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Abstract

Two features characterize a good inspection system: it is accurate, and

compared to the manufacturing cost, it is not expensive. Unfortunately, few

measuring systems posses both these characteristics, i.e. low uncertainty comes

with a cost. But also high uncertainty comes with a cost, because measuring

systems with high uncertainty tend to generate more inspection errors, which

come with a cost.

In the case of geometric inspection, the geometric deviation is evaluated from

a cloud of points sampled on a part. Therefore, not only the measuring device

has to be selected, but also the sampling strategy has to be planned, i.e. the

sampling point cloud size and where points should be located on the feature to

inspect have to be decided. When the measuring device is already available, as it

often happens in geometric measurement, where most instruments are flexible,

an unwise strategy planning can be the largest uncertainty contributor.

In this work, a model for the evaluation of the overall inspection cost is pro-

posed. The optimization of the model can lead to an optimal inspection strategy

in economic sense. However, the model itself is based on uncertainty evalua-

tion, in order to assess the impact of measurement error on inspection cost.

Therefore, two methodologies for evaluating the uncertainty will be proposed.

These methodologies will be focused on the evaluation of the contribution of
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the sampling strategy to the uncertainty. Finally, few case studies dealing with

the inspection planning for a Coordinate Measuring Machine will be proposed.

Keywords: Geometric Inspection; Geometric Deviation; Uncertainty;

Sampling Strategy; Inspection Cost Model

1. Introduction

For any company, quality is one of the main factors in the competition to

become the leader of the sector. Even if quality has often been considered only

as “product quality”, “process quality” should be considered, too, because a

good process usually produces good products with even lower costs. Anyway,

to ensure goodness of product/process quality, some control has to be performed,

i.e. a quality system has to be established. Every quality system is essentially

based on the observation of the product/process: a quality characteristic is

measured, and from this measurement the behavior of the system is decided to

be “good” or “not good”. This may imply also that a defective part is rejected,

or that the whole process has to be checked and adjusted, if required. From

now on, just the problem of checking parts will be considered. The possibility

of rejecting a part due to the quality inspection leads to some unexpected costs.

Inspection of parts consists in comparing the actual result of some measurement

performed on it with a “specification limit” SL. Due to measurement error [1]

it is possible that a good part (namely a part complying with the SL) is rejected

(type A error), or a defective part is accepted (type B error) [2]. Both these

types of errors come with a cost.

Inspection error probability is strictly related to uncertainty [3]. But high

accuracy measurements are more expensive than low accuracy measurements, so

reducing inspection errors frequency (which implies the choice of low uncertainty

measurements) will increase measurement costs: a trade-off between inspection

error costs and measurement costs has to be defined.
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1.1. Geometric Tolerances and Compliance to Tolerances

In mechanical engineering, a quite common specification is a “geometric tol-

erance” [4, 5]. A geometric tolerance states how much a real part can differ from

its ideal, designed geometry; therefore, a geometric tolerance usually defines

only an upper specification limit for the geometric deviation. Geometric toler-

ances importance is increasing because of the performances the market requires

to mechanical systems: if dimensional tolerancing may suffice simple parts to

ensure functionality of simple parts, more complex fits require well-structured

definitions.

Of course, the check of a geometric tolerance involves the estimate of the

geometric deviation, and an uncertainty evaluation has to be proposed for this

estimate. Some international series of standards have been proposed giving

guidelines for this evaluation, like ASME B89.7.3 [6, 7, 8] and ISO 14253 [9, 10,

11]. In particular, ASME B89.7.3.1 [6] and ISO 14253-1 [9] propose “guidelines

for decision rules” for “considering uncertainty in determining conformance to

specifications”. A decision rule should essentially identify three regions for the

measurement result [12, 13]:

1. Conformance zone. If the measurement result falls in this zone, then the

related part is accepted.

2. Non-conformance zone. If the measurement result falls in this zone, then

the related part is rejected.

3. Uncertainty range. If the measurement result falls in this zone, it is not

possible to state whether the part conforms or not to the tolerance.

ASME B89.7.3.1 and ISO 14253-1 differ in that the ASME standard gives

only guidelines on how to choose these regions, because the selection of a decision

rule is considered a business decision, and the flexibility of having a continuum

of rules ranging from stringent to relaxed acceptance or rejection is needed

in order to satisfy a broad range of industries; ISO standard instead rigidly

states that a part should be accepted if its geometric deviation estimate is

lower than the geometric tolerance reduced by the expanded uncertainty U ,
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and rejected if its geometric deviation estimate is greater than the geometric

tolerance augmented by U . The region (LS − U,LS + U) is the uncertainty

range (Fig. 1). In particular, the standard states that, if a supplier has to

prove conformance, a part falling in the transition region cannot be considered

conforming, while, if a costumer wishes to prove non-conformance, a part falling

in the transition region cannot be considered non conforming.

1.2. Evaluating Geometric deviation

Traditional instruments are not suitable to check geometric tolerances. Ge-

ometric tolerances verification is usually performed by means of coordinate

metrology. A wide range of coordinate measuring devices exist today on the

market, distinguished by their accuracy, working principle (mechanical contact,

laser triangulation, image probing,. . . ), sampling (point-to point, line scanning,

area scanning), measuring volume, etc. Regardless of the specific instrument,

every coordinate measuring system is based on sampling some points on the

surface to inspect. Then, a “substitute geometry” is fitted on these points, and

the geometric deviation is evaluated as the maximum deviation from this geom-

etry (see the work by Antony et al. [14] for further details). Because only few

points usually define the amplitude of the tolerance zone, only these points are

really relevant to evaluate the geometric deviation.

Most coordinate measure system are flexible, being able to sample points on

very different surfaces. However, this flexibility makes evaluation of measure-

ment uncertainty difficult since different measurement tasks are characterized

by different uncertainties; hence, a “task specific uncertainty” [15] should be

evaluated. In fact, Wilhelm et al. [15] have identified several sources of Coor-

dinate Measuring Machine (CMM) measurement uncertainty such as hardware,

workpiece geometry, sampling strategy, fitting and evaluation algorithms, and

extrinsic uncertainty sources. In particular several authors have pointed out that

the sampling strategy can significantly affect measurement uncertainty (see e.g.

Weckenmann et al. [16, 17]; Kruth et al. [18]), in particular when the sample

size is small, which may be a typical situation if uncertainty cost has to be opti-
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mized. Because sampling strategy is most often determined by the operator, it

is the main leverage to control uncertainty as well. A conprehensive discussion

about coordinate measuring devices performance, uncertainty evaluation, and

relationship with the conformance or non conformance statement can be found

in the recente work by Phyllips [13] in the book by Hocken and Pereira [19].

Methodologies for sampling strategy planning may be grouped into three

categories (for further reference on sampling strategy planning, please address

to recent works of the authors of the present paper [20, 21]). Blind sampling

strategy are standard sampling strategies, like those defined in international

standards [22, 23, 24, 25], which do not require any knowledge of the surface

to inspect, apart from nominal geometry. Adaptive strategies [26, 27] try to

“adapt” the strategy itself to the actual surface, that is, they sample an initial

set of points, and then sequentially choose the next sampling points based on

the knowledge of the already sampled points. Finally, manufacturing based

sampling strategies are strategies developed for parts manufactured by a specific

process [28].

Manufacturing based sampling strategies originate from the observation that

sampling strategy uncertainty contribution and the actual part geometric de-

viation tend to be closely interrelated [15, 18, 29]. If geometric tolerance def-

initions given by the ISO 1101 standard are followed, only those zones of the

surface which deviate the most from the design nominal geometry define the

geometric deviation (worst case scenario). There is a strong interrelations be-

tween sampling strategy, measurement point layout and capability to identify

part out-of-tolerance (“anomalous”) zones caused by part geometric deviation

patterns that directly affect measurement uncertainty. There is an extensive

literature related to development of a generic methods for optimization of mea-

surement point layouts [30, 31, 32, 33]. However, it has also been observed that

anomalous zones of the part profile/surface tend to be the same throughout the

production. It may therefore be stated that the part presents a process inherent

error signature - a “manufacturing signature”.

Ceglarek et al. [34, 35] developed methods to model part variation patterns
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of pre-assembled components to compensate dimensional variability caused by

upstream manufacturing processes. In recent years several studies have sug-

gested that the interaction between sampling strategy and manufacturing pro-

cess error signature can be analyzed in order to generate very effective sampling

strategies (e.g. Summerhayes et al. [36], Killmayer and Babu [37], or Colosimo

et al. [28]). However, the criteria adopted for the definition of the optimal

strategy are heuristic, and lack an explicit uncertainty evaluation.

1.3. Paper aims

In this paper the applicability of an economic framework to the optimization

of the sampling strategy is pointed out. A cost function depending on the sam-

pling strategy (i.e. number and location of sampling points) will be reviewed

[21]. To complete the framework, two methodologies will be proposed for the

evaluation of the measurement uncertainty, whose knowledge is required for the

estimate of the cost: the first one experimental, based on the acquisition of data

on calibrated workpieces, the second one based on simulation. The two method-

ologies are based on current state of the art in uncertainty evaluation, and go

beyond it by explicitly considering the sampling strategy and its interaction with

the manufacturing signature. By optimizing the cost function,while simultane-

ously correctly evaluating the uncertainty, an optimal sampling strategy can be

defined: the best trade-off between measurement costs and measurement un-

certainty can be found. An heuristic algorithm will be adopted to optimize the

function. Finally, this approach is expected to efficiently interact with manufac-

turing based sampling strategies. Therefore, it will be shown that the inclusion

of the interaction between the sampling strategy and the manufacturing signa-

ture in the uncertainty evaluation allows far lower costs.

Case studies will be proposed, involving roundness and parallelism toler-

ances.
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2. Economic framework for the evaluation of inspection cost

The authors of the present work have recently proposed a paper [21] in

which an economic framework is presented which allows the evaluation of the

inspection cost. In that work the applicability of the framework has been dis-

cussed with reference to an early design stage. Here mathematical details of

the framework are reported to allow the understanding of its applicability to

strategy planning; for a more complete discussion of the methodology the reader

is addressed to the paper just cited.

Consider the general case in which N parts have to be inspected; for every

part, T geometric tolerances have been defined, and S geometric features are

involved. In general, inspection cost is the sum of two costs, one cost CM

deriving from performing the measurement, the other cost CE originating from

inspection errors (of both type A and B), that is

CI = CM + CE (1)

2.1. Measurement cost CM

CM is itself the sum from two cost: a cost which depends on the measurement

strategy CMM , and a cost which is independent of it CMF . The latter depends

mainly on the selected measuring instrument, so in general it is not particularly

relevant if sampling strategy planning is the aim.

CMF depends essentially on the chosen measuring instrument. It originates

from planning the measurement strategy, and setting up every single part on the

measuring instrument for inspecting it. In general, these costs can be considered

fixed, and are relevant only if the measuring instrument has to be selected. The

only contribution to CMF related to sampling strategy planning is the cost

for planning the sampling strategy. In fact, planning a manufacturing based

strategy is in general more expensive that planning a blind or adaptive strategy,

because costs for acquiring information on manufacturing signature have to be

borne.
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In general CMM is proportional to the time required to perform the measure-

ment. To evaluate this time, two different categories of instruments should be

considered, i.e. “discrete measuring” instruments, and “continuous measuring”

instruments.

Discrete measuring instruments group those instruments whose probing sen-

sor is activated a discrete number of times to measure the feature, each acti-

vation requiring a fixed time to sample one or more points. In this case, the

measurement cost depends essentially on the number of activations of the sensor,

that is

CMM = Ncmtm ' Ncmta
S∑

j=1

naj = Nca

S∑
j=1

naj (2)

where cm is the hourly cost of the measuring system, ta is the time required by

a single activation of the sensor, naj is the number of activations required to

measure the jth feature, and ca is the cost of a single activation.

In contrast, in a continuous measuring instrument probings happen with

a given frequency, while the sensor moves on the feature to measure. The

measurement time for scanning instruments depends on the overall scan length

divided by the scan speed:

CMM = Ncmtm ' Ncm
S∑

j=1

lj
vj

= Ncm

S∑
j=1

δjnpj
vj

(3)

where lj is the length of the scan for the jth feature, vj is the speed at which

this scan is performed, δj is the spatial sampling period, and npj is the number

of points scanned on feature j .

2.2. Inspection Error cost CE

Evaluation of CE is more complicated. Define fAi (fBi) the event “a type A

(B) error is committed when checking tolerance i”. Suppose that the criterion

for conformance testing is applied, as suggested in the ISO 14253-1 standard

(the solution is similar if the non conformance test is applied). In general, the
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probabilities that a type A or B error happen are

P (fAi) = P (yi ≥ SLi − Ui|xi ≤ SLi)

P (fBi) = P (yi ≤ SLi − Ui|xi ≥ SLi)
(4)

where yi is the measurement result for the geometric deviation i, xi is the

real value of the geometric deviation i, and SLi and Ui are respectively the

specification limit and the extended uncertainty for tolerance i. Both xi and

yi are random variables, whose statistical distribution should be known given

manufacturing process and measuring instrument. Of course, Ui is affected by

the measurement procedure and instrument, thus justifying the search for a

trade of between CM and CE .

Bearing in mind this definition for the inspection error probability, it is

possible to express the overall cost of type A errors CEA:

CEA = NcEAP

(
T⋃

i=1

fAi

)
(5)

where cEA is the cost for declaring non-conforming a conforming part. P
(⋃T

i=1 fAi

)
represents the probability that a type A error is committed while verifying any

of the T tolerances.

The evaluation of the cost related to type B errors CEB is similar, i.e.

CEB = NcEBP

(
T⋃

i=1

fBi

)
(6)

where cEB is the cost of stating conforming a non conforming part.

Even if computing these probabilities is complicated, in most production

processes only few characteristics are really critical. If six sigma condition is

met, and if the uncertainty is not large, probabilities in Eq. (4) will be small.

Therefore, if critical tolerances can be identified [38], Eq. (5) and (6) can be

reasonably solved.

Please note that, in general, P (fBi) is small if a conformance test is per-

formed, and vice versa P (fAi) is small in case of non conformance test [2]. This
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can lead to a simplified expression of these probabilities, that is

P (fAi) = P (SLi − Ui ≤ xi ≤ SLi)

P (fBi) = 0
(7)

when conformance test is performed, and

P (fBi) = P (SLi ≤ xi ≤ SLi + Ui)

P (fAi) = 0
(8)

when the non-conformance test is performed. These probabilities may be in-

terpreted as the fraction of wrongly rejected (conformance test, see Fig. 2) or

accepted (non-conformance test) parts. This formulation is in general easier to

manage.

3. Measurement Uncertainty evaluation

The economic model described in §2 can, in general, evaluate the inspection

cost for geometric tolerances. Eq. (4) clearly shows the importance of uncer-

tainty in this evaluation. If the optimal sampling strategy is the aim, then the

uncertainty evaluation procedure has to clearly consider the contribution of the

sampling strategy (sampling points pattern and number). Wilhelm et al. [15]

have identified six ways for evaluating Coordinate Measuring Systems (CMS)

measurement uncertainty: sensitivity analysis, expert judgment, use of cali-

brated objects, computer simulation, statistical estimation from measurement

history, and hybrid methods. Among these methodologies, expert judgment

and sensitivity analysis are not effective to consider the influence of the sam-

pling points pattern. Statistical estimation from measurement history requires

historical data to be available, which is usually not possible in strategy design

phase. And hybrid methods are just a derivation of the other methodologies.

Therefore, two procedures will be proposed, one based on the use of calibrated

artifacts identical or similar to parts that will be manufactured, and one on sim-

ulation. A discussion an the evaluation of uncertainty for coordinate measuring

devices has been proposed by Phillips [13].
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3.1. Calibrated artifacts based procedure

The ISO/TS 15530-3 [39] standard proposes a method to evaluate CMM

uncertainty. However, the principle can be extended from CMMs to any CMSs.

According to the proposed procedure, n repeated measurements (the ISO/TS

15530-3 standard suggests n ≥ 20) are carried out on one or more calibrated

workpieces, then from these results terms ucal, up, uW, and ub are estimated,

and U is evaluated as

U = k
√
u2cal + u2p + u2W + u2b (9)

where k is the coverage factor [1], ucal is the standard calibration uncertainty of

the artifact(s) adopted, up is the uncertainty contribution due to the measuring

system adopted, uW is the uncertainty contribution related to the production

variability (e.g. non perfectly constant thermal expansion coefficient of the

material, or the adoption of a calibrated artifact that significantly differs from

manufactured parts), and ub is the uncertainty due the compensation of the

bias, which can also be estimated from the n measurement repetitions. up can

be experimentally evaluated, in the case only an artifact is adopted, as

up =

√√√√ 1

n− 1

n∑
i=1

(
yi −

1

n

n∑
i=1

yi

)
(10)

where xcal is the calibrated value of the geometric deviation of the artifact.

If a blind or adaptive sampling strategy is being planned, then Eq. (9) and

(10) are sufficient to apply the economic framework. It has to be pointed out

that only the sample size will be defined for blind strategies, because the sam-

pling points pattern is either a priori established, or adaptively chosen for every

part. But if a manufacturing based strategy has to be planned, then consider-

ing only a single artifact cannot encompass the part to part variability of the

production, and any sampling point pattern defined this way will tend to reflect

the actual geometric deviation of the adopted calibrated artifact. Therefore, a

slight modification of these formulas is proposed, so that more than one work-

piece may be used. In particular, to estimate up, a pooled standard deviation
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should be used:

up =

√√√√√ m∑
j=1

rm∑
i=1

(
yi,j − 1

n

n∑
k=1

yk,j

)
m (rm − 1)

(11)

where m is the number of artifacts adopted, and rm is the number of mea-

surement repetitions per calibrated artifact. It is supposed that each calibrated

workpiece is measured the same number of times; in general, it can be suggested

rm ≥ 10.

Substituting Eq. (11) in Eq. (9) the required evaluation of U results.

A final note on uW: ISO 15530-3 introduces it to consider the variability

of the production; however, if more than one calibrated workpiece is measured,

then the term up should contain this uncertainty contribution, and uW = 0.

3.2. Simulation based procedure

Computer simulation [40] is probably the most suitable method for evalu-

ating a “task specific uncertainty” for coordinate measurement systems, having

the required flexibility, and not being subjective like expert judgment. This

subject has been particularly well described for CMMs, but can be extended

to any coordinate measuring system. A software simulating the behavior of a

CMM, allowing uncertainty evaluations, is commonly known as “virtual CMM”.

A classical virtual CMM [15, 41] is based on simulation of ideal (but not

necessarily perfect, e.g. they can contain some undulations) geometric features,

for which the geometric deviation is known. A measurement error is simulated

according to a model of the real behavior of the CMM for which the uncertainty

is being evaluated, and added to the ideal feature. Measurement uncertainty

is evaluated by comparing geometric deviations evaluated on the “perturbed”

features and the known geometric deviations of ideal features. The overall

methodology may be regarded as a Montecarlo simulation of ideal profiles and

sampling errors, from which a Montecarlo simulation of geometric deviation

evaluation error x− y is derived.

Various error sources should be considered in the error simulations, including

measurement strategy, environmental conditions, CMM volumetric errors, and
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so on. A complete list of these sources may be found in the ISO/TS 15530-4

standard [42]. This standard deals with the problem of validating virtual CMM

models, proposing four methodologies for the validation, one of which has been

adopted to validate the virtual CMM developed for producing results in this

paper, as it will be discussed later in this paragraph.

Several methodologies have been proposed to extrapolate uncertainty from

simulation results. In this paper, the approach proposed by Schwenke et al.

[43] has been adopted. This approach does not allow to explicitly calculate a

standard uncertainty u, but only an expanded uncertainty U characterized by

some coverage probability p [1]. Suppose a Montecarlo simulation of several

(thousands) geometric deviation evaluation errors x− y is available. From this

data a Montecarlo evaluation of the statistical distribution of x − y is derived.

Let’s define G (x− y) the empirical cumulative distribution of x − y. There-

fore an evaluation of the expanded uncertainty characterized by the coverage

probability p may be obtained as (Fig. 3)

G (U)−G (−U) = p (12)

Please note that the resulting evaluation of U is coherent with the definition of

coverage probability, and that any uncorrected bias is considered [43].

To simulate geometric deviations, an approach based on results proposed

by Van Dorp et al. [44] has been implemented. The developed model is based

on the frequency content of the error signal, and may be applied to a “Zeiss

Prismo” CMM. At present the virtual CMM model implemented takes into

account only the geometric deviation of the CMM and the adopted sampling

strategy as uncertainty sources.

However, in order to validate the Virtual CMM, the approach proposed in

Annex C.2 of ISO/TS 15530-4 standard has been chosen. The virtual CMM has

generated an uncertainty evaluation for roundness measurement of a calibrated

plug gauge, ensuring a 95% coverage probability, and simulating one thousand

measurement repetitions; the uncertainty statement is supposed to be valid for

the “Zeiss Prismo” CMM available at Politecnico di Milano, where this work
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has been developed. Then the calibrated plug gauge has been measured one

hundred times. The formula [42]

|ycal − y| 6
√
U2
cal + U2 (13)

has been applied for proving plausibility of the uncertainty evaluation (where

ycal is the calibrated roundness of the plug gauge, and Ucal is the calibration

expanded uncertainty with a coverage probability of about 95%). 97 of 100 mea-

surement repetitions satisfied Eq. (13), thus proving virtual CMM uncertainty

evaluation plausibility.

The standard model of virtual CMM which simulates “standard” geometric

feature is adequate if an optimal blind or adaptive strategy is to be defined. If

a manufacturing based strategy has to be planned, the virtual CMM must take

into account the interaction between the actual geometric deviation and the

sampling strategy when evaluating the measurement uncertainty. This is not

hard to obtain with a Montecarlo simulation based virtual CMM: it is sufficient

to simulate nominal profiles according to a model of the actual signature. If the

simulated ideal profiles are generated according to some real signature model

instead of being features perfect or characterized by “standard” error compo-

nents, like undulations, then the uncertainty evaluation will implicitly consider

the signature. It will suffice to simulate, according to the manufacturing sig-

nature model, a sufficient number of profiles on a dense set of sampling points:

geometric deviation evaluated on this profiles is the simulated real geometric de-

viation x. In order to obtain the simulated measurement result y points related

to the considered sampling strategy will be extracted, and a random measure-

ment error will be added to each point: the error evaluated on this “perturbed”

profile is y. Evaluation of error x− y follows.

4. Defining an optimal sampling strategy

Now the framework for defining an optimal sampling strategy is complete.

Just an algorithm to solve the problem is missing.

14



However, the solution of the problem is not straightforward. The definition of

the absolutely optimal sampling strategy requires that any sampling strategy is

considered, but infinite sampling patterns exist. Theoretically a simulation ap-

proach should be able to solve the problem, but at very high computational cost;

experimental approach is absolutely unable to manage any situation, because

the surface is known only on a discrete number of sampling points. Therefore,

to simplify the problem, only a finite number of locations on the surface(s) to

inspect, instead of any location, will be considered as candidate sampling points.

Such locations will be sampled on every calibrated artifact, in the calibrated ar-

tifact based approach to uncertainty evaluation, or simulated, in the simulation

based approach. This way, the number of possible sampling strategies is still∑np

k=1
np!

k!(np−k)! (where np is the number of candidate sampling points), which

is very large if np > 1000 as usual. Therefore, given the discrete nature of the

problem, an optimization algorithm, like a genetic algorithm [45] or a simulated

annealing algorithm [46], is suitable for the task - even if the proposed solu-

tion will not be necessarily the global optimum, this kind of algorithms may

reduce the number of strategies to test, so that a sub-optimal strategy may be

calculated in a reasonable time.

4.1. Artifact based approach vs. Simulation based approach

Having introduced how to plan an optimal sampling strategy, some ambi-

guity remains on the choice between a calibrated artifact based approach or a

simulation based approach to the evaluation of the uncertainty. Either method

has peculiar advantages.

Artifact based method is, in general, easier to apply. It just requires that

one or more calibrated artifacts, which in this case are standard parts produced

by the process or ad hoc produced specimen, to be acquired and repeatedly

measured on an adequately large number of sampling locations. No particular

skill is required in doing this, nor any particular difficulty can be envisaged. If

artifacts are manufactured by the actual process, even a manufacturing based

strategy can be easily defined, which can lead to very low uncertainty [47, 48].
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But a simulation based approach can, in general, be less expensive. In fact,

no material reference artifact is required to apply this methodology. Applica-

tion is, in general, a bit more difficult, and more care must be taken in setting

simulation parameters. However, this approach allows a real task specific un-

certainty evaluation even if only few parts are manufactured. In general, it is

possible to afford the cost for developing calibrated artifacts only in medium or

large scale production, so the first approach is applicable only in a limited series

of situations.

If a manufacturing based strategy is being developed, then simulation ap-

proach has another advantage. In general, manufacturing based strategies be-

come very unreliable if the manufacturing process is not stable, which causes

the manufacturing signature to change overtime. The development of a manu-

facturing based strategy with a simulation based uncertainty evaluation requires

a model of the signature to be known. In recent years several signature based

monitoring techniques have been proposed [49, 50, 51, 52] which require a sig-

nature model, and which are very effective in process monitoring. Therefore,

the choice of a simulation and manufacturing based optimal sampling strategy

efficiently couples with reactive monitoring techniques.

5. Case studies

Three case studies are dealt with: two dealing with roundness, with either an

artifact or simulation based approach, and one dealing with plane parallelism,

dealt with both an artifact and a simulation based approach. In every case

study, a conformance test will be considered, and the simplified formula for the

calculation of the probability, i.e. Eq. 7, will be considered.

5.1. Roundness - artifact based

This case study [47] involves the roundness of ten turned cylindrical speci-

mens in titanium alloy Ti-6Al-4V grade 5. Geometry, cutting parameters, and

costs as follows:
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� Turned length: 47 mm

� Final diameter: 16.8 mm

� Depth of cut ap: 1.2 mm

� Feed f : 0.14 mm/rev

� Cutting speed vc: 65 m/min

� Production cost, considered as cost of the type A error cEA, for a single

specimen: 23.6 e

A single roundness profile was then sampled on each specimen, 2 mm from

the edge the farthest from the self-centering chuck. A “Zeiss Prismo VAST

HTG” CMM performed measurements, whose main characteristics follow:

� Maximum permissible error: PFTU,MPE = 2 µm

� Hourly cost: 65 e/h

� Time to sample a single point: 1.5 s

Specimens were sampled on 1250 points (a point every about 0.005 rad).

The typical roundness error is shown in Fig. 4.

The presence of a signature characterized by the superimposition of a bi-

lobed and a tri-lobed shape is apparent. A reasonable supposition is that this

error is due to defects in spindle rotation.

The roundness of each specimen has been calibrated, with ucal = 1.5 µm. An

Anderson-Darling normality test for these ten calibrated values suggests that

there is not a statistical evidence to refuse the normality of the out of round-

ness distribution, so it is supposed that x ∼ N (18.7, 2.8) (mean and standard

deviation expressed in [µm]), as estimated from data. A roundness tolerance of

0.023 mm was defined on the measured profile. Then, each specimen has been

measured ten times, on 1250 points.

The application of a simulated annealing algorithm has then lead to a man-

ufacturing based sampling strategy. A seven points strategy (Fig. 5) resulted
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optimal, whose inspection cost was 6.6 e; Fig. 5 shows the strong link between

the optimal sampling strategy and the signature, too. This value may be com-

pared to the inspection cost with a blind uniformly spaced strategy, which is

8.6 e. Being the sample size the same, cost reduction depends only on the op-

timization of the sampling strategy for the particular manufacturing signature:

expanded uncertainty for the uniformly spaced strategy is 3.7 µm, while U for

the optimized strategy is 3.1 µm (k = 2 for both estimates, as suggested by both

ISO 14253-1 and ISO/TS 15530-3). Moreover, the optimal cost for a uniform

strategy is 8.2 e (corresponding to fifteen points). For further explanation,

consider Fig. 6, which shows the measurement uncertainty as the sample size

varies for both blind and manufacturing based sampling strategies. It is ap-

parent that the manufacturing based sampling strategy outperforms the blind

sampling strategy regardless of the sampling size. A similar result is shown by

Fig. 7, which shows the behavior of inspection cost CI . In figure 7 it is also

apparent that, for large sample sizes, the cost difference between the blind and

the manufacturing based strategy is very small. This is due to the general re-

duction of U . If U is sufficiently small, then P (LSi − Ui ≤ xi ≤ LSi) is small,

too, so only sampling points number affects the inspection cost according to Eq.

(1), (5), and (7).

5.2. Roundness - simulation based

This case study [53] is based on the manufacturing signature model proposed

by Colosimo et al. [54]. This model describes the signature of roundness profiles

obtained by turning C20 steel bars. Geometry, cutting parameters, and costs

as follows:

� Turned length: 60 mm

� Final diameter: 26 mm

� Depth of cut ap: 5 mm

� Feed f : 0.2 mm/rev
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� Cutting speed vc: 163 m/min

� Production cost, considered as cost of the type A error cEA, for a single

specimen: 10 e

One hundred specimens were manufactured, and measured on 748 evenly

spaced points by means of the same CMM described in §5.1. From this data, a

“Spatially Autocorrelated Regression” model of the second order SARX(2) [55]

signature model has been identified. An instance of the geometric deviation

generated according to this manufacturing signature model is depicted in Fig.

8. Similarly, Fig. 9 shows the average profile. Both figures show the local form

deviation as a function of the angle θ.

By means of this signature model, one thousand “ideal” profiles have been

simulated, the roundness error of which has been taken as reference value.

Roundness reference values have shown a normal distribution of geometric devi-

ation, so it is assumed that x ∼ N (14.6, 1.4), with mean and standard deviation

expressed in [µm]. Moreover, a roundness tolerance of 25 µm is considered for

these profiles.

A simulated sampling error has been added to the simulated profiles, adopt-

ing the VCMM approach described in §3.2, thus generating one thousand “per-

turbed” profiles. Finally, a simulated annealing algorithm has been applied to

this data, in order to optimize the sampling strategy as described in §4. An

optimal sampling strategy constituted by 14 points has been identified (Fig.

9). As expected sampling points are concentrated where roundness deviation is

greatest, so that the bias in measurement of geometric deviation is minimized.

Finally, Fig. 10 and 11 portrait respectively the behavior of uncertainty

and inspection cost as the sample size changes. Considerations similar to those

drawn for the titanium specimens in §5.1 follow.

5.3. Parallelism

The case studies proposed so far regard roundness, i.e. a form tolerance.

In a form tolerance only a geometrical feature is involved (no datum feature is

19



defined). Therefore, sampling regards only the toleranced feature, and the pro-

posed optimization can be applied easily. However, the proposed methodology

is in principle applicable to any geometric tolerance. To prove this consider as

case study the parallelism defined in point (e) of Table 3 in the ISO 10791-7

standard [56]. This case study will be solved by both an artifact [48] and a

simulation [57] based approach. Ten parts were contour milled [58] adopting

the following cutting parameters:

� Mill diameter: 40 mm

� Depth of cut ap: 6 mm

� Engagement ae: 0.2 mm

� Feed per tooth fz: 0.15 mm/rev

� Cutting speed vc: 350 m/min

� Number of teeth Zn: 4

� Production cost, considered as cost of the type A error cEA, for a single

specimen: 40 e

and a 0.045 mm parallelism tolerance was defined. Then tolerances and datum

features were densely sampled by means of the same CMM described in §5.1.

For this high density sampling a uniformly spaced sampling strategy, with a

point density of 1 point/mm2, was adopted; a total of 3720 points were sampled

on each part (1395 on the datum feature, and 2325 on the toleranced feature).

Measurement was repeated ten times for each part. Finally, every part was

calibrated with a calibration standard uncertainty ucal = 0.001 mm. From

calibrated parallelism errors, it was ascertained that parallelism for these parts

was distributed according to a N (0.041, 0.0017) Gaussian statistical distribution

(mean and standard uncertainty expressed in [mm]). The average surface of the

ten toleranced surfaces is plotted in Fig. 12: it is apparent that the surface

presents a sawtooth profile, which is due to the multiple cutting steps required
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for the overall machining, and a trend along the z axis, which depend on mill

inflection, and generates a lack of parallelism between the average planes of the

toleranced and datum features.

The data gathered as just described form the base to apply the artifact based

approach to the optimization of the sampling strategy. To apply a simulation

based approach, based on these data a numerical model has been proposed [58]

which simultaneously describes both the toleranced and datum features. The

model has been adopted to simulate one thousand surfaces, and the related

measurement error.

Finally, a simulated annealing algorithm was applied in both the artifact

and the simulation based approach in order to select an optimal sampling strat-

egy. Please note a parallelism is being considered, so sample size sums both

the points sampled on the toleranced feature and on the corresponding datum

feature, and, throughout the optimization process, sampling points are left free

to “migrate” from datum to toleranced feature and vice versa. Optimal strategy

was compared to a standard Hammersley strategy [59], which is considered as

reference blind strategy. The final results are reported in Fig. 13 and 14 for

the artifact based approach, and in Fig. 15 and 16 for the simulation based

approach. These graphs confirm what has already been stated for roundness

inspection in §5.1 and §5.2. A couple more considerations can be added. First,

the selected sample size tends to be larger than in the case of roundness in-

spection. The spread between blind strategies cost and manufacturing based

strategies cost tends to be larger, too. This can be ascribed to the difficulty

of blind strategies in completely and densely sampling a 2D surfaces, difficulty

which is less significant in the case of 1D profiles. Second, optimal cost and sam-

ple sizes are similar in the cases of simulation and artifact based optimization

approaches. This indicates a general coherence between the two approaches.
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6. Conclusions

Inspection cost is often neglected when evaluating the manufacturing cost.

However, it can be a very significant contributor. In this work, a model for the

evaluation of inspection cost has been proposed. It has been clearly shown how,

according to this model, the inspection cost is strongly influenced by the mea-

surement uncertainty of the inspection system adopted. Then, two approaches

for evaluating the uncertainty in the case of coordinate measurement have been

introduced. Based on this approaches together with the cost model it is pos-

sible to choose the optimal sample size. Moreover, if some knowledge about

the manufacturing signature is available, it is also possible to define an optimal

sampling points pattern, thus defining the most cost effective sampling strategy.

Few case studies have been proposed, showing that the approach can lead to

significant savings in manufacturing, as Kunzmann et al. have suggested [2].

Future developments include a deep analysis of the effect of correlations

between tolerances on the inspection cost, in particular in the case in which

more than a tolerance is defined on a single part, and the same geometric feature

is shared by differing tolerances, the extension of the procedure to the case in

which continuous measuring and area scanning systems are involved, and the

development and consideration in the result evaluation of adaptive sampling

strategies.
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Figure 1: Regions according to the ISO 14253-1 standard.
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Figure 2: Wrongly rejected fraction when the conformance test is applied.
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Figure 3: Simulation based uncertainty evaluation.
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Figure 4: Manufacturing signature of titanium alloy specimen - plot of the residual from an

ideal circumference of the ten titanium alloy specimens roundness profiles.
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Figure 5: Titanium roundness manufacturing based sampling strategy.
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Figure 6: Measurement uncertainty in titanium specimens roundness measurement.
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Figure 7: Inspection cost in titanium specimens roundness measurement.
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Figure 8: Exemple of simulated roundness profile.
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Figure 9: Average profile and optimal roundness strategy (simulation approach).
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Figure 10: Measurement uncertainty in steel specimens roundness measurement.
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Figure 11: Inspection cost in steel specimens roundness measurement.
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Figure 12: Average surface of ten toleranced planes.
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Figure 13: Measurement expanded uncertainty as the sample size increases for the parallelism

of the aluminum specimens (artifact based approach).
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Figure 14: Inspection cost as the sample size increases for the parallelism of the aluminum

specimens (artifact based approach).
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Figure 15: Measurement expanded uncertainty as the sample size increases for the parallelism

of the aluminum specimens (simulation based approach).
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Figure 16: Inspection cost as the sample size increases for the parallelism of the aluminum

specimens (simulation based approach).
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