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Abstract We present a methodology to characterize a continuum-scale model of transport in porousmedia
on the basis of pore-scale distributions of velocities computed in three-dimensional pore-space images. The
methodology is tested against pore-scale simulations of flow and transport for a bead pack and a sandstone
sample. We employ a double-continuum approach to describe transport inmobile and immobile regions. Model
parameters are characterized through inputs resulting from the micron-scale reconstruction of the pore space
geometry and the related velocity field.We employ the outputs of pore-scale analysis to (i) quantify the proportion
of mobile and immobile fluid regions and (ii) assign the velocity distribution in an effective representation of
the medium internal structure. Our results (1) show that this simple conceptual model reproduces the spatial
profiles of solute concentration rendered by pore-scale simulation without resorting to model calibration and
(2) highlight the critical role of pore-scale velocities in the characterization of the model parameters.

1. Introduction

Recent advances in image processing and direct flow simulation enable us to characterize with high fidelity
the details of the pore-scale geometry and the velocity field within complex three-dimensional porous media
[e.g., Spanne et al., 1994; Bijeljic et al., 2013a, 2013b; Siena et al., 2014; Scheibe et al., 2015]. Results of computa-
tional analyses of pore-scale solute transport on imaged pore spaces have been validated against nuclear
magnetic resonance (NMR) experiments in terms of probability distributions of particle displacements [Bijeljic
et al., 2013a; Scheven et al., 2005]. These studies have opened up opportunities to quantitatively assess the
way this wealth of pore-scale information can be incorporated into continuum-scale models. This work expli-
citly addresses this point. The conceptual and operational framework we consider is especially relevant to
applications associated with large-scale flow and transport, where effective transport models are needed
to predict and understand macroscale phenomena.

A classical continuum approach to model transport in porous media relies on the use of the classical advec-
tion dispersion equation (ADE). A key assumption underlying the ADE is that pore-scale dynamics can be
projected onto a continuum-scale model through a Fickian analogy. Limitations of this assumption have
been convincingly demonstrated through theoretical, numerical, and experimental arguments [e.g., Salles
et al., 1993; Auriault and Adler, 1995; Berkowitz et al., 2000; Bijeljic and Blunt, 2006]. A variety of approaches have
then been developed to interpret observations of seemingly non-Fickian solute transport observed at labora-
tory and field scales [e.g., Zhang et al., 2009; Berkowitz et al., 2006; Haggerty et al., 2004]. All these effective
formulations typically include a set of model parameters. While these must be related to pore-scale velocity
and geometry, they typically need to be estimated through fitting against solute concentration data, e.g.,
measured breakthrough curves. Recent studies have shown that it is possible to link the nature of effective
parameters capturing non-Fickian behavior to results obtained by Lagrangian effective models based on
simulated pore-scale flow characteristics [De Anna et al., 2013; Kang et al., 2014].

Here we present a double-continuum (or two-region) model of transport and explicitly linkmodel parameters to
the pore-scale velocity field. We conceptualize the porous medium as composed by two overlapping effective
continua, respectively constituting a mobile and an immobile region [e.g., Coats and Smith, 1964]. The nature of
transport is typically considered to be diffusive in the immobile region, while advection and dispersion drive
solute displacement in the mobile region. While this continuum-scale model is widely used, quantitative
characterization of effective model parameters relying on pore-scale quantities associated with real three-
dimensional rock samples is still lacking. In this context, Swanson et al. [2015] have shown that relying solely
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on information about the geometrical attributes of the pore space obtained through NMR and electric
resistivity measurements does not lead to a reliable characterization of the full set of model parameters.

Parameters of double-continuum models can directly be related to pore-scale features by theoretical
studies based on volume averaging [e.g., Davit et al., 2010; Orgogozo et al., 2010; Davit et al., 2012;
Soulaine et al., 2013; Porta et al., 2013]. Rigorous application of volume averaging to real porous media
requires solving a set of closure problems in a (generally) complex three-dimensional geometry. This is a
demanding task from an implementation and computational perspective. Thus, it is also useful to develop
more simplified approaches.

Here we present a straightforwardmethodology to directly embed into the parameters of a two-region (double-
continuum) model flow field information from complex three-dimensional pore spaces derived from micron-
resolution images of rock samples. Our work uses velocity fields which have been directly calculated in the
pore space and validated through comparison with NMR experiments [Bijeljic et al., 2013a]. We demonstrate
the critical role of the knowledge of the pore-scale velocity field for an accurate effective description of transport
at the continuum scale.

2. Modeling Approach

We provide here a characterization of the pore spaces we consider and a brief description of our modeling
approach.

2.1. Pore-Scale Characterization

We consider transport of a nonreactive solute through a single-phase flow field in a three-dimensional porous
domain,Ω. The latter comprises a solid (ΩS) and a liquid (ΩL) phase. We assume that transport inΩL is described
by an advection-diffusion equation:

∂ ĉPS
∂̂t

þ ûPS∇̂ĉPS ¼ D̂m∇̂
2
ĉPS ; x̂∈ΩL; (1)

where ĉPS (molm�3) is pore-scale concentration, x̂ is the spatial coordinate vector, t̂ is time, ûPS x̂ð Þ (m s�1) is
fluid velocity within the pore space, and D̂m (m2 s�1) is molecular diffusion. Here and in the following all
hat-signed variables are dimensional.

We study transport in two three-dimensional samples, a bead pack and a Bentheimer sandstone image, each
comprising 3003 voxels, with voxel size of 2 and 3μm, respectively. Porosity, ϕ, is equal to 35.9% and 21.5%,
respectively, for the bead pack and sandstone sample. Pore space geometries and the velocity fields ûPS x̂ð Þ
are obtained at the resolution of the voxel size for each medium [Bijeljic et al., 2013a]. Details on the charac-
terization of the bead pack and sandstone samples at the pore scale and image segmentation are provided in
[Bijeljic et al., 2013a; Guadagnini et al., 2014] and are summarized in the supporting information Text S1.

Fluid velocities on image voxels are obtained by solving the steady state Navier-Stokes equations for incom-
pressible single-phase Newtonian flow. The velocity and pressure fields are computed through the numerical
solver implemented in OpenFOAM [Bijeljic et al., 2013a; Raeini et al., 2012; OpenFOAM, 2011]. A constant
pressure difference is assigned between the inlet and outlet faces of the image along the x direction.
Details on the pore-scale computations including the key equations, meshing, and convergence criteria are
provided in supporting information Text S2.

Pore-scale transport is simulated by particle tracking [Bijeljic et al., 2011]. We initially place 107 particles at

random within the pore space. The total displacement x̂tot of particles within a given time step dt̂ is
computed as x̂tot ¼ x̂adv þ x̂diff , where x̂adv is the advective displacement calculated semianalytically along

the streamlines using a modified Pollock algorithm [Pereira Nunes et al., 2015] and x̂diff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24D̂mdt̂

p
R� 0:5ð Þ

is the diffusive displacement, R being a random number uniformly distributed between 0 and 1 [Benson
and Meerschaert, 2008].

Appropriate reflection boundary conditions at solid voxels are imposed [Bijeljic et al., 2011]. When particles hit

solid voxels within dt̂ , they are bounced back to the pore voxels in a random direction and traverse the

remainder of the diffusive displacement until the end of dt̂ [Bijeljic et al., 2011]. Particles exiting from the
imaged pore space along the x direction are reinjected into the system from the inlet face.
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As in Porta et al. [2013], we define the local Péclet number:

Pe x̂ð Þ ¼ ûPS x̂ð Þj ĵL
D̂m

(2)

which is the ratio of the time scales characterizing transport by advection and diffusion across a characteristic
length scale L̂ (m). As in Bijeljic et al. [2013a], the velocity fields ûPS x̂ð Þ are computed in the two media such
that the average velocity U

^

along the x direction is equal to 0.91 × 10�3m/s and 1.02 × 10�3m/s for the
bead pack and sandstone samples, respectively, corresponding to Reynolds number Re=5.2 × 10�2 and
Re=1.25 × 10�1. The molecular diffusion coefficient D̂m is set equal to 2.2 × 10�9m2/s. This set of parameters
has been used in Bijeljic et al. [2013a] to replicate the experimental conditions for measurements of transport
obtained by NMR in the same porous samples [Scheven et al., 2005 ]. We consider the length scale L̂ as an
average pore size. We set L̂ =56μm for the bead pack, according to the formulation L̂ ¼ d̂Gϕ= 1� ϕð Þ
[Whitaker, 1999], where d̂G =100μm is the uniform diameter of the spheres forming the bead pack. In the
absence of a corresponding theoretical formulation, we estimate L̂ for the sandstone sample as the range
of the variogram of the indicator function G(x) (G(x) = 0 for solid grains and G(x) = 1 for fluid) resulting from

Figure 1. Model characterization: (a) sample pdf of log10Pe x̂ð Þ for bead pack (gray curve) and Bentheimer sandstone
(black curve); spatial distribution of solid (black shaded area), immobile (gray shaded area) and mobile (white area) fluid
regions within the (b) bead pack and (c) sandstone samples; unit cell models for (d) bead pack and (e) sandstone with
associated velocity distributions for model 1 (dashed lines) and model 2 (continuous lines). In Figure 1a the dash-dotted
line indicates the value Pe x̂ð Þ ¼ Pethr ¼ 10.
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pore-scale imaging. We do so by employing an exponential model to interpret the variogram reported by
Bijeljic et al. [2013a] and estimate L̂ = 121μm. We then obtain average values of the Péclet number
Peav ¼ ÛL̂=D̂m =23.2 and 56.4, respectively, for the bead pack and the sandstone.

Figure 1a depicts the sample probability density function (pdf) of the decimal logarithm of Pe x̂ð Þ for the two
media. The pdf associated with the sandstone medium reflects the occurrence of a wider variability of Pe x̂ð Þ
as compared to the bead pack sample.

The three-dimensional map of Pe x̂ð Þ explicitly identifies low-velocity regions where advective transport
takes place over time scales which are considerably longer than those associated with molecular diffusion.
We demarcate mobile (advection dominated, ΩM) and immobile (diffusion dominated, ΩI) zones, with
ΩM ∪ΩI=ΩL, by settingΩM ¼ x̂∈ ΩL : Pe x̂ð Þ > Pethrf gandΩI ¼ x̂∈ ΩL : Pe x̂ð Þ < Pethrf g, where Pethr is a pre-
set threshold value.

As an example, Figure 1b, c depicts the spatial arrangement ofΩM andΩIwithin the two media for Pethr= 10.
In both systems we observe a thin layer of immobile fluid around the solid grains. The bead pack exhibits a
regular structure and immobile portions of the pore space appear to be uniformly dispersed within ΩL

(Figure 1b). The sandstone sample is characterized by wider and more localized low-velocity regions
(Figure 1c). In these examples the mobile fraction of the pore space, γM= |ΩM|/|ΩL|, is approximately the same
(≈0.75) for both media.

2.2. Continuum-Scale Modeling of Transport

We illustrate here our approach to employ the pore-scale velocity field computed in a pore space image to
characterize an effective continuum-scale transport model. To this end, we incorporate the richness of the
velocity information resulting from the pore-scale characterization introduced in section 2.1 into a simplified
conceptual model of the porous medium geometry.

We conceptualize the porous system as an elementary cell, which corresponds to an equivalent fluid volume

comprised between two parallel plates separated by a uniform aperture of width H
^

(see Figures 1d–1e). We

assume that the total fluid volume within the two parallel plates is subdivided into a mobile region of widthh
^

,
associated with a given velocity distribution (directed along the x axis, see Figures 1d–1e), and an immobile

region of total width (H
^�h

^

), where velocity is set to zero. This partition, i.e., the value of h
^

, is calculated from
the distribution of Pe x̂ð Þ that is obtained from the characterization of flow at the pore-scale, as described in
section 2.1, and the selected threshold value, Pethr. While our conceptual model relies on a simplification of
the actual pore space, it enables us to derive simple analytical formulations for the double-continuummodel
parameters. Our approach is also consistent with previous findings showing that this simplified geometry can
provide powerful guidance for the interpretation of flow and transport phenomena taking place in complex
pore spaces [e.g., Davit et al., 2010; Orgogozo et al., 2010; Wang et al., 2012; Porta et al., 2013; Dejam et al.,
2014; Bianchi Janetti et al., 2015]. We now discuss the key developments leading to the definition of our
effective transport models. All details are presented as supporting information Text S3. We assume that
solute concentration dynamics are described via the dimensionless formulation:

∂M
∂t

þ u
∂M
∂x

¼ 1
Pe

∇2M yj j < h=2 (3)

∂I
∂t

¼ 1
Pe

∇2I yj j > h=2 (4)

HereM ¼ M̂=ĉ0 and I= I
^

/c^0 are dimensionless concentrations in the mobile and immobile regions, respectively,

c^0 being a characteristic concentration typically related to initial or boundary conditions; t ¼ t̂ Ĥ=ÛM is dimen-
sionless time; x ¼ x̂=Ĥ; h=h

^

/H
^

; u=u
^

/U
^

M is velocity along the x direction whereU
^

M is the average velocity in the

mobile region; and Pe ¼ ÛMĤ=D̂m. Note that U
^

M=U
^

/γM and Pe= Peav/γM. Equations (3) and (4) are completed
by the boundary conditions:

M ¼ I;
∂M
∂y

¼ ∂I
∂y

yj j ¼ h=2;
∂I
∂y

¼ 0 yj j ¼ H=2 ¼ 1=2; H ¼ Ĥ=Ĥ ¼ 1 (5)

ensuring that solute flux is continuous across the mobile-immobile interface and imposing zero flux at the
fluid-solid boundary.
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Averaging (3) and (4) along the system cross-sectional area normal to the mean flow direction yields:

∂M
∂t

þ ∂M
∂x

þ ∂eueM
∂x

¼ 1
Pe

∂2M
∂x2

þ 2
Peh

∂eM
∂y

�����
y¼h=2

(6)

∂I
∂t

¼ 1
Pe

∂2 I
∂x2

� 2
Pe 1� hð Þ

∂eI
∂y

�����
y¼h=2

(7)

whereM and Ī are section-averaged concentrations in the mobile and immobile regions, eM ¼ M�M andeI = I� Ī are the associated deviations, and eu = u�UM. Equations (6) and (7) can be expressed in closed form
by relating the concentration deviations to section-averaged quantities. We do so by introducing the following
closure relationships (see supporting information Text S3 for details):

eM ¼ b1 yð Þ ∂M
∂x

þ b3 yð ÞΔc ; eI ¼ b2 yð Þ ∂M
∂x

þ b4 yð ÞΔc (8)

where bi(y) (i= 1, ⋯, 4) are closure variables and Δc ¼ M� I. Closure (8) stems from a generalization of the
classical Taylor-Aris theory of dispersion to the double region unit cells depicted in Figures 1d–1e. In this
context the drivers of transport in the two-region model are the longitudinal gradient of concentration
(as in the classical Taylor-Aris analysis) and the difference between concentrations in the mobile and immo-
bile regions (as in a standard double-continuum approach). Upon replacing (8) into (6) and (7), the closed
form of the section-averaged system reads:

∂M
∂t

þ ∂M
∂x

þ ∂
∂x

dH1
∂M
∂x

þ dH2Δc
� �

¼ 1
Pe

∂2M
∂x2

þ 1
PeγM

e1
∂M
∂x

þ e2Δc
� �

(9)

∂ I
∂t

¼ 1
Pe

∂2 I
∂x2

� 1
PeγI

e1
∂M
∂x

þ e2Δc
� �

(10)

where γI= |ΩI|/|ΩL|, i.e., γM+ γI= 1, and the model effective parameters are defined as

dH1 ¼ 1
h ∫

h=2

�h=2
b1eu dy ; dH2 ¼ 1

h ∫
h=2

�h=2
b3eu dy ; e1 ¼ 2

∂b2
∂y

����
y¼h=2

; e2 ¼ 2
∂b4
∂y

����
y¼h=2

(11)

The effective parameters (11) are computed within the unit cell from the distribution of eu along the y direction.
We consider the effect of the following two strategies to characterize eu:
1. Model 1: we assume Poiseuille flow (i.e., a parabolic velocity profile) in themobile region. The corresponding

dimensionless velocity distribution is depicted in Figures 1d–1e for the two samples considered. In both
cases u(y) attains a maximum value of 1.5 for y=0 (Figures 1d–1e);

2. Model 2: we set the shape of the velocity distribution in the upper and lower half of the mobile region as
coinciding with the (appropriately rescaled) sample cumulative distribution function (cdf) of pore-scale
velocities, as depicted in Figures 1d–1e. We consider a truncated cdf of velocity by using only values of
velocities associated with local Péclet number above the threshold Pethr (i.e., within ΩM). As a consequence,
the velocity distribution attains a minimum value umin ¼ PethrÛMD̂m=L̂ > 0 at the mobile-immobile
boundary (|y| =h/2). The velocity distributions corresponding to the two samples are depicted in
Figures 1d–1e. Note that while the average velocity value is equal to one for both systems, velocities
in the sandstone sample display a wider range of variability, the largest (dimensionless) velocity value
approaching 20 (see Figure 1d), as opposed to a value of approximately 5 for the bead pack (Figure 1e).

The coefficients (11) are analytically known for model 1, while they are computed numerically for model 2
(see supporting information Text S3 and Table S2). Models 1 and 2 embed pore-scale information to a differ-
ent extent: the former takes into account pore-scale information solely to partition the pore space into mobile
and immobile regions; the latter also considers the full sample distribution of velocities for the evaluation of
themodel effective parameters, albeit lumped into a simplified format and geometry. Model 2 views effective
transport as taking place in a single representative pore within which the full distribution of velocity computed
at the pore-scale is considered to be present and is employed to directly compute model parameters (11). As
opposed to other techniques [Kang et al., 2014], our model disregards velocity correlations along particle
trajectories and does not require a characterization of the spatially heterogeneous structure associated with
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pore-scale velocity and geometry. This is consistent with the results by Bolster et al. [2014] which show that
correlation effects are not relevant for Peav< 100. Diffusion drives mixing at the pore scale for small Péclet num-
bers (e.g., Peav< 10) and concentration differences between mobile and immobile regions become typically
negligible after a short distance is traveled by solute particles. Therefore, we test here our model in the regime
10< Peav< 100 for which the mass transfer process is expected to play some role, particularly for early times.

Note that in bothmodels effective parameters are influenced by the choice of Pethr, i.e., by the criterion employed
to quantify γM. In the following we set Pethr=10 to illustrate our results; we have verified that the selected
threshold value has a limited impact on the results illustrated in section 3 within the interval 1≤ Pethr≤ 10
(see supporting information Text S3).

3. Results

We compare the results obtained by direct pore-scale simulations in the imaged pore spaces (see section 2.1)
against those rendered by the double-continuum formulations outlined in section 2.2. In the pore-scale
simulations solute particles are initially placed within a given volume of the porous domain to mimic an initial

constant concentration c^0. We represent this initial condition by settingM ¼ M̂=ĉ0 ¼ 1 and I= I
^

/c^0 = 1 within

the interval 0< x< x0, with x0= L̂ image=L̂, L̂ image being the total length of the image of the porous medium (i.e.,

x0= 10.7 or 7.4, respectively, for the bead pack and the sandstone). The solutions of the double-continuum
formulation associated with models 1 and 2 are obtained by solving the one-dimensional formulation (9)
and (10) through the Matlab function “pdepe”.

Figure 2 depicts the longitudinal (along direction x) concentration profiles obtained for the bead pack sample
at dimensionless times t= 4.6 (Figures 2a–2c), 22.7 (Figures 2d–2f), and 45.7 (Figures 2g–2j), corresponding

to dimensional times t̂ ¼ 0:2; 1:0; 2:0 s. We compare section-averaged concentrations in the immobile

Figure 2. Bead pack sample: comparison of section-averaged (a, d, and g) immobile, (b, e, and h) mobile, and (c, f, and j)
total concentrations yielded by pore-scale particle tracking (gray points), model 1 (dashed curve) and model 2 (continuous
curve). Results are for t= 4.6 (Figures 2a–2c), 22.7 (Figures 2a–2c), 45.4 (Figures 2d–2f); the shaded area in Figures 2a–2f
indicates the interval 0< x< x0 where the solute is initially placed.
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(Figures 2a, 2d, and 2g) and mobile (Figures 2b, 2e, and 2h) regions as well as total concentrations (Figures 2c,
2f, and 2j), obtained as c= γMM+ γII. The concentration profiles appear to be symmetric and are characterized by
similar shapes in themobile and immobile regions. As time advances, model 1 overestimates the concentration
peak and underestimates concentrations at the forward and backward tails. Employingmodel 2 leads to results
of improved quality when compared to model 1 (see Figures 2c, 2f, and 2j).

Figure 3 illustrates the results obtained for the sandstonemedium for t=2.2 (Figures 3a–3c), 11.2 (Figures 3d–3f),
and 22.4 (Figures 3g–3j), corresponding to the same dimensional times considered for the bead pack.
Effective model results for t= 2.2 display a good agreement with pore-scale simulations (Figures 3a–3c).
For longer times model 2 is able to reproduce the total concentration profiles stemming from pore-scale simula-
tion (see Figures 3f and 3j), while model 1 underestimates solute spreading along the longitudinal direction.

We quantify the modeling error associated with models 1 and 2 when compared against pore-scale simula-
tions in Figure 4a, where we consider the time evolution of:

EL2 tð Þ ¼
∫
L

c x; tð Þ � cPS x; tð Þ½ �2dx

∫
L

c2PS x; tð Þdx
(12)

which corresponds to the relative L2-norm of the error between continuum-scale predictions, c, and pore-scale
results, cPS. As an additional metric, Figure 4b depicts the temporal evolution of the dilution index [Kitanidis, 1994]:

DI tð Þ ¼ 1
x0
∫
L

p x; tð Þln p x; tð Þ½ �dx ; p x; tð Þ ¼ c x; tð Þ
∫
L

c x; tð Þdx
(13)

Figure 3. Sandstone sample: comparison of section-averaged (a, d, and g) immobile, (b, e, and h) mobile, and (c, f, and j)
total concentrations as yielded by pore-scale particle tracking (gray points), model 1 (dashed curve), and model 2 (continuous
curve). Results are for t= 2.2 (Figures 3a–3c), 11.2 (Figures 3d–3f), and 22.4 (Figures 3g–3j); the shaded area indicates the
interval 0< x< x0 where the solute is initially placed.

Geophysical Research Letters 10.1002/2015GL065423

PORTA ET AL. CHARACTERIZATION OF SOLUTE TRANSPORT 7



which quantifies the length of the solute plume along the x direction. To obtain comparable results between
the bead pack and sandstone sample, we rescale DI(t) by x0, as the solute is initially distributed over a volume
of length equal to x0 in the two samples.

For the bead pack sample, both models display similar relative errors for t< 10. For longer times, the error
related to model 2 is relatively stable and equal to about 10%, while the error associated with model 1
increases up to 15% (see the gray curves in Figure 4a). These results reflect the improved ability of model
2 to provide robust estimates of the concentration peak (see Figures 2f and 2j). Figure 4b suggests that
the two continuum-scale models predict approximately the same temporal evolution of the dilution index
for the bead pack. We observe that both models underestimate dilution observed by pore-scale simulation
by approximately 10% for the longest time considered (t= 45).These results indicate that the assumed
velocity distribution has a limited impact on a global metric expressing the dilution of the solute while being
mildly relevant to the proper prediction of the solute distribution along x.

Continuum scale predictions for the sandstone sample are less accurate than those obtained for the bead
pack sample (see Figure 4a). This result is explained by considering the irregular behavior of concentration
profiles resulting from the pore-scale simulation (see Figure 3). This is chiefly due to the spatially heterogeneous
structure of velocity and geometry at the pore level. The temporal evolutions of both the modeling error and the
dilution index show that for short times (t< 5) model 1 is slightly more accurate than model 2 (see Figures 4a
and 4b). However, as time progresses the error associated with model 1 increases up to 40% for t=22.4 while
remaining at approximately 15% for model 2. Moreover, model 1 largely underestimates the dilution index
for t> 5, consistent with the quality of predictions observed for the concentration profiles (see Figures 3f
and 3j). The error associated with model 2 for short times might be related to nonlocal effects resulting from
the transient behavior of transport parameters, which are disregarded in our approach (see supporting
information Text S3). By accounting for the full distribution of the pore-scale velocity, model 2 predicts the
dilution index up to an accuracy of 15% at t=22.4 (see Figure 4b).

4. Conclusions

We provide predictions of solute transport within explicit pore spaces associated with two three-dimensional
porous media, a bead pack, and a consolidated sandstone. We base our results on a modeling approach
which describes the porous medium through a simple system which is formed by two parallel plates and
directly exploits information on the pdf of the pore-scale velocities for the characterization of the parameters
of an effective one-dimensional double-continuum (two-region) model. In essence, our methodology
involves the followings: (1) replacing the porous medium with the simplified conceptual model illustrated
above, based on the information resulting from pore-scale simulation of flow; (2) computing the effective
parameters of transport within a unit cell by solving a one-dimensional closure problem; and (3) solving
the continuum-scale transport problem. Our results indicate that even in its simplicity, our conceptual model
can lead to accurate (with a relative error lower than 15% with respect to results from direct pore-scale simu-
lations) characterization of longitudinal solute dilution in the two systems analyzed when the critical role of
pore-scale velocities is taken into account.

Figure 4. Temporal evolution of (a) the relative error (12) and (b) the dilution index (13) for bead pack (gray curves and
symbols) and sandstone (black curves and symbols). Results are obtained by continuum effective models 1 (dashed lines)
and 2 (continuous lines) and pore-scale simulations (symbols in Figure 4b).
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