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Abstract

Home Care (HC) providers are complex organizations that manage a large number of

patients, different categories of operators, support staff and material resources in a context

affected by high variability. Hence, robust resource planning is crucial for operations in HC

organizations, in order to avoid process inefficiencies, treatment delays, and low quality of

service. Under continuity of care, one of the main issues in HC planning is the assignment

of a reference nurse to each assisted patient, because this decision has an impact on the

workload assigned to the nurse for the entire patient’s length of stay. In this paper, we

derive an analytical structural policy for solving the nurse-to-patient assignment problem in

the HC context under continuity of care. This policy accounts for the randomness that is

related to the demands from patients already assigned to nurses and to the demands from

new patients who need assignments. The policy is compared to other previously developed

approaches, and applied to a relevant real case.
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1. Introduction

1.1. Background

Home Care (HC) consists of delivering medical, paramedical and social services to pa-

tients at their domicile rather than in hospital. HC leads to a significant increase in the

quality of life for patients, who are assisted at home, and to considerable cost savings for
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the entire health care system (Davies and Dale, 2003; Chevreul et al., 2005; Comondore

et al., 2009). HC is a relevant sector of the health care domain in western countries: in the

US, about 3.3 million beneficiaries received HC services from more than 11,400 agencies in

2009, and Medicare spent 19 billion dollars on HC (Medicare Payment Advisory Commission

MEDPAC, 2011). Moreover, these numbers are continuously growing because of the aging

of the population, the increase in chronic pathologies, the introduction of innovative tech-

nologies, and the continuous pressure of governments to contain health care costs (Chevreul

et al., 2005; American Geriatrics Society AGS, 2006).

Many resources are involved in HC service delivery, including different categories of

operators (nurses, physicians, physiotherapists, social assistants and psychologists), support

staff and material resources. Managing these resources is a difficult task because the HC

provider has a large number of assisted patients, must synchronize the use of the resources

at each patient’s home, and delivers the service to an often vast territory (Comondore et al.,

2009; Chahed et al., 2009; Matta et al., 2012). Therefore, robust resource planning is crucial

for operating in HC organizations, to avoid process inefficiencies, treatment delays, and low

quality of the provided service.

In addition, random events affect the service delivery and undermine the feasibility of

plans, e.g., variations in patients’ conditions, resource unavailabilities and longer durations

of operator transfers in the territory. The most critical and frequent events are sudden

variations in patients’ conditions, which make the service demand highly uncertain and

the resource planning more complex. As example, Lanzarone et al. (2010) show that the

coefficient of variation (i.e., the ratio between the standard deviation and the expected value)

of the weekly demand from HC patients ranges from 0.39 for medium-high care intensity

patients to 1.29 for low care intensity patients. Finally, the existence of some constraints,

such as the continuity of care and the risk of incurring a burnout of operators (Cordes and

Dougherty, 1993), makes the HC resource planning different from the planning problems

encountered in other production and service systems, also within the health care domain.

In the HC context, continuity of care means that only one operator of each category

is assigned to a patient, named the reference or principal operator, who is not changed

for a long period, usually a semester (Borsani et al., 2006), and preferably provides all of

the visits required by the patient to the operator’s category. Continuity is considered an

important quality indicator of the HC service, because the potential loss of information

among operators is avoided, and the patient receives care from the same operator rather
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than having to continuously develop new relationships (Haggerty et al., 2003).

Despite the complexity required for planning, in the majority of HC providers, human

resource planning is not supported by proper skills, methodologies and tools that are needed

for managing the logistics and the organizational activities of care delivery. Hence, the

possibility of implementing adequate planning models and tools for the HC context could

improve the robustness of plans with a limited investment of support staff sustained by the

HC providers.

The main issues of HC resource planning are the partitioning of a territory into a given

number of districts, the human resource dimensioning, the assignment of visits to operators,

and the scheduling and routing determinations (Yalcindag et al., 2011; Matta et al., 2012).

These issues involve three planning levels:

• Districting and resource dimensioning : HC patients are grouped into categories, de-

pending on the type of required service. Typically, the main distinction is between

palliative and non palliative patients; in line, each nurse is characterized by a skill, i.e.,

the set of patient classes he/she can handle. This planning level consists of dividing

the territory served by the provider into regions and the patients of each region into

groups based on the skill requested to the nurses. Each group represents a district, and

a certain number of skilled nurses are assigned to the districts to satisfy the demand

of their patients.

• Operator assignment : once allocated to a district, operators are chosen to provide each

visit based on different criteria (e.g., the time of the day, the specific service requested

during the visit, etc). Under continuity of care, patients (and not single visits) are

assigned to the operators and the assignments are kept along with the time.

• Scheduling, routing and control : this is the definition of the weekly plans with the

sequence of visits for each operator, taking into account the planned assignments.

This level also includes the daily control of the activities to respond to unavailabilities

or unexpected variations in service demand.

In this paper, we focus on the operator assignment under continuity of care, taking into

account the nurses.
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1.2. The nurse-to-patient assignment problem in Home Care

Patients need to be assisted by different categories of operators: they are always in

charge of the nurses and, depending on the case, they may involve one or more figures such

as a physiotherapist, physician, or psychologist. Operators of each category are divided into

districts depending on their skills and territory. Assignments are usually planned considering

the districts as independent, meaning that each patient is cared for by an operator with a

skill that is compatible to his/her pathology and who works in his/her geographical area.

However, in the real practice of HC providers, after the assignments are set, an operator may

also be assigned to care for patients who do not belong to his/her district, to compensate

for the infeasibilities of scheduling and routing, or to partially compensate for workload

unbalancing among districts (Comondore et al., 2009; Yalcindag et al., 2011; Lanzarone and

Matta, 2012).

A key issue for the assignments is the continuity of care, particularly for nurses. A

large number of HC providers pursue the continuity of care. However, some other HC

organizations do not adopt the concept of reference operator to increase the operational

efficiency, and each visit to a patient is provided by any appropriate operator who has

sufficient available capacity in the required period of time. In this way, at each planning

period, no constraint deriving from previous assignments has to be included and no engaged

workload of operators related to previous assignments has to be managed.

Nurse-to-patient assignment under continuity of care consists of assigning each newly

admitted patient to his/her reference nurse, chosen among the compatible ones (i.e., be-

longing to the new patient’s district). The goals pursued by HC providers can be different

depending on the provider. A widespread goal is the minimization of the overtime incurred

by operators. This minimization is highly important mainly for two reasons: the provider

minimizes the operators’ extra times to be paid and, consequently, the sustained variable

costs. At the same time, such objective reduces the risk of burnout, which is related to the

care volume exceeding the operator contract capacity. Burnout is a syndrome that can af-

fect a broad range of professions (including physicians, nurses and educators) as a prolonged

response to chronic job-related stressors (Cordes and Dougherty, 1993); this phenomenon

causes decreased job performance and reduced job commitment, bringing workers to stress-

related health problems and low career satisfaction. Another objective usually adopted by

providers is to obtain a fair and balanced workload among the operators (Kovner et al.,

2006; Lanzarone et al., 2012).
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1.3. Contribution

The main difficulty in solving the assignment problem is to face the random events that

affect the service delivery and give a high variability to the workloads charged to nurses and,

consequently, to the overtime costs. This paper addresses the problem of assigning newly

admitted patients to their reference nurse, while maintaining continuity of care. Specifically,

this paper proposes an analytical policy for solving the nurse-to-patient assignment problem

within the HC setting, taking into account the stochasticity of the new patient’s demand

and of the nurses’ workloads.

The problem is formalized as a minimization of nurses’ maximum overtimes in a lexico-

graphic way: firstly, we minimize the highest value, then the highest value of the remaining

ones, and so forth. Operatively, the goal is analytically pursued by minimizing the max-

imum increase of a stochastic cost function, which depends on the time spent by nurses

when providing visits in surplus to their capacity. This objective also leads to balance the

workloads of the nurses within districts when the HC structure is not underutilized. The

simplicity of the proposed policy makes easy its implementation in practice.

Because of the assumptions introduced, the policy requires validation in real cases. When

applied to a significant real case, the approach presented in this paper guarantees lower

overtimes and better workload balancing when compared to a numerical approach based

on mathematical programming (Lanzarone et al., 2012), to a policy which minimizes the

expected value of the square overtimes (Lanzarone and Matta, 2012), and to the usual prac-

tice of HC providers. Specifically, lower overtimes and better balancing are obtained with

the policy for the majority of patients, whose demand is characterized by a high variabil-

ity. Only for patients whose demand is characterized by a low variability (e.g., palliative

patients), results among the approaches are similar and show that considering uncertainty

in the nurse assignment problem does not add significant benefits and simpler approaches

can be successfully applied.

1.4. Structure of the paper

A literature analysis of the assignment problem is firstly presented in section 2. The

formal statement of the nurse-to-patient assignment problem under continuity of care and

the assumptions introduced are described in section 3. The proposed policy is then derived

starting from the single-patient assignment (section 4) and extending to the multi-patient
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assignment (section 5). Finally, section 6 reports the application of the proposed approach

to a relevant real case, and the final conclusions are reported in section 7.

2. Literature review

The assignment problem is a very general problem with variety of applications, studied

since 1952 (Pentico, 2007). In the most general formulation, namely the Generalized As-

signment Problem (GAP), a set of tasks have to be optimally matched to a set of agents.

In our problem, tasks refer to patients and agents to nurses.

Several variants of the GAP are present in literature and have been applied to differ-

ent problems, as described in the recent survey of Pentico (2007). The nurse-to-patient

assignment problem can be classified as a Bottleneck Assignment Problem (BAP) or as a

Minimum Deviation Assignment Problem (MDAP). In the BAP, the objective function is

the minimization of the maximum assigned workload, which in our case corresponds to re-

duce nurses’ overtimes. In the MDAP, the objective is the minimization of the difference

between the maximum and the average assigned workload, which in our case corresponds to

balance the workload among the nurses.

The BAP is a well-known problem in manufacturing, where jobs have to be loaded on

machines for processing. This is known in literature as the loading problem (Pinedo, 2012),

in which one of the most utilized objective function is to minimize the completion time of

the last processed job. The way in which overtimes are modeled is different from HC. In

manufacturing, aim at minimizing the machine cost due to overtimes (e.g., operating in the

third shift), it could be indifferent to assign two jobs to one single machine or two different

machines, because the total cost may be the same. On the contrary, in nurse assignment

problems, it is preferable to avoid high overtimes that could increase the risk of burnout.

The loading problem is faced as a subproblem in scheduling of manufacturing systems.

Examples of recent papers dealing with loading problems in manufacturing are Abazari et al.

(2012) and Kim et al. (2012). Randomness is often considered in manufacturing; in this

case, the literature refers to stochastic load balancing problems and stochastic scheduling

problems.

The solution methods proposed in the manufacturing literature are simple procedures

based on Greedy strategies or complex algorithms based on mathematical programming or

meta-heuristics (Grieco et al., 2001), which may also require the use of simulation for evalu-

ating the system performance. The former approach is too simple for the problem addressed
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in this paper, whereas the latter is of difficult implementation in the practice. In addition,

this difficulty increases when the techniques are applied in health care organizations, because

of the lack of operations management skills among the decision makers. Analytical rules

are also defined for some specific simple cases (Cai and Zhou, 2005; Cai et al., 2007), but

they cannot be easily extended to other problems, as the considered the nurse-to-patient

assignment problem.

Finally, Pinedo (2012) includes a a complete review of the assignment, loading and

scheduling problems.

In the following, a review of the most relevant works dealing with the assignment problem

in the health care domain is reported for both the widespread studied hospital case (section

2.1) and the HC context (section 2.2).

2.1. Assignment problem in hospitals

A large number of studies address the assignment and scheduling of nurses and medical

staff in hospitals. In this section we only refer to review papers and to works that explicitly

treat overtimes in hospitals.

Cheang et al. (2003) report a bibliographic survey of the methodologies that have been

proposed to solve the nurse rostering problem. Also, Burke et al. (2004) propose a literature

review of the problem, considering the nurse rostering problem within the global personnel

scheduling in health care and drawing on the strengths and the weaknesses of the literature

to outline the key issues for the nurse rostering research. Bard (2010) reports a recent

literature review on nurse scheduling models.

Additionally, other works focus the analysis on the overtime to be paid. Brunner et al.

(2009) develop a mixed-integer program model for a flexible shift scheduling of physicians

in a German university hospital. Their objective is to find an assignment such that the

total hours to be paid out as overtime are minimal under the restrictions given by the labor

agreement. Brunner et al. (2011) also propose a methodology for solving the flexible shift

scheduling problem of physicians in the presence of flexible start times, variable shift lengths,

and overtime to cover demand.

Assignment problems in hospitals differ from those faced in HC in many aspects. First,

caregivers in hospitals are assigned to time slots and not to patients, thus the continuity of

care is not an issue in hospitals. Other differences are the territory, which is relevant in HC

and not in hospitals, the relationships that caregivers activate at patient’s home, and the
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large variability of the home and social environment where patient lives.

2.2. Assignment problems in home care

In the HC literature, the scheduling and routing of human resources represent the most

important volume of existing investigations within the planning context. Several studies

address human resource planning in HC services without continuity of care or with partial

continuity of care (Chahed et al., 2009; Eveborn et al., 2006, 2009; Bertels and Fahle, 2006;

Thomsen, 2006; Akjiratikarl et al., 2007; Bennett and Erera, 2011).

Only a few papers take into account the continuity of care and the nurse-to-patient as-

signment problem, which is the focus of our paper. Among them, Borsani et al. (2006) study

the scheduling of visits in two HC organizations operating under continuity of care. They

propose an assignment model coupled to a scheduling one. The objective of the assignment

is to ensure the workload balancing among the operators while respecting qualification re-

quirements and geographical coherence constraints. Ben Bachouch et al. (2008) develop a

mixed integer linear programming model to minimize the total distance traveled by nurses.

This model is subject to several constraints, including visits’ and nurses’ time windows,

nurses’ meal breaks, continuity of care, each nurse’s route beginning and ending at the HC

facility, and the maximum distance between two consecutive visits by the same nurse. Hertz

and Lahrichi (2009) propose two mixed programming models for allocating operators to

patients in the Cotes-des-Neiges local community health clinic in Montreal, Canada. One

model consists of linear constraints and a quadratic objective function, while the other in-

cludes nonlinear constraints and is solved by a Tabu search heuristic. Constraints related

to maximum acceptable workloads and the assignment of each patient to exactly one nurse

of each type are imposed, and the objective of the assignment is to balance the nurses’

workloads by minimizing a weighted sum of the number of provided visits, of the assigned

patients, and of the distances traveled. The possibility of assigning a patient to a nurse

who does not belong to the patient’s district is also considered. Lanzarone et al. (2012)

propose a stochastic programming approach based on a mixed integer linear programming

for solving the HC assignment problem while including the variability of patients’ demands.

Finally, Lanzarone and Matta (2012) propose an analytical policy to minimize the square

value of the overtimes incurred by nurses. This policy will be considered in the graphical

and numerical comparisons reported in section 4.4 and section 6, respectively.
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3. Problem statement

In this section, we describe the specific nurse-to-patient assignment under continuity

problem addressed in this paper (section 3.1), and we introduce the adopted formalism and

the assumptions that are useful for deriving the assignment policy (section 3.2). All of

the assumptions introduced are consistent with the real situation of several HC providers

(Comondore et al., 2009; Chahed et al., 2009; Lanzarone et al., 2010).

3.1. Problem description

We analyze the case in which a set of new patients are admitted into service after an

initial assessment of their clinical, social and psychological needs. Each newly admitted

patient has to be assigned to only one reference nurse who is compatible with his/her needs,

and this assignment is never changed to preserve the continuity of care. The problem is

solved considering a single time period (e.g., a week or a month): this means that each

patient’s demand or nurse’s workload refers to the time for visits in this future planning

period. The problem of allocating visits to specific days of the week once the assignments

are decided is not considered in this paper.

In general, the new patient is assigned to a nurse who belongs to his/her district. Fur-

thermore, we consider that the district is not related to a vast geographical area. Thus,

a fixed transportation time from a patient’s home to another is assumed in the practice

of planning. As a consequence, the demand that is related to the serviced patients can

be expressed as the total amount of time requested for the visits in the planning horizon,

including the transportation time of each visit.

A contract regulates each nurse’s time capacity during the planning period. Moreover,

nurses have been already given responsibility for the patients allocated in previous assign-

ments and, consequently, have an initial assigned workload. The provision of visits represents

a cost for the HC provider resulting in both fixed and variable costs. Fixed costs are not

considered in the objective, because they are sustained independent of the decided assign-

ments of patients to nurses once the workforce is enrolled. In contrast, the variable cost of

each nurse is affected by the assigned patients, because it depends on the amount of care

that the nurse provides in surplus to his/her capacity. Thus, patients are assigned aiming at

minimizing the overtime incurred by nurses. The overtime is also kept low to avoid burn-out

of operators.
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The amount of service requested by all of the serviced patients (either newly admitted or

already in care from previous periods) during the planning period is random. Randomness

is due to the patient’s health and psycho-social conditions that may change over the time,

increasing or decreasing the demand for service (Garg et al., 2010; Lanzarone et al., 2010).

For instance, terminal patients usually increase their service request as their conditions

worsen from day to day. Additionally, even if patient’s conditions do not change, the amount

of service required within the planning period might be affected by short term fluctuations.

3.2. Modeling assumptions and notation

We study the single-district case in which a set of K newly admitted patients must be

assigned to one reference nurse taken from the set Ω of compatible ones. Out-of-district

assignments are not allowed, thus nurses can take care only of patients living in the same

district.

The amount of service requested by newly admitted patient k (with k = 1, . . . , K) in the

planning period is modeled as a random variable denoted with Yk. Additionally, we assume

that the duration of visits in the planning horizon (i.e., each variable Yk) does not depend

on the specific nurse-to-patient assignment.

The workload assigned to each nurse i ∈ Ω in the planning period is denoted with

Xi. This is given by the sum of the initial workload X0
i and the demands of the newly

assigned patients. X0
i is given by the amount of service time requested by the already

assigned patients. These assignments must be kept for respecting the hard constraint of the

continuity of care. X0
i is modeled as a positive continuous random variable with probability

density function Φi(x
0
i ). It is assumed that Φi(x

0
i ) can be estimated using the most recent

available information by means of appropriate stochastic models, as the one reported in

Lanzarone et al. (2010).

In addition, each nurse i has a capacity vi, which is expressed as the time for visits in

the planning period.

The objective of the assignments is to minimize the maximum overtime among the nurses,

then the next-to-maximum overtime, etc., in the lexicographic sense. Extending the clas-

sification of Pentico (2007), the problem can be formulated as a stochastic lexicographic

bottleneck GAP. According to the introduced notation, the problem is stated as follows:

lex min {maxOV Ti} (1)
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s.t.

OV Ti = max {Xi − vi; 0} ∀i

Xi = X0
i +

K∑
k=1

zikYk ∀i

zik ∈ {0, 1} ∀i, k

where OV Ti is the overtime of nurse i, and zik is a binary decision variable equal to 1 if

patient k is assigned to nurse i, and 0 otherwise.

The problem is first solved analytically in the simpler case of single-patient assignment

(section 4). This analytical solution is then used in the multi-patient assignment after sorting

the newly admitted patients (section 5).

4. Single-patient assignment problem

In this section we describe the proposed analytical approach for assigning one newly

admitted patient. Since only one new patient is assigned (K = 1), the index k referring to

the patient is omitted and his/her demand is simply denoted with Y in the remaining of

this section.

Further assumptions are introduced for the analytical derivation, then the policy is enun-

ciated and a robustness analysis is conducted. Finally, we also provide a graphical interpre-

tation of the proposed policy, and we compare it with alternative ones.

4.1. Additional modeling assumptions

For the single-patient decision making purposes, we model Φi(x
0
i ) as a triangular distri-

bution with parameters ai, bi and ci. Parameter ai is the minimum value that the initial

workload can assume, bi is the mode of the distribution, and ci is the maximum initial work-

load value (with 0 < ai < bi < ci). We denote this distribution with Φ̃i(x
0
i ). The use of the

triangular distribution allows us to analytically derive the policy and to obtain simple rules,

which can be given to planners and practitioners for their real implementation.

Additionally, the value of the nurse capacity vi is assumed to be in the second part of the

triangular distribution (bi ≤ vi ≤ ci, ∀i ∈ Ω) without loss of generality, because the other

possibilities for vi are not of interest for a practical application of an assignment policy.

Indeed, the case vi < bi refers to a highly overloaded nurse who should not be considered
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for the assignment of another patient, while the case vi > ci refers to a highly underloaded

nurse, which is not frequent in real organizations in stationary conditions.

To be more general, we introduce a stochastic cost function that depends on the nurse’s

overtime. Given a workload Xi and a contract capacity vi, we propose the following function:

Ci(Xi) = OV Tm
i = [max {Xi − vi; 0}]m = max {(Xi − vi)m; 0} (2)

where the parameter m is a nonnegative constant used to penalize the overtime.

In providers where the cost of an extra visit is constant and does not depend on the

overtime amount, Ci(Xi) simply represents the nurse’s overtime (i.e., m = 1). In providers

that consider a rise of the cost while the overtime increases, Ci(Xi) is a convex function

of Xi (i.e., m > 1). In this case, a nurse who supplies two visits of one hour above vi is

considered more costly with respect to two nurses who supply one visit of one hour above vi.

The more the HC provider tends to avoid highly overloaded nurses (both to reduce costs and

to maintain a wellbeing of nurses and, consequently, a high quality of visits), the more m

assumes large values. The case m < 1 does not fit real HC providers and is not considered.

Once the specific HC provider is defined, parameter m is assumed to be the same for all the

nurses of the provider.

4.2. Proposed policy

The goal of the assignment is to minimize the overtimes in a lexicographic sense (1).

This corresponds to assign the new patient to the nurse i with the lowest maximum overtime

before the assignment. At the same time, this also corresponds to assign the new patient

to the nurse i with the lowest value of the maximum cost Ci(X
0
i ) before the assignment,

independent of the value of m.

Thus, the policy is stated as follows:

Given two nurses i and j (i, j ∈ Ω) with parameters ah, bh, ch (with h = i, j), the

newly admitted patient has to be assigned to nurse i if ci − vi < cj − vj or to nurse j if

cj − vj < ci − vi.
As the initial workloads X0

i cannot be reallocated, this policy also corresponds to mini-

mize the maximum increase of the cost function Ci(Xi) in case m > 1, i.e., in providers with

a rise of the cost while the overtime increases.

We remark that the maximum overtime refers to the triangular shape of Φ̃i(x
0
i ). When

applied to a real case, starting from the available Φi(x
0
i ), the right tail of the distribution

12



could be cut by the triangular fitting depending on the density shape. Hence, the policy is not

too conservative because long right tails associated with low probability are not considered

as they are eliminated by the fitting.

4.3. Robustness analysis

The policy proposed is conservative because it minimizes the maximum value of the cost

function. However, it is possible to find the conditions under which the policy is optimal in

the stochastic sense, i.e., it minimizes the entire Ci(X
0
i ) density function, and not only its

maximum value. For this purpose, the minimization is provided by comparing two functions

in terms of their entire probability density functions using stochastic order theory (Shaked

and Shanthikumar, 1994, 2007). Then, the nurse to be chosen for the assignment is the one

with the lowest density function of cost before the assignment, independent of Y .

As in the proposed policy, the lowest density function of cost before the assignment also

corresponds to the lowest density function of cost increase in case of m > 1. This relationship

holds from the independence between the demand Y of the newly admitted patient and the

initial workloads X0
i ∀i ∈ Ω.

The most important univariate stochastic orders are the usual stochastic order (ST),

the hazard rate order (HR) and the likelihood ratio order (LR) (Shaked and Shanthikumar,

1994, 2007). Among them, we adopt the LR order because it implies the other two cases.

The LR order affirms that, considering two continuous (or discrete) random variables A

and B with densities (or discrete densities) a (t) and b (t), respectively, A is smaller than B

(expressed as A ≤lr B) if the ratio b (t) to a (t) increases in t over the union of the supports

of A and B. This holds to:

Theorem 1. Given two nurses i and j with initial workloads X0
i ∼ Φ̃i(x

0
i ) and X0

j ∼
Φ̃j(x

0
j) before the assignment, respectively, then Ci(X

0
i ) ≤lr Cj(X

0
j ) and the robust decision

is assigning the patient to nurse i if the following conditions are true:ci − vi ≤ cj − vj
ci−vi

ri(ci−ai)2
≤ cj−vj

rj(cj−aj)2

(3)

and vice versa, where ri = 1− rbi− r2vi is defined as the shape index of the triangular density

Φ̃i(x
0
i ), and

rbi =
bi − ai
ci − ai

; rvi =
ci − vi
ci − ai
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are the asymmetry index and the surplus of workload index, respectively, with 0 < rbi < 1,

0 < rvi < 1 and 0 < ri < 1.

Proof. Let us consider the case ci − vi < cj − vj, so that the union of the supports of

γi (Ci(X
0
i )) and γj

(
Cj(X

0
j )
)

is the interval [0, (ci − vi)m], with γi (Ci(X
0
i )) representing

the probability density function of random variable Ci(X
0
i ). Functions γi (Ci(X

0
i )) and

γj
(
Cj(X

0
j )
)
, whose expression is derived in the Appendix, have a discontinuity, due to the

Dirac δ function at the origin δ (0). Hence, the condition for having Ci(X
0
i ) ≤lr Cj(X

0
j )

assumes the following form (Shaked and Shanthikumar, 1994, 2007):

γi (q)

γi (p)
≤ γj (q)

γj (p)
∀p ≤ q (4)

Three alternatives are possible. (i) For p = q = 0, inequality (4) is always verified. (ii)

For p = 0 and q > p, inequality (4) assumes the form fi (q) ≥ fj (q) with:

fh (q) =
q

1
m − (ch − vh)

rh (ch − ah)2
h = i, j (5)

fh (q) varies from − ch−vh
rh(ch−ah)

in q = 0 to 0 in q = (ch − vh)m with a linear trend if m = 1 or

a root trend if m > 1. Hence, the solution is the following:ci − vi ≤ cj − vj
ci−vi

ri(ci−ai)2
≤ cj−vj

rj(cj−aj)2

(6)

(iii) For q ≥ p > 0, inequality (4) gives the following result: ci − vi ≤ cj − vj.
Summarizing all of the alternatives, the overall conditions are the same as in system (6).

Also in this case the theorem is independent from parameter m. This means that there

exist some conditions according to which it is always preferable to assign a patient to one

operator instead of another whatever the importance of the overtime is.

4.4. Graphical representation

The aim of this section is to give a graphical representation of the policy, which allows a

simple visualization of the assignment rule and an immediate comparison with alternative

approaches.
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A new patient to be assigned and two compatible nurses i, j ∈ Ω, which are characterized

by their initial workload density functions Φ̃i(X
0
i ) and Φ̃j(X

0
j ), are considered. For obtaining

the representation, the density functions are first normalized with respect to the capacities

vi and vj, considering the assignable workload (i.e., the time for visits that can be assigned to

the nurse) or the excess workload (i.e., the time for visits that exceeds the nurse’s capacity).

Therefore, parameters ai, bi and ci are translated and expressed in relative terms with respect

to the nurse’s capacity vi: 
ãi = ai − vi

b̃i = bi − vi

c̃i = ci − vi

(7)

The domain of these parameters is determined according to the relationships imposed

by the variables, i.e., ãi ≤ b̃i ≤ 0 ≤ c̃i.

In this way, each nurse i is characterized by three parameters ãi, b̃i and c̃i and the

graphical representation would involve a three-dimensional space. On examining data from

several HC providers, it is frequently found that the nurses of a specific district (i.e., the set Ω

of the nurses compatible with the newly admitted patient) have very similar asymmetries rbi

in their workload distributions Φ̃i(X
0
i ). Assuming the same value of rbi for all of the nurses,

they can be represented in the same plane {c̃, |ã|}, where the abscissa c̃ is the maximum

excess workload and the ordinate is |ã| the maximum assignable workload. Each point in the

feasible region that satisfies ãi ≤ b̃i ≤ 0 ≤ c̃i corresponds to a nurse with a specific initial

workload (Figure 1).

The proposed policy is represented by two regions in the plane {c̃, |ã|}. Points j to the

left of point i determine the assignment of the new patient to nurse j, and vice versa (Figure

1A).

The stochastic order of costs for two nurses i and j, with rbi = rbj, is graphically rep-

resented by four regions in the plane, because of the presence of two conditions (6). A

stochastic order is possible in two of these regions, while in the other two regions it is not

possible to stochastically order the costs Ci(X
0
i ) and Cj(X

0
j ) (Figure 1B).

Figure 1 also shows other two assignment approaches, i.e., the expected cost increase

policy and the expected available capacity approach.

The former minimizes the expected value of the cost increase when m = 2, as reported in

Lanzarone and Matta (2012). Such policy also depends on the new patient’s demand density

15



Figure 1: Graphical representation of the assignment for two nurses i and j ∈ Ω with rbi = rbj = 0.5:

proposed maximum cost policy (A), stochastic order of Ci(X
0
i ) (B), expected cost increase policy with

m = 2 (C), and assignment based on the expected available capacity Wi (D). Plot C is obtained with

Y uniformly distributed between 2 and 4; the regions where the assignments are independent from new

patient’s demand are gray colored (Lanzarone and Matta, 2012).16



function Y , which is assumed uniformly distributed. The policy separates the plane in two

regions, whose division depends on the minimum and maximum values of Y . However,

given two nurses i and j with rbi = rbj, there is a part within each region where the choice

is independent from the new patient’s demand characteristics (i.e., gray regions in Figure

1C).

The expected available capacity approach is frequently used in the practice of HC

providers, where the variability of the future patient demand is usually neglected and the

only information used for assigning each new patient to the reference nurse is the expected

workload of each nurse (often estimated from reference standard values of demand for his/her

patients in charge). The newly admitted patient is assigned to the nurse i with the highest

expected available capacity Wi, given by the difference between the capacity vi and the

expected workload. Considering the triangular density function Φ̃i(x
0
i ), Wi is expressed as

follows:

Wi = vi −
ai + bi + ci

3
= − ãi + b̃i + c̃i

3
= − ãi (2− rbi) + c̃i (1 + rbi)

3
(8)

and the the corresponding graphical representation is in Figure 1D. This assignment is

equivalent to apply the Graham’s rule for load balancing, using expected values instead of

deterministic service times, and modified to consider that the operators can have different

contracts (Goel and Indyk, 1999).

The feasible region of the plane {c̃, |ã|} is divided into six regions by the three policies,

neglecting the expected available capacity approach (Figure 2). The same assignment choice

is provided by the three policies in the largest two regions, i.e., the regions of Figure 1B

where a choice can be made are included in the regions of both Figure 1A and Figure 1C

where the same choice is made.

In general, the stochastic order of costs Ci(X
0
i ) is the most robust approach, because

it completely encompasses the variability of the problem (Shaked and Shanthikumar, 1994,

2007)). If this ordering can be applied, each other rule that extracts only a feature from

the cost distributions (e.g., the maximum value as in the proposed policy) leads to the same

assignments; thus, the other policies provide the same assignment, and this assignment is

robust because the same choice is also confirmed by the stochastic order ∀m. In this case,

the proposed maximum cost policy is the most suitable one, because it is the simplest one

and does not require any assumption on Y nor a decision on m. In the four remaining

regions, the stochastic order policy cannot be applied (Figure 2) and the selection of the

17



policy can be significant. Also in this case, the maximum cost policy is the most suitable

choice, as it is more conservative and easier to apply than the other.

5. Multi-patient assignment problem

The policy proposed in the previous section and the other described approaches focus

on the assignment of one single patient. When a certain number of newly admitted patients

have to be assigned at the same time, i.e., when a multi-patient assignment is required, each

approach is coupled with an ordering of new patients. In this way, the first patient of the

ordered list is assigned with a single-patient assignment, his/her demand is included in the

initial workload X0
i of the assigned nurse, and these two phases are repeated for all other

remaining new patients until all of them are assigned.

The idea is to maintain an analytical approach for each single-patient assignment, fitting

the triangular density Φ̃i(x
0
i ) each time an assignment has to be decided. Then, before

deciding the next assignment, the density function of the latest chosen nurse’s workload is

numerically updated: the real density Φi(x
0
i ) is taken, and a convolution is computed with

the real shape of the density function of the latest assigned patient’s demand. In this way,

the approximation induced by the triangular fitting of the densities is not propagated. The

approach is clearly suboptimal. However, in this way, the most time consuming phase (i.e.,

the assignment decision) is analytically treated so as to exploit the benefits of the proposed

single-patient policy.

More precisely, the overall approach consists of the following steps:

1. Sort new patients starting from the highest demanding one.

2. Compute the densities of the initial workloads Φi(x
0
i ), and fit the corresponding trian-

gular densities Φ̃i(x
0
i ).

3. Assign the first patient of the ordered list according to a single-patient assignment

policy.

4. Remove the assigned patient from the list, and numerically compute (convolution) the

density Φi(x
0
i ) of initial workload for the assigned nurse.

5. Fit the triangular density Φ̃i(x
0
i ) for the assigned nurse.

6. If the list is empty, exit; otherwise, go to step 3.

We remark that, for each subsequent single-patient assignment, the actual initial work-

loads X0
i shall respect the assumptions of the policies. In particular, the condition bi ≤ vi ≤

18



Figure 2: Graphical representation of the three policies. In region a, all policies assign the new patient to

nurse j. In region b, the proposed maximum cost policy assigns nurse i and the expected cost increase policy

assigns nurse j, while no stochastic order of costs is possible. In region c, no stochastic order of costs is

possible and the other two policies assign the new patient to nurse i. In region d, all policies assign the new

patient to nurse i. In region e, the proposed maximum cost policy assigns to nurse j and the expected cost

increase policy assigns to nurse i, while no stochastic order of costs is possible. In region f, no stochastic

order of costs is possible and the other two policies assign nurse j.
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District Skills Territory Number of nurses Capacities [weekly hours]

NPA Non-Palliative A 8 35,40,45,50,50,50,50,50

PA Palliative A 3 20,30,30

NPB Non-Palliative B 4 30,35,50,50

PB Palliative B 1 35

NPC Non-Palliative C 5 30,35,40,50,50

PC Palliative C 1 35

Table 1: Districts of the analyzed division; only four districts have more than one nurse (i.e., NPA, PA,

NPB, NPC).

ci has to be respected. However, it can happen that one or more nurses do not respect this

condition. The case bi > vi corresponds to a highly overloaded nurse who should not be

considered for other assignments. Such nurses are excluded from the set of available ones

and, in case many nurses are excluded, this is an indicator for planners about an insufficient

workload capacity. The case ci < vi corresponds to a highly underloaded nurses. Such nurses

are the first to be considered for the assignment independently of the policies.

6. Real case analysis

The behavior of the proposed policy is evaluated in a real HC provider, considering the

data collected from one of the largest Italian public HC providers. This provider operates

in the north of Italy, covering a region of about 800 km2. About 1,000 patients are assisted

at the same time by about 50 nurses. The provider includes three separate divisions and

the analysis is carried out for the nurses of the largest division. The provider pursues the

continuity of care; therefore, each newly admitted patient is assigned to only one reference

nurse. Patients in charge are divided in two classes: palliative and non-palliative care

patients. The skills of nurses (for palliative care and non-palliative care) and their territorial

distribution are taken into account in the assignment. Three geographical areas are present in

the analyzed division; hence, the division consists of six districts (one for each combination of

skill and territory) and the assignments are planned considering the districts as independent

(Table 1). The analysis is conducted in four of these districts, where more than one nurse

is present.
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6.1. Experimental setup

The details of the experiments are provided in the following sections.

6.1.1. Patients, planning horizon and frequency of the assignment

The activity of the provider is analyzed over a period of 26 weeks. An initial assignment

of the reference nurse is performed at the initial week (named week 0) for all of the patients in

the charge, while the other assignments are performed on a rolling basis for every successive

week: at the beginning of each week, the new patients admitted in the service during the

previous week are assigned.

The weekly arrivals of new patients, the number of patients in charge and patients’

classes are taken at each week from the real historical data of the provider. A total of

1,046 patients are present in the division in the simulated weeks: 581 patients are in the

charge at week 0, while 465 are assigned from week 1 through week 25. Patients’ demand

distributions, including an average value of transportation time for each visit, are estimated

with the patient stochastic model of Lanzarone et al. (2010). At each rolling week, the

current data of the patients are used as inputs to the stochastic model, and the estimates of

patients’ demands are obtained in terms of their probability density functions (considering

the evolution of patients’ demands after one week).

For fitting the triangular densities Φ̃i(x
0
i ), data collected from the analyzed provider

show that rbi has a mean value of 0.467 and a standard deviation of 0.070 (estimations

made on the basis of a sample of 22 nurses). Hence, triangular distributions Φ̃i(x
0
i ) are

fitted assuming rbi = 0.467 ∀i ∈ Ω, and based on the expected value and the variance of

the corresponding distribution Φi(x
0
i ). Parameter ai is required to be higher or equal to

0 ∀i ∈ Ω; in case ai < 0, ai = 0 is set, and bi and ci are obtained with the imposed rbi

maintaining the expected value and underestimating the variance.

6.1.2. Compared assignment methods

Experiments are conducted comparing the proposed policy with other three approaches.

Indeed, four types of assignments are considered: Maximum Cost (MC ) according to the

maximum cost policy proposed in this paper, Expected Cost (EC ) according to the expected

cost increase policy proposed in Lanzarone and Matta (2012), Expected Available Capacity

(EAC ) referring to the expected available capacity approach described in section 4.4, and

Mathematical Programming (MP).
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MP uses a Mixed Integer Linear Programming model, which is reported in Lanzarone

et al. (2012), to find the optimal assignments. The comparison considers the solution ob-

tained with Model II and the expected value approach presented in that paper. This config-

uration refers to independent districts, and to the expected value for each patient’s demand

and nurse’s workload. The goal of such mathematical programming model is different from

that pursued by the policies proposed in this paper, as it consists of minimizing the expected

range of utilizations within each district. The main difference with the other experiments

(MC, EC and EAC ) is that MP assigns all new patients of a rolling week together, whereas

the approaches are associated with a ranking process and assign only one patient at a time.

As for EC, it depends on Yk (Lanzarone and Matta, 2012), which is assumed uniformly

distributed between αk and βk. In our experiment, these two values are estimated based on

the expected value and the variance of the corresponding distribution, obtained from the

patient’s stochastic model (Lanzarone et al., 2010). Parameter αk is required to be higher

or equal to 0 ∀k; in case αk < 0, αk = 0 is set, and βk is obtained maintaining the expected

value and underestimating the variance.

6.1.3. Initialization

For the initialization at week 0, all of the patients in charge are considered as new patients

to be assigned, and all of the nurses i ∈ Ω have a null workload X0
i before the assignments.

Therefore, this situation does not fit with the realistic HC assignment problem analyzed in

this paper, and it is not included in the assumptions. Hence, only at week 0, assignments

are provided considering the minimization of the expected cost increase, taking all of the

densities directly from the estimated distributions of the patient stochastic model without

any fitting.

6.1.4. Execution of the assignments

The results of each experiment are the newly provided assignments all over the rolling

weeks and the planned workloads of each nurse for the each week. These planned assignments

are then executed on a number of sample paths, where a sample path is a set of the time

for visits required by all of the patients in each week. These paths are generated with a

mix between a Monte Carlo drawing and the real number of required visits. The Monte

Carlo approach is used for the majority of patients to extract values from their demand

distributions. On the contrary, the demands of long-term non-palliative patients are taken

from the real historical data of the provider. These patients show a very low variability over
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the time, they do not represent an uncertainty source, and the variability of the entire mix

of patients is not reduced by taking their real historical demands.

The execution of the planned assignments is performed considering a number of sam-

ple paths equal to 30. Finally, the executed assignments are evaluated by computing the

performance indicators described in the following section.

6.2. Performance indicators

The first performance indicator is the Total Overtime (TOV T ) incurred by the nurses

of a district; this is obtained as the sum of the overtimes of each nurse who belongs to the

district, from week 1 through week 25, divided by the number of these nurses.

Another measure that is relevant in the practice is the mean utilization ūi of nurse i.

This measure is obtained as the ratio between the workload provided by nurse i and his/her

capacity vi for each week, averaged from week 1 through week 25. Even if the goal of

the proposed policies is the minimization of the overtimes, the utilizations give information

about the workload balancing performance of the assignments. In fact, the range of ūi among

the nurses of a district (named Z) is an indicator of the workload balancing performance

in the district: the more a strict Z is obtained, the more a higher workload balancing is

performed.

Finally, a third indicator is the total cost (TC) of a district, obtained as the sum of the

values assumed by the cost function for each nurse who belongs to the district, from week

1 through week 25, divided by the number of these nurses. The function is computed with

m = 2 for comparing with the EC policy.

All of the performance indicators are calculated from the executions of the assignments

with the data of each specific path.

6.3. Results

Mean utilizations ūi obtained from the executions of the experiments are reported in

Table 2, where the minimum, the mean and the maximum values of ūi among the 30 sample

paths are reported for each nurse i. In district NPA, no nurse is over allocated (i.e., ūi > 1)

with the MC policy, while one nurse is over allocated with the EC approach, three nurses

with the EAC approach, and two nurses with the MP approach (considering the maximum

values). In districts NPB and NCP, MC and EC show a limited maximum ūi with respect to

EAC, where a lower number of nurses have ūi higher than 1 but with higher values. Finally,

no noticeable differences are obtained in district PA.
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The average values of TOV T , Z and TC among the paths (together with the confidence

intervals) are reported in Table 3. Very similar average values are observed between MC

and EC in all districts. Moreover, the confidence intervals are highly overlapped, resulting

in the absence of significant differences. This means that the majority of the assignments

are not in the regions of the plane {c̃, |ã|} where a different choice is provided between MC

and EC (Figure 2).

Results also show that smaller overtimes and better workload balancing are obtained with

MC and EC with respect to EAC and MP for non-palliative patients, whereas a similar

behavior is shown for palliative patients. This is highly satisfactory, considering that the

policies suffer from the assumptions introduced, i.e., the triangular distribution Φ̃i (x0i ) and

the repeated single-patient assignment coupled with an ordering process, while MP assigns

all the new patients of a rolling week together. Moreover, all policies do not require any

optimization software, which may be expensive for a real HC provider and require adequate

hardware to avoid long computational times.

The lower TOV T with MC and EC in the presence of non-palliative patients show the

added value of considering the tail of the workload distributions above the capacity in the

presence of patients with a relevant variability. On the contrary, the similar results in the

case of palliative patients are given by the low variability of their demands with respect

to those of non-palliative patients; in this case, the inclusion of the variability (i.e., the

probability density function) does not add value to the solution.
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District Variable MC EC EAC MP

NPA TOVT 22.82± 2.16 22.42± 2.03 31.95± 2.86 29.51± 2.75

Z 0.2790± 0.0217 0.2901± 0.0234 0.4552± 0.0235 0.3569± 0.0285

TC 211.45± 28.28 198.19± 24.58 353.47± 40.85 309.02± 42.65

NPB TOVT 65.81± 5.84 66.65± 5.80 93.56± 6.86 85.84± 5.81

Z 0.3060± 0.0444 0.3245± 0.0361 0.5761± 0.0412 0.5206± 0.0347

TC 762.58± 100.86 772.85± 104.88 1577.99± 180.82 1247.45± 121.95

NPC TOVT 50.43± 4.59 53.64± 5.43 68.18± 5.45 58.25± 4.64

Z 0.1704± 0.0221 0.2151± 0.0270 0.3777± 0.0271 0.2444± 0.0277

TC 510.34± 67.49 564.13± 86.45 776.79± 88.23 674.16± 77.70

PA TOVT 13.26± 3.19 14.71± 3.37 16.62± 3.48 12.19± 2.63

Z 0.2904± 0.0410 0.3629± 0.0397 0.3285± 0.0438 0.2753± 0.0426

TC 102.25± 33.73 115.42± 36.25 138.37± 41.23 104.24± 34.05

Table 3: TOV T (in hours), Z and TC for the four experiments, executed for the 30 sample paths (mean value

± half-width 95% confidence interval). The normality of the data was assessed with the Anderson-Darling

test.

7. Conclusions

The topic of assigning the reference nurse in HC under continuity of care is fundamental

to maintaining a high quality of the provided services. At the same time, this topic is

also challenging, because in the literature the high variability of patients’ demands is still

neglected.

In this paper, we propose a solution of the assignment problem under continuity of care

that minimizes the overtimes incurred by nurses. This approach is innovative with respect

to the usual practice of HC providers, where new patients are assigned to the nurse with the

highest expected available capacity, defined as the difference between his/her capacity and

the actual expected workload. Specifically, the proposed policy considers the probability that

the workload of a nurse is above the capacity, while the current practice of HC providers only

takes into account the expected workload. Moreover, with respect to the previous approach

proposed in Lanzarone and Matta (2012), the policy proposed in this paper is more general

and require less assumptions.

Different advantages derive from the adoption of the policy. First, an analytical based

policy can solve the problem with a limited computational effort and without requiring ex-
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pensive software applications. Moreover, this limited computational effort can easily include

the high variability of the demand. Finally, the structure of the optimal policy could be

help to search the optimum value in the heuristic-based algorithms that have to be adopted

for large-scale problems.

Results from the implementation in a real case study show that the choices proposed

by proposed policy are often discordant with those that consider the expected available

capacity. This results into significantly lower overtimes, associated with a higher workload

balancing, in case of the application of the policy for patients with high demand variability.

Considering the typical classification of HC patients (palliative care and non-palliative care

patients), this result refers to non-palliative patients. In the case of palliative patients, lower

demand uncertainty is present and, therefore, to consider uncertainty in the assignment of

the reference nurse does not add significant benefit.

The policy proposed in this paper has some limitations that can be subject of further

investigation in future works. Firstly, the performance of the policy could decrease for

larger numbers of patients to assign, because the approach presented in this paper requires

an ordering of the new patients and to repeat the single-patient assignment for each one

of them. Moreover, some assumptions can be removed. We will take into account a more

general distribution for Φi (x0i ) instead of the triangular one, and we will include several time

slots in the planning horizon so as to manage durations longer than the demand evolution

of the patients in the charge. We will also consider multi-district assignment; this will

make possible to manage all the districts together and to allow out-of-district assignments.

In the current configuration of the approach, with separated districts, the nurse-to-patient

compatibility is a hard constraint and out-of-district assignments are not permitted. In an

integrated management, they would be treated as soft constraints which can be violated

with a certain penalty cost.

Finally, we emphasize that a software application containing the proposed policy and the

other compared approaches is currently used by the analyzed provider to assign workloads

to the operators taking into account the variability of patient demands.

Appendix: Probability density function of Ci(X
0
i )

The probability density function γi (Ci(X
0
i )) is derived in this Appendix, according to

(2), and based on vi and the triangular workload density function Φ̃i(x
0
i ). The probability

that the variable cost Ci(X
0
i ) of nurse i before the considered assignment assumes a certain
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value is the following:
P [Ci(X

0
i ) < 0] = 0

P [Ci(X
0
i ) = 0] = P [0 ≤ X0

i ≤ vi] =
∫ vi
0

Φ̃i (x0i ) dx

P [0 < Ci(X
0
i ) ≤ Ci] = P [vi < X0

i ≤ vi +
m
√
Ci] =

∫ vi+
m
√

Ci

vi
Φ̃i (x0i ) dx

(.1)

where vi +
m
√
Ci is the value of X0

i that corresponds to the cost Ci. Considering a workload

X0
i that varies from ai to ci, the maximum cost associated with Φ̃i (x0i ) is equal to (ci − vi)m.

Hence, the cumulative density function Γi (Ci) of Ci(X
0
i ) is as follows:

Γi (Ci) =



0 Ci < 0∫ vi
0

Φ̃i (x0i ) dx Ci = 0∫ vi
0

Φ̃i (x0i ) dx+
∫ vi+

m√Ci

vi
Φ̃i (x0i ) dx 0 < Ci < (ci − vi)m

1 Ci ≥ (ci − vi)m

(.2)

The density function γi (Ci) is the derivative of Γi (Ci) with respect to Ci, as follows:

γi (Ci) =


δ (0)

∫ vi
0

Φ̃i (x0i ) dx Ci = 0

∂
∂Ci

∫ v+ m√Ci

vi
Φ̃i (x0i ) dx 0 < Ci < (ci − vi)m

0 elsewhere

(.3)

where δ (0) is the Dirac delta function on Ci = 0. Considering the triangular function for

Φ̃i (x0i ), γi (Ci) assumes the following form:

γi (Ci) =


δ (0) [1− (ci−vi)2

(ci−ai)(ci−bi) ] Ci = 0

2Ci
1−m
m

(
ci−vi−Ci

1
m

)
m(ci−ai)(ci−bi) 0 < Ci < (ci − vi)m

0 elsewhere

(.4)
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