisting of 600 × 600 × 600 voxels, where new voxel size is 1µm. The Darcy 

permeabilities computed in the fine grids for both bead pack and limestone images 

compared well with those computed in the original coarser grids, with a difference of less 

than 5%. 

In this work we solve equations (S1)-(S2) by imposing a pressure gradient along x. This 

boundary condition is imposed to set a fixed value of the average velocity Û  along the x-

direction. Average pore velocities, Û , in the pore-scale simulation are the same as in the 

experiment by Scheven et al. [2005], i.e., ˆ 0.91U =  mm/s for bead pack and ˆ 1.03U =  
mm/s for Bentheimer sandstone (see also Section 2.2). 

As described in Bijeljic et al. [2013a], the average flow speed along the x-direction is 

calculated as ˆ ˆ /U q φ=  , where ( ), ,
ˆ ˆ ˆˆ /

im z im y
q Q L L=  is the x-component of the Darcy 

velocity, and Q̂  (m
3
 /s) is the total volumetric flux.  

Table S1 lists the results of the characterization of the flow conditions we investigate. We 

compute the Reynolds number 
ˆ ˆˆ

ˆ

UL
Re

ρ

µ
=  (S3) 

to verify the nature of the flow regime in the two images. Replacing in (S3) the length 

scales introduced in Section 2.2 ( L̂ = 56 µm for bead pack and L̂ = 121 µm for 

sandstone) we obtain Re = 0.051 and Re = 0.125 for bead pack and Bentheimer 

sandstone, respectively. These values are below the threshold Reynolds number Rethr 

characterizing the onset of non-Darcy flow in the bead pack (Rethr = 1.562) and 

Bentheimer sandstone (Rethr = 0.170) obtained on exactly the same images as studied in 

our manuscript following the methodology introduced by Muljadi et al. [2015]. This 

result implies the absence of significant inertial effects. We also estimate the range ˆ
velλ  of 

the variogram of the modulus of the computed pore-scale velocity. Values of ˆ
velλ  listed in 

Table S1 are obtained by relying on an exponential model to interpret the variogram 
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reported by Bijeljic et al. [2013a]. We observe velocity values to become uncorrelated at 

separation distances (or lags) which are between 10 and 20% of the total sample size. 

Table S1.  

 

 Geometry Flow 

 ∆̂  

[µm] 

ˆ
imL  

[µm] 
φ  

ˆ
Gλ  

[µm] 

Û  

[mm/s] 
Re Rethr 

ˆ
velλ  

[µm] 

Bead pack 2 600 0.359 48 0.91 0.051 1.562 103 

Sandstone 3 900 0.215 121 1.03 0.125 0.170 185 

Table S1. Characterization of pore-scale geometry and flow in the two considered pore 

spaces. 
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Text S3. Analytical derivation of equations (9)-(11) 

We start from the pore-scale system (3)-(4) and the related boundary conditions (5). 

Equations (3)-(5) are expressed in terms of the local concentrations in the mobile (M) and 

immobile (I) regions of the elementary cell illustrated in Figure 1d-e. Our aim is to obtain 

an upscaled model written in term of the section-averaged concentrations: 

( )/2 /2 /2

/2 /2 /2

1 1
;

h h H

h H h
M Mdy I Idy Idy

h H h

+ −

− −
=     = +

−∫ ∫ ∫  (S4) 

To do so, we first average (3)-(4) along the transverse section of the system, to obtain the 

section-averaged equations (6)-(7). System (6)-(7) embeds local fluctuations/deviations 

of concentrations M M M= −�  and I I I= −� . Hence, it requires the formulation of a 

closure problem [e.g., Whitaker, 1999; Auriault and Adler, 1995]. In the following, we 

present the closure system which allows deriving the continuum-scale section-averaged 

system (10)-(13). We do so by relying on previous work by [e.g, Davit et al., 2010; Porta 

et al. 2013] who perform theoretical upscaling for a generic three-dimensional unit cell 

and propose a general formulation for the closure problem for the same type of 

application we consider. Here, we apply the definitions described by Porta et al. [2013] 

to the simplified elementary cell represented in Figure 2. 

We subtract the section-averaged equations (6)-(7) from the pore-scale system (3)-(4) to 

obtain: 
2

2

/2

1 2

y h

M M M M
u

t x Pe y Peh y
=

∂ ∂ ∂ ∂
+ = −  

∂ ∂ ∂ ∂

� � �

�  / 2y h<  (S5) 

( )

2

2

/2

1 2

1
y h

I I I

t Pe y Pe h y
=

∂ ∂ ∂
= +  

∂ ∂  − ∂

� � �

 / 2 1 / 2h y< <  (S6) 

Here, 
/2

/2

1 h

M
h

u u udy u U
h

+

−
= − = −∫�  (S7) 

is the deviation of velocity from the mean value in the mobile region. Our choice of 

dimensionless variables (see Section 2.2) renders 1
M

U = ; 1H = ; 1h0 < < . Note that 

system (S5)-(S6) relies on the same assumptions upon which the Taylor-Aris section-

averaged transport model in a plane crack is typically grounded [Wooding, 1960], i.e., we 

assume gradients along y to be much larger than those along x. A quasi steady solution of 

the problem can be formulated by dropping the time derivatives in (S5)-(S6). This 

condition is typically formulated considering the assumption 
2

2

1M M

t Pe y

∂ ∂
<<

∂ ∂

� �

 
2

2

1I I

t Pe y

∂ ∂
<<

∂ ∂

� �

 for 
QSt t>  (S7) 
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where 
QSt  is a threshold time. The time derivatives can be disregarded when 0QSt → . 

Taking into account the time variation of the closure variables implies that the resulting 

upscaled equation contains nonlocal (integrodifferential) terms [Moyne, 1997; Chastanet 

and Wood, 2008; Porta et al., 2013]. Here we aim at limiting model complexity and 

choose to drop the time derivatives in (S5)-(S6) to assume a quasi steady approximation 

of the system. Our results in Section 3 suggest that this is an acceptable assumption for 

the settings investigated in this study. The boundary conditions which are needed to solve 

system (S5)-(S6) stem from (5) and are expressed as: 

M I
M I c with c M I

y y

∂ ∂
=    ;     = − ∆        ∆ = −

∂ ∂

� �
� �  / 2y h=  (S8) 

0
I

y

∂
=

∂

�

 1 / 2y =  (S9) 

Equations (S5)-(S9) form a system of coupled equations, which are linear with respect to 

the unknowns M�  and I� . Upon relying on the superposition principle of linear operators 

[e.g., Whitaker, 1999; Davit et al., 2010] we express the solution of system (S5)-(S9) as: 

( ) ( )1 3

M
M b y b y c

x

∂
= + ∆

∂
�  (S10) 

( ) ( )2 4

M
I b y b y c

x

∂
= + ∆  

∂
�  (S11) 

Here bi (i = 1,...,4) are closure variables. Replacing (S10)-(S11) into (S5)-(S9) we obtain 

the following two systems of equations: 

( )

2

1 1 1

2

/2

2

2 2 2

2

/2

1 2
1 2

2

1 2

1 2
/

1

0

y h

y h

b b b
u y h

t Pe y Peh y

b b b
h y

t Pe y Pe h y

b b
b b y h

y y

b

y

=

=

∂ ∂ ∂
+ = −                       < / 2   

∂ ∂ ∂

∂ ∂ ∂
= +   2 < < 1/ 2  

∂ ∂ − ∂

∂ ∂
= ;  =                                     = / 2    

∂ ∂

∂
=                    

∂

�

1y













                                 = / 2   


 (S12) 
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( )

2

3 3 3

2

/2

2

4 4 4

2

/2

3 4
3 4

4

1 2

1 2
/ 1

1

0

y h

y h

b b b
y h

t Pe y Peh y

b b b
h y

t Pe y Pe h y

b b
b b y h

y y

b

y

=

=

∂ ∂ ∂
= −                        < / 2    

∂ ∂ ∂

∂ ∂ ∂
= +    2 < < / 2

∂ ∂ − ∂

∂ ∂
= −1; =                                 = / 2 

∂ ∂

∂
=                             

∂
1y








   





                         = / 2   


 (S13) 

Solving (S12)-(S13) requires all closure variables to have zero mean, i.e., 0ib =  (i = 1, 

..., 4). This ensures 0; 0M I=  =� �  for any pair ,
M

c
x

∂
 ∆

∂
. Systems (S12)-(S13) are not 

coupled. They are characterized by a very similar structure and can be readily solved for 

0 1h< < . The key difference between (S12) and (S13) is that the fluctuation of velocity 

u�  appears in the first of (S12), while the solution of (S13) does not depend on velocity. 

Therefore, the distribution of closure variables b1 and b2 along y is influenced by u�  and 

h, while b3 and b4 depend solely on h and can be solved analytically independent of the 

assumed velocity distribution. The analytical solution of (S13) is: 

2

3

1 6

2
b y

h h
= −  (S14) 

( )
( )2

4

6 12 2

2 1 1

y yh h
b

h h

−− −
= +

− −
 (S15) 

In this work we propose two possible choices to characterize the velocity deviation, u� , in 

the mobile region of the unit cell: (i) Poiseuille flow distribution (model 1, see Figure 2a), 

(ii) velocity distribution derived from the probability distribution of pore-scale simulated 

velocities (model 2, Figure 2b). The solution of system (S12) can be evaluated 

analytically only when u�  is a known function of y. Otherwise, a numerical solution is 

required. 

When Poiseuille flow is assumed in the mobile region (model 1) we set 
2

2

1
6

2

y
u

h
= −  �  (S16) 

Replacing (S16) in (S12) yields 
4 2 2 2 3

1 2

7

2 4 10 480 120

y y y h h h
b Pe

h

 
= − + − − + 

 
 (S17) 

( )
( )

( )

24 3 2

2

12 2

120 1 10 1

y y hh h h
b Pe

h h

 −− −
= +  − − 

 (S18) 
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In the case of model 2, we compute the closure variables b1 and b2 by numerical 

integration of (S13). We do so via a standard centered finite difference scheme. 

Substituting the closure expressions (S10)-(S11) into the section-averaged equations (6)-

(7) and considering ( )1 Ih γ− =  and 
M

h γ=  leads to 

2

1 3
1 3 2

/2 /2

1 2

M y h y h

M M M M b M b
ub ub c c

t x x x Pe x Pe y x yγ
= =

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
+ + + ∆ = +  +  ∆    ∂ ∂ ∂ ∂  ∂  ∂ ∂ ∂   

� �  (S19) 

2

2 4

2

/2 /2

1 2

I y h y h

I I b M b
c

t Pe x Pe y x yγ
= =

 ∂ ∂ ∂ ∂ ∂
= −  +  ∆   

 ∂ ∂ ∂ ∂ ∂ 
 (S20) 

Finally, a suitable rearrangement of the terms in (S19)-(S20) leads to the system (9)-(11), 

which is here reported for convenience: 
2

1 2 1 22

1 1
H H

M

M M M M M
d d c e e c

t x x x Pe x Pe xγ

∂ ∂ ∂ ∂ ∂ ∂   
+ + + ∆ = + + ∆    ∂ ∂ ∂ ∂  ∂ ∂   

 (S21) 

2

2

1 1
1 2

I

I I M
e e c

t Pe x Pe xγ

∂ ∂ ∂ 
= + + ∆ ∂ ∂ ∂ 

 (S22) 

/2 /2
2 4

1 1 2 3 1 2
/2 /2

/2 /2

1 1
2 2

h h

H H
h h

y h y h

b b
d b u dy d b u dy e e

h h y y− −
= =

∂ ∂
=         =       =         =  

∂ ∂∫ ∫� �  (S23) 

Table 1 lists the value of the coefficients (S23), which are employed to compute the 

results illustrated in Section 3. 

Finally, we compare the results given by model 2 for selected threshold values of Pethr, 

which is the quantity employed to demarcate mobile and immobile regions (see Section 

2). Figure S1 depicts a comparison of the longitudinal profiles (along x-direction) of 

section-averaged concentrations obtained when Pethr = 1, 10, 15, 30. Figure S2 depicts 

the influence of Pethr on the dilution index DI. Both figures reveal that for the sandstone 

sample the results are not particularly sensitive to Pethr when 1 < Pethr < 30. Otherwise, 

the results associated with the bead pack sample tend to become particularly sensitive to 

the value of Pethr, when Pethr > 10. We note that the average value of ( )ˆPe x  for the bead 

pack is 23.4, with a median value of about 20 and that Pethr = 15 already implies that 

advective effects are more than one order of magnitude stronger than diffusive effects. As 

such, considering values of Pethr > 15 is not entirely consistent with the key premises of 

our simple interpretive model. We observe that for both samples results are not sensitive 

to the selected value of Pethr for 1 10
thr

Pe≤ ≤ .  
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Table S2.  

 

 Model 1 Model 2 

 γM Pe dH1 dH2 e1 e2 dH1 dH2 e1 e2 

Bead pack 0.73 31.8 -0.04 0.14 -1.69 -12 -0.08 0.17 -1.85 -12 

Sandstone 0.75 75.2 -0.09 0.15 -4.23 -12 -0.55 0.25 -7.02 -12 

Table S2. Values of the parameters (S23) for the two porous samples as rendered by our 

two modeling choices. 
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Figure S1. Comparison of section-averaged concentrations rendered by pore-scale 

particle tracking and our model 2 for selected values of Pethr, for (a) the bead pack and 

(b) the sandstone samples at t̂  = 2 s. 

 
Figure S2. Time evolution of the dilution index obtained by pore-scale particle tracking 

and our model 2 for selected values of Pethr, for (a) the bead pack and (b) the sandstone 

samples. 
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